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Chapter 1 Introduction 

	

Philosophers	have	often	used	first-order	logic	to	analyze	mathematical	and	scientific	
claims.	However,	we	seem	to	grasp	a	notion	of	logical	possibility	prior	to,	and	independent	
from,	our	grasp	of	mathematical	objects	like	set-theoretic	models.	And	powerful	reasons	to	
accept	this	notion	as	an	additional	logical	primitive	have	emerged	(Gómez-Torrente	2000;	
Hanson	2006;	Boolos	1985,H.	H.	Field	2008b,Etchemendy	1990a).		

In	this	book,	I'll	make	a	case	that	philosophical	analyses	using	(a	natural	generalization	of)	
this	notion	of	logical	possibility	can	illuminate	the	philosophy	of	mathematics,	metaphysics,	
and	philosophy	of	language.	Much	of	this	case	will	focus	on	pure	mathematics	and	the	
philosophy	of	set	theory.	For	example,	I	will	show	that	formulating	set	theory	in	terms	of	
logical	possibility	(along	Potentialist	lines	suggested	by	Putnam	and	Hellman	in	response	to	
the	Burali-Forti	paradox)	yields	a	new	and	more	appealing	justification	for	one	of	the	
standard	ZFC	(Zermelo-Frankel	with	Choice)	axioms	of	set	theory.	This	brings	us	closer	to	
realizing	the	traditional	hope	of	justifying	mainstream	mathematics	from	principles	that	
seem	clearly	true.	

However,	we	will	see	that	using	a	primitive	logical	possibility	operator	can	also	help	us	
develop	a	modestly	neo-Carnapian	philosophy	of	language.	And	philosophical	analyses	of	
scientific	theories	using	the	logical	possibility	operator	can	illuminatingly	`factor’	scientific	
claims	into	a	logico-mathematical	component	and	a	remainder,	in	a	way	that	reveals	
hidden	heterogeneity	in	the	role	of	mathematics	in	the	sciences	and	clarifies	debates	over	
Quinean	and	post-Quinean	indispensability	arguments.	

1.1 Mathematics as a Touchstone and the Centrality of Set Theory 

“Admittedly,	the	present	state	of	affairs	where	we	run	up	against	the	paradoxes	is	
intolerable.	Just	think,	the	definitions	and	deductive	methods	which	everyone	
learns,	teaches,	and	uses	in	mathematics,	the	paragon	of	truth	and	certitude,	lead	
to	absurdities!	If	mathematical	thinking	is	defective,	where	are	we	to	find	truth	
and	certitude?1”	

Mathematical	proofs	provide	a	touchstone	of	clarity	and	convincingness	which	serves	as	an	
inspiration	to	philosophy	and	other	disciplines.	While	it	is	possible	to	doubt	the	results	of	
mainstream	mathematical	arguments	(philosophers	are	capable	of	doubting	anything),	
there’s	something	striking	about	just	how	convincing	mathematical	proofs	often	are.	
Consider	the	standard	argument	that	there	are	infinitely	many	primes.	Even	philosophers	
who	deny	that	there	are	numbers	(and	hence	think	the	argument	as	usually	stated	is	
unsound)	are	strongly	tempted	to	say	that	we	know	something	like	the	premises	and	that	
these	proofs	provide	some	kind	of	valuable	amplification	of	this	knowledge.	The	premises	

	

1	I	take	this	translation	from	(Benacerraf	and	Putnam	1983)	



we	use	in	informal	mathematical	reasoning	have	a	combination	of	prima	facie	obviousness,	
power	and	generality,	which	makes	them	exemplary	tools	for	expanding	our	knowledge	
and	resolving	disputes	in	cases	where	people’s	initial	hunches	disagree.	It’s	no	surprise	
that	Leibniz2	wished	philosophers	could	resolve	their	disputes	like	mathematicians	by	
saying	‘let	us	calculate’	(or	at	least,	‘let	us	each	look	for	a	proof’).	

In	many	ways,	set	theory	lies	at	the	heart	of	modern	mathematics,	and	it	does	powerful	
mathematical	(not	just	philosophical)	work	as	a	foundation	for	the	whole.	So,	one	might	
hope	that	the	set-theoretic	foundations	for	mathematics	would	share	the	clarity	and	
convincingness	we	hope	for	from	mathematical	arguments.	

However,	certain	problems	in	the	philosophical	foundations	of	set	theory	raise	worries.	
These	concerns	are	more	mathematical	and	specific	to	set	theory	than	standard	
philosophical	worries	about,	e.g.,	whether	there	are	any	abstract	objects.	And	these	
concerns	are	more	threatening	to	mathematical	practice	than	philosophical	doubts	
typically	are,	insofar	as	they	raise	doubts	about	whether	the	standard	ZFC	(Zermelo	
Fraenkel	with	choice)	axioms	of	set	theory	are	even	logically	consistent.	

The	development	of	set	theory	resolved	a	great	many	problems	in	analysis.	It	also	provided	
a	formal	framework	to	allow	interactions	between	various	areas	of	mathematics	---	
creating,	as	Hilbert	famously	observed	(Hilbert	1926),	a	kind	of	mathematical	paradise.	
However,	contradiction,	in	the	form	of	Russell’s	paradox,	threatened	Hilbert’s	paradise.	

This	problem	was	almost,	but	not	quite,	solved	by	accepting	the	Iterative	Hierarchy	
conception	(also	called	the	Cumulative	Hierarchy	conception)	of	sets	and	the	standard	
Zermelo-Fraenkel	with	choice	(ZFC)	first-order	axioms	for	set	theory.	On	the	iterative	
hierarchy	conception	of	set,	we	think	about	the	sets	as	being	formed	in	layers,	with	the	sets	
at	each	layer	containing	only	elements	from	prior	layers.	This	lets	us	avoid	the	appearance	
that	there	should	be	a	set	of	all	sets	that	aren’t	members	of	themselves,	and	hence	Russell’s	
Paradox.	And	it	is	hard	to	deny	that	the	mathematical	results	which	are	currently	stated	in	
terms	of	this	conception	of	set	theory	reflect	genuine	and	important	knowledge	of	some	
kind.		

However,	as	we	will	see	below,	a	few	further	problems	arise,	including	a	question	of	how	to	
justify	our	acceptance	of	all	the	ZFC	axioms.	So,	we	may	ask,	is	the	price	of	remaining	in	
Cantor’s	set-theoretic	paradise	giving	up	the	old	ambition	of	founding	mathematics	on	
intrinsically	obvious	seeming	principles?		

One	of	the	main	projects	of	this	book	will	be	to	answer	this	question	in	the	negative.	I	will	
develop	a	unified	understanding	of	set-theoretic	talk,	which	vindicates	our	intuitive	
expectations	regarding	set	theory	–	and	demonstrates	that	all	theorems	of	set	theory	(ZFC)	
are	derivable	from	principles	that	seem	clearly	true	(not	to	say	indubitable).	The	approach	
I’ll	develop	differs	from	standard	actualist	set	theory,	in	a	few	important	ways.	

	

2	See	page	14	of	(Chrisley	and	Begeer	2000).	



1.2 Actualism and its Discontents 

On	standard	actualist	approaches	to	set	theory,	set	theory	studies	abstract	mathematical	
objects	called	‘sets’	which	form	an	iterative	hierarchy	as	evoked	above.	Apparent	existence	
claims	made	by	set	theorists	(like	‘there	is	a	set	which	has	no	elements’)	are	made	true	by	
the	existence	of	corresponding	objects,	just	like	ordinary	existence	claims	about	cities	or	
electrons	or	cars.	Crudely	speaking,	three	problems	arise	when	we	look	at	set	theory	from	
this	familiar	point	of	view	(each	of	which	I’ll	describe	in	much	greater	detail	in	section	2.2	
below).	

First,	there’s	a	problem	about	our	conception	of	the	hierarchy	of	sets	as	a	mathematical	
structure.	We	don’t	seem	to	have	a	precise	conception	of	the	intended	structure	of	the	
iterative	hierarchy	of	sets,	in	the	way	that	we	do	seem	to	have	a	conception	of	the	natural	
numbers.	In	particular,	the	height	of	the	hierarchy	of	sets	is	left	vague	or	mysterious.	As	the	
Burali-Forti	paradox(Burali-Forti	1897)	dramatizes,	a	certain	naive	conception	of	the	
hierarchy	of	sets	(as	containing	ordinals	corresponding	to	all	ways	some	objects	could	be	
well	ordered	by	some	relation)	is	incoherent.	And	once	this	naive	paradoxical	conception	of	
the	height	of	the	hierarchy	of	sets	is	rejected,	we	don’t	seem	to	have	a	precise	idea	about	
the	intended	height	of	the	hierarchy	of	sets	left	over	to	replace	it.	It	appears	that,	for	any	
height	that	the	hierarchy	of	sets	could	achieve,	there	could	be	a	strictly	larger	structure,	
which	adds	an	extra	layer	of	‘sets’	on	top	of	the	original	hierarchy	and	fits	with	everything	
in	our	conception	of	the	sets	equally	well.	But	it	seems	arbitrary	to	suppose	that	the	
hierarchy	of	sets	happens	to	stop	at	any	particular	point.		

Second,	there’s	a	worry	about	generality	and	the	role	of	set	theory	as	a	foundation	for	all	of	
mathematics.	One	might	hope	that	set	theory	would	be	able	to	represent	any	mathematical	
structure	one	might	want	to	study.	The	idea	that	set	theory	has	this	kind	of	generality	is	
prima	facie	quite	intuitive.	But	actualist	set	theory	is	prima	facie	unable	to	represent	the	
study	of	mathematical	structures	that	are	‘too	large.’	Thus,	actualism	makes	it	hard	to	
capture	the	intuition	that	‘any	possible	structure’	should,	in	some	sense,	be	fair	game	for	
mathematical	study,	and	hence	treatment	within	set	theory.	

Third,	there’s	a	problem	about	intuitively	justifying	the	standard	ZFC	axioms	of	set	theory.	
As	noted	above,	mathematical	proofs	can	usually	be	reconstructed	so	as	to	derive	their	
conclusion	from	premises	that	are	prima	facie	extremely	plausible	(if	not	indubitable	or	
impossible	to	philosophically	or	empirically	cast	doubt	upon).	So,	one	might	hope	that	
(once	we	understand	set	theory	correctly),	every	claim	provable	from	the	ZFC	axioms	for	
set	theory	can	be	shown	to	follow	from	principles	that	seem	clearly	true	in	the	way	that	
foundational	mathematical	axioms	often	do.	

However,	philosophers	have	noted	that	the	axiom	of	Replacement	(one	of	the	standard	ZFC	
axioms)	doesn’t	seem	clearly	true	and	deriving	it	from	principles	that	do	seem	clearly	true	
has	proved	challenging.	For	example,	in	(Hilary	Putnam	2000),	Hilary	Putnam	writes,	
“Quite	frankly,	I	see	no	intuitive	basis	at	all	for	.	.	.	the	axiom	of	Replacement.	Better	put,	I	
do	not	see	that	a	notion	of	set	on	which	that	axiom	is	clearly	true	has	ever	been	explained.”	
Instead,	philosophers	of	mathematics	and	mathematicians	have	made	do	with	less	
ambitious	approaches	to	justification.	For	example,	some	mathematicians	have	invoked	



external	justifications,	like	the	failure	of	mathematicians	to	discover	any	contradictions	
during	over	a	century	of	work	with	ZFC.	Others	have	shown	that	the	axiom	of	Replacement	
follows	from	certain	powerful	and	plausible	(if	not	clearly	consistent	or	true)	principles	
that	also	imply	many	of	the	other	axioms	of	set	theory.	But	insofar	as	the	latter	powerful	
conceptions	aren’t	clearly	consistent,	showing	this	doesn’t	suffice	to	show	Replacement	
follows	from	clearly	true	premises.	Nor	does	simply	combining	Replacement	itself	with	the	
bare-bones	conception	of	the	intended	width	of	an	iterative	hierarchy	of	sets	evoked	above	
yield	something	that	seems	obviously	consistent.	This	state	of	affairs	can	feel	unsatisfying.	

1.3 Potentialism and the Justification Problem 

In	response	to	the	first	two	problems	above,	philosophers	like	Putnam,	Parsons,	Hellman,	
and	Linnebo(Hilary	Putnam	1967b;	Geoffrey	Hellman	1994b;	Linnebo	2018b;	Parsons	
1977b)	have	proposed	that	we	should	reject3	actualism	about	set	theory	in	favor	of	a	
different	approach:	Potentialism.	The	key	idea	behind	Potentialism	is	that,	rather	than	
taking	set	theory	to	be	the	study	of	a	single	hierarchy	of	sets	which	stops	at	some	particular	
point	(as	the	Actualist	does),	we	should	instead	interpret	set	theorists	as	making	modal	
claims	about	what	hierarchy-of-sets-like	structures	are	possible	and	how	such	structures	
could	(in	some	sense)	be	extended.		

As	we	will	see	in	more	detail	in	Chapter	2,	switching	to	a	Potentialist	understanding	of	set	
theory	solves	the	first	problem	for	actualism	noted	above.	For	the	Potentialist	avoids	
postulating	an	arbitrary	(or	indeterminate)	height	for	the	hierarchy	of	sets4.	And	
Potentialism	also	plausibly	solves	the	second	problem	above,	by	honoring	the	intuition	that	
any	possible	mathematical	structure	can	be	studied	within	set	theory.	

However,	the	problem	of	justifying	the	axiom	of	Replacement	from	premises	that	seem	
clearly	true	remains.	Contemporary	Potentialists	can,	and	generally	do,	prove	that	(the	
Potentialist	translations	of)	every	theorem	of	ZFC	can	be	derived	from	certain	intuitive	
assumptions	about	logical	possibility,	or	some	other	such	modal	notion.	However,	these	
proofs	all	use	principles	of	modal	logic	that	aren’t	(and	aren’t	claimed	to)	be	clearly	true	in	
the	way	invoked	by	Putnam.	The	existing	Potentialist	literature	has	shown	that	
Potentialism	is	no	worse	off	than	actualism	with	regard	to	the	problem	of	justifying	

	

3	Strictly	speaking	Putnam	proposes	actualism	and	Potentialism	are	(in	some	sense),	two	
perspectives	on	the	same	thing.	

4	At	least	potentialists	like	Hellman(Geoffrey	Hellman	1996),	Linnebo(Linnebo	2018b)	and	
Studd(Studd	2019)	avoid	positing	such	an	arbitrary	stopping	point	for	the	sets.	Putnam’s	
view,	on	which	actualist	set	theory	and	potentialist	set	theory	are	(somehow)	two	
perspectives	on	the	same	thing,	does	not	let	us	avoid	this	problem	in	any	obvious	way.	



Replacement	that	Putnam	raises5.	However,	neither	Potentialists	nor	actualists	have	put	
forward	a	solution	to	this	problem.	

1.4 Outline 

In	this	book,	I	will	attempt	to	solve	the	above	problem	of	justifying	the	axiom	of	
Replacement	from	principles	that	seem	clearly	true	in	the	way	Putnam	evokes	(or	at	least	
improve	on	existing	solution	attempts)	and	clarify	the	foundations	of	set	theory.	

In	Part	I,	I	will	argue	that	we	should	indeed	be	Potentialists	about	set	theory	for	essentially	
the	reasons	indicated	above,	and	then	review	major	existing	formulations	of	Potentialism	
about	set	theory	and	some	problems	for	each.	I’ll	discuss	and	contrast	two	major	existing	
versions	of	Potentialist	set	theory:	the	Putnamian	approach	developed	by	Putnam	and	
Hellman	which	I	will	largely	follow,	and	an	alternative	Parsonian	approach	recently	
explored	by	Linnebo	and	Studd,	which	appeals	to	a	notion	of	interpretational	possibility,	
rather	than	metaphysical	or	logical	possibility.	

I	will	develop	and	advocate	a	particular	form	of	Potentialist	set	theory.	Although	this	
approach	largely	blends	and	simplifies	ideas	from	Putnam	and	Hellman,	it	has	the	
distinctive	feature	of	replacing	claims	that	‘quantify-in’	to	the	diamond	of	logical	possibility	
(and	thereby	talk	about	what’s	logically	possible	for	objects)	with	claims	about	what’s	
logically	possible	given	certain	structural	facts,	expressed	using	a	new	piece	of	logical	
vocabulary	I’ll	call	the	conditional	logical	possibility	operator	(◊…	).	Cashing	out	Potentialist	
set	theory	in	these	terms	lets	us	avoid	certain	philosophical	controversies6,	as	well	as	
practically	helping	us	state	axioms	that	can	be	easily	grasped	and	recognized	as	saying	
something	clearly	true.	

In	Chapter	1	I	will	discuss	actualist	approaches	to	set	theory	and	expand	on	the	worries	for	
them	noted	above.	In	Chapter	2	I’ll	discuss	how	adopting	some	Potentialist	approach	to	set	
theory	promises	to	solve	these	worries.	I’ll	review	existing	forms	of	the	Putnamian	style	of	
Potentialism.	I	will	defend	Hellman’s	use	of	a	notion	of	logical	possibility	to	cash	out	
Potentialist	set	theory	but	note	that	controversies	over	quantified	modal	logic	raise	some	
problems	for	using	his	version	of	Potentialism	in	our	foundational	project.	

In	Chapter	3	I’ll	introduce	my	preferred	style	of	Potentialist	paraphrase	and	the	key	notion	
of	conditional	(structure-preserving)	logical	possibility	I’ll	use	to	give	these	paraphrases.	
Finally,	in	Chapter	4	I’ll	contrast	the	above	approach	to	Potentialist	set	theory	with	those	

	

5	Existing	potentialists(Geoffrey	Hellman	1994b;	Linnebo	2018b;	Studd	2019)	have	
generally	adopted	some	version	of	a	potentialist	translation	of	Replacement	as	an	axiom	
(schema).	For	while	these	potentialist	translations	are	not	clearly	true,	they	are	(we	will	
see)	as	attractive	as	corresponding	instances	of	the	Replacement	schema	understood	
actualistically.	

6	See	§2.3.1	



advocated	by	Linnebo	and	Studd,	major	proponents	of	an	alternate	‘Parsonian’	school	of	
Potentialist	set	theory.	

In	Part	II	I	will	turn	to	the	core	mathematical	project	of	this	book:	justifying	the	ZFC	axioms.	
I’ll	propose	general	purpose	axioms	for	reasoning	about	conditional	logical	possibility	
which	(I	claim!)	seem	clearly	true	in	the	way	our	foundational	project	requires.	Then	I	will	
show	that	these	axioms	justify	our	use	of	normal	first-order	reasoning	for	set-theoretic	
claims	(i.e.,	claims	in	the	first-order	language	of	set	theory)	even	when	those	claims	are	
understood	potentialistically.	Specifically,	if	we	let	𝜙◊	stand	for	the	potentialist	translation	
of	a	set-theoretic	claim	𝜙,	let	⊢FOL	be	provability	in	first-order	logic	and	⊢	be	provability	in	
the	formal	system	proposed	in	this	book,	we	can	show	the	following.	

Theorem	1.1	(Logical	Closure	of	Translation).		Suppose	𝛷,𝛹	are	sentences	in	the	language	
of	set	theory	and	𝛷 ⊢#$% 𝛹	then	𝛷◊ ⊢ 𝛹◇	

With	this	theorem	in	mind,	all	that’s	needed	to	justify	normal	mathematical	practice	is	to	
demonstrate	that	if	𝜙	is	an	axiom	of	ZFC	then	⊢ 𝜙◊	holds.	A	key	idea	here	will	be	to	use	
certain	non-interference	intuitions	to	justify	the	(potentialist	translation	of)	the	axiom	of	
Replacement,	rather	than	simply	taking	the	latter	as	an	axiom,	as	current	potentialists	tend	
to	do.	Putting	these	pieces	together	we	can	conclude	that	for	all	set	theoretic	sentences	𝜙:	

If		ZFC ⊢
FOL

𝜙	then ⊢ 𝜙◊	

That	is,	reasoning	in	ZFC	as	if	one	were	talking	about	an	actualist	hierarchy	of	sets	is	
harmless.	If	one	can	prove	that	𝜙	in	𝑍𝐹𝐶,	then	the	potentialist	translation	of	𝜙	(written	𝜙◊	
above)	is	(true	and	indeed)	provable	in	my	formal	system.	

Note	that	since	I	choose	axioms	of	reasoning	about	conditional	logical	possibility	which	are	
attractive	for	general	use	rather	than	ones	that	directly	mirror	actualist	ZFC	set	theory	(as	
other	Potentialists	have	done	in	proving	versions	of	the	theorem	above),	it’s	not	at	all	
obvious	whether	the	reverse	direction	of	the	above	conditional	i.e.,	`If	⊢ 𝜙◊	then	
𝑍𝐹𝐶 ⊢#$% 𝜙’	is	true.	In	principle,	there	is	some	hope	that	the	modal	axioms	I	propose	(or,	
more	plausibly,	further	principles	about	conditional	logical	possibility	that	seem	equally	
clearly	true	)	will	let	one	vindicate	new	axioms	for	set	theory,	going	beyond	the	ZFC	axioms.		

Finally,	in	Part	III	of	the	book,	I’ll	turn	to	larger	philosophical	questions.	

In	Chapter	10,	I	consider	two	ways	my	story	about	set	theory	can	be	fit	into	a	larger	
philosophical	picture	of	mathematics	and	its	applications:	a	nominalist	approach	and	the	
weakly	neo-Carnapian	approach	I	ultimately	favor.	

In	Chapters	11-14,	I’ll	discuss	the	nominalist	approach	to	non-set	theoretic	mathematical	
objects	and	Indispensability	arguments.	I’ll	argue	that	adding	some	cheap	tricks	to	the	
above	paraphrase	strategy	lets	the	nominalist	answer	certain	classic	Quinean	and	
Explanatory	indispensability	arguments.	However,	I’ll	suggest	that	the	mathematical	
nominalist	may	face	serious	and	under-discussed	worries	about	reference	and	grounding.	

In	Chapters	15	and	16,	I’ll	explain	the	weakly	neo-Carnapian	approach	to	non-set	theoretic	
mathematical	objects	I	favor,	and	argue	that	adopting	it	helps	solve	or	avoid	these	



reference	and	grounding	problems	and	has	certain	other	advantages	(while	retaining	many		
benefits	of	nominalism).	The	resulting	view	is	a	kind	of	neo-Carnapianism	realism	about	
mathematical	objects,	which	drops	Carnap’s	radical	anti-metaphysical	ambitions	but	keeps	
mathematicians’	freedom	to	talk	in	terms	of	arbitrary	logically	coherent	pure	mathematical	
structures.	

Finally,	in	Chapters	17-19	I’ll	discuss	how	the	overall	picture	of	mathematics	developed	in	
this	book	relates	to	traditional	questions	about	logicism,	structuralism,	and	human	access	
to	facts	about	objective	proof-transcendent	mathematical	facts.	

1.5 Caveats and Clarifications 

Let	me	finish	this	introduction	with	some	quick	caveats	about	the	nature	and	aim	of	my	
project.	

First,	I	don’t	claim	set	theorists	should	literally	rewrite	set	theory	textbooks	in	potentialist	
terms.	Mathematicians’	current	practice	of	(making	arguments	which	can	be	reconstructed	
as)	proving	things	in	first-order	logic	from	the	ZFC	axioms	is	fine.	And	doing	something	like	
logical	deduction	from	purely	first-order	axioms	may	be	unavoidably	easier	(for	minds	like	
ours)	than	thinking	about	elaborate	the	elaborate	modal	claims	that	figure	in	potentialist	
set	theory.	If	one	thinks	about	typical	set	theoretic	talk	as	abbreviating	potentialist	claims,	
then	the	main	result	of	Part	II	shows	that	it’s	unnecessary	to	unpack	this	abbreviation	in	
most	mathematical	contexts.	

However,	I	am	suggesting	Potentialism	reflects	what	people	should	say	when	we	think	
about	set	theory	in	many	philosophical	and	foundational	mathematical	contexts.	Replacing	
actualist	set-theoretic	claims	with	their	Potentialist	paraphrases	solves	various	intuitive	
puzzles	and	makes	sense	of	things	that	we	normally	want	to	say	about	set	theory7.	

	

7	In	this	proposal	I	somewhat	mirror	Hellman's	(Hellman	1998)	response	to	Burgess	and	
Rosen's	dilemma	(Burgess	and	Rosen	1997).	Burgess	and	Rosen	argue	that	nominalistic	
paraphrases	must	be	intended	as	either	a	hermeneutic	theory	of	what	scientists	mean	or	a	
revolutionary	theory	of	what	they	should	say,	but	typical	nominalist	paraphrases	don’t	
seem	adequately	supported	by	scientific	motivations	for	either	as	they	wouldn’t	be	
accepted	to	linguistics	or	physics	journals.			

One	response	to	this	would	be	to	say	that	nominalistic	paraphrases	reflect	what	we	should	
say	in	philosophical	contexts,	and	this	differs	from	what	we	should	or	do	say	in	any	
scientific	context.	Hellman	points	out	that	one	can	appeal	to	useful	divisions	of	labor	within	
the	sciences	to	motivate	such	a	distinction.	For	example,	a	physicist	who	hypothesizes	that	
heat	is	molecular	motion	(and	regiments	physical	theories	accordingly)	isn't	thereby	
making	a	revolutionary	proposal	about	what	higher	level	scientists	(biologists	or	
ecologists)	should	say	or	a	hermeneutic	proposal	about	what	they	currently	mean.	So	the	
untroubled	friend	of	metaphysics	can	think	about	ontology	as	its	own	discipline,	with	its	
own	level	of	analysis	and	corresponding	explanatory	work	this	analysis	is	invoked	to	
	



Arguably,	this	book’s	project	of	developing	Potentialist	foundations	for	Potentialist	set	
theory	is	analogous	to	the	familiar	project	of	providing	a	set-theoretic	foundation	for	
analysis.	Our	naive	reasoning	about	certain	concepts	(limits	in	one	case,	the	height	of	an	
iterative	hierarchy	of	sets	that	‘goes	all	the	way	up’	in	the	other)	turned	out	to	lead	to	
paradox.	So,	it	is	desirable	to	find	a	different	way	of	thinking	about	relevant	mathematical	
claims	which	will	let	us	capture	their	intuitive	significance	and	interest,	while	blocking	
paradoxical	inferences.	

Second,	the	Potentialist	understanding	of	pure	set	theory	advocated	in	Parts	I	and	II	of	this	
book	is	compatible	with	a	range	of	different	views	about	how	to	understand	other	areas	of	
mathematics.	I	hope	my	version	of	Potentialism	will	be	compelling	even	to	readers	who	
find	both	nominalism	and	the	neo-Carnapian	realism	about	mathematical	objects	(outside	
set	theory)	I	advocate	in	Part	III	unacceptable.	

Third,	I	aim	to	provide	a	foundation	for	Potentialist	set	theory	which	rests	entirely	on	
intuitively	compelling	principles	that	are	subject-matter	neutral	and	constrain	the	behavior	
of	all	objects	(c.f.,	Frege’s	characterization	of	logic	in	(Gottlob	Frege	1980)).	Thus,	in	a	sense	
I’m	defending	a	kind	of	logicism	about	set	theory.	But	I	don’t	mean	to	claim	that	my	
foundational	principles	are	analytic,	cognitively	trivial,	or	impossible	for	any	rational	being	
to	doubt.	I	merely	claim	they’re	clearly	true	in	the	sense	evoked	by	Putnam	above8.	I	also	
don’t	mean	to	suggest	that	facts	about	conditional	logical	possibility	discussed	in	this	book	
constitute	some	kind	of	metaphysical	free	lunch9.	

	

perform.	A	nominalist	of	this	stripe	might	say:	metaphysics	is	to	physics	as	physics	is	to	
biology	and	ecology.	That's	why	good	proposals	about	what	we	should	start	to	say	in	
philosophy	journals	can	differ	radically	from	what	physics	journals	would	or	should	
publish.	Perhaps	Sider’s	(Sider	2011)	distinction	between	metaphysical	semantics	and	
linguistic	semantics	discussed	in	§11.4.2suggests	a	similar	line	of	response.		

However,	the	motivations	I	urge	for	Potentialist	set	theory	are	closer	to	those	for	
foundational	projects	within	mathematics	than	the	explicitly	philosophical	motivations	
Hellman	and	Sider	reference.	Thus,	I	think	the	Potentialist	paraphrases	I	advocate	might	be	
accepted	by	extreme	naturalist	readers,	who	would	reject	the	above	suggestion	that	
philosophy	or	metaphysics	could	provide	a	legitimate	further	level	of	analysis	beneath	the	
sciences.	Also	note	that	the	motivations	for	Potentialist	set	theory	I	press	below	aren’t	
among	the	specific	philosophical	motivations	for	nominalist	formalizations	of	mathematics	
which	Burgess	and	Rosen	criticize	in	(Burgess	and	Rosen	1997).	

8	I	take	the	axiom	of	choice	to	be	prima	facie	clearly	true,	despite	the	fact	that	it	can	be	
doubted	on	grounds	like	the	Banach-Tarski	paradox.	But	readers	who	find	Choice	less	
immediately	appealing	can	read	this	as	a	claim	to	justify	Replacement	from	principles	‘as	
prima	facie	obvious	as	the	other	axioms	of	ZF	set	theory’	instead.	

9	I	take	accepting	a	primitive	modal	notion	of	(conditional)	logical	possibility	to	be	a	
significant,	but	warranted,	addition	to	our	fundamental	ideology.	



Fourth,	we	must	distinguish	the	foundational	project	in	this	book	from	a	less	ambitious	
justificatory	project.	Actualist	philosophers	have	sometimes	aimed	to	find	a	unified	
conception	of	set	theory	from	which	all	the	various	ZFC	axioms	clearly	follow	–	without	
worrying	whether	this	conception	itself	is	clearly	coherent.	This	project	can	be	valuable	in	
various	ways,	e.g.,	in	showing	the	naturalness	and	appeal	of	certain	mathematical	
hypotheses	(like	proposed	large	cardinal	axioms)	which	also	follow	from	the	relevant	
conception.	However,	finding	such	a	unified	conception	doesn’t	suffice	for	my	foundational	
project.	For	if	the	unifying	conception	isn’t	clearly	consistent	then,	surely,	it	isn’t	clearly	true	
(even	on	a	view	which	allows	mathematicians	to	introduce	arbitrary	coherent	structures).	
So,	we	haven’t	succeeded	in	justifying	all	theorems	of	ZFC	set	theory	from	premises	that	
seem	clearly	true.	

Finally,	the	set-theoretic	foundational	project	of	this	book	also	differs	from	a	more	
ambitious	project,	along	the	following	lines.	Philosophers	sometimes	seek	the	most	
metaphysically	joint	carving	successor	to	the	naive	concept	of	sets	which	generates	
Russell’s	paradox	(something	which	might,	e.g.,	be	hoped	to	connect	intimately	with	the	
true	answer	to	the	liar	paradox).	So,	for	example,	you	could	ask	whether	the	iterative	
hierarchy	conception	of	sets	is	remotely	on	the	right	track,	or	whether	the	‘best’	successor	
to	naive	set	theory	is	something	like	Quine’s	New	Foundations	instead.	

I	think	this	more	philosophically	speculative	project	is	legitimate,	but	not	required	for	the	
foundational	justificatory	project	attempted	in	this	book.	I	will	try	to	show	that	potentialist	
translations	which	attractively	explicate	theorems	of	current	mainstream	set	theory	follow	
from	principles	that	seem	clearly	true.	But	I	won’t	take	a	position	on	what	the	most	
metaphysically	illuminating	successor	to	naive	set	theory	is.	

Part I  

Chapter 2 Actualist Set Theory 

In	this	chapter,	I	will	discuss	the	traditional,	actualist,	approach	to	set	theory.	I	will	review	
how	the	actualist	faces	problems	articulating	a	categorical	conception	of	the	intended	
height	of	the	hierarchy	of	sets	(despite	the	existence	of	certain	categoricity	and	quasi-
categoricity	theorems).	I	will	then	discuss	how	the	actualist	faces	problems	justifying	the	
axiom	of	Replacement	from	principles	that	seem	clearly	true.	

2.1 Actualist Set Theory and The Iterative Hierarchy Conception 

On	a	straightforward	actualist	approach	to	set	theory,	there	are	abstract	objects	called	‘the	
sets,’	much	as	there	are	abstract	objects	called	‘the	natural	numbers.’	And	we	can	ask:	what	
sets	exist?	And	what	kind	of	structure	do	the	sets	have	under	the	relation	of	membership?	

Naively	one	might	want	to	say	that,	for	any	formula	𝜙(𝑥),	there	is	a	set	whose	elements	are	
exactly	those	objects	that	satisfy	𝜙.	But,	as	Bertrand	Russell	famously	showed,	this	leads	to	
paradox	via	the	conclusion	that	there	must	be	a	set	whose	elements	are	exactly	the	sets	
which	aren’t	members	of	themselves.	



The	(widely	embraced)	iterative	hierarchy	conception	of	the	sets	solves	this	problem	by	
suggesting	a	different	picture	of	what	sets	exist.	On	this	picture,	we	think	about	the	sets	as	
forming	layers,	with	sets	at	a	given	layer	in	the	hierarchy	only	being	able	to	have	elements	
that	are	available	at	previous	layers.	Each	layer	contains	‘all	possible	sets’	of	elements	given	
at	prior	layers,	and	no	two	sets	have	exactly	the	same	elements10.	Talk	about	the	height	of	
such	a	hierarchy	of	sets	refers	to	the	‘number’	of	layers,	while	talk	about	its	width	refers	to	
how	many	sets	are	introduced	at	each	stage.		

One	can	spell	out	this	idea	of	a	full-width	iterative	hierarchy	as	follows.	

Definition	1.1	(Iterative	Hierarchy	-	Full	Width	(IHW)).		A	full-width	iterative	hierarchy	
(IHW)	is	a	structure	consisting	of	

• a	well-ordered	series	of	levels	and	

• a	collection	of	sets	‘available	at’	these	levels,	such	that	

– At	each	level,	there	are	sets	corresponding	to	‘all	possible	ways	of	choosing’	some	
sets	available	at	lower	levels	(note	that	this	can	be	stated	straightforwardly	in	
second-order	logic).	

– Sets	x	and	y	are	identical	iff	they	have	exactly	the	same	members.	(extensionality).	

One	can	think	of	IHW	as	specifying	a	structure	for	initial	segments	of	the	hierarchy	of	sets.	
If	we	adopt	the	idea	of	a	hierarchy	of	sets,	then	the	principles	above	specify	an	intended	
width	for	this	structure.	One	can	(clearly)	formalize	the	above	claim	using	second-order	
logic,	and	I’ll	refer	to	the	resulting	theory	as	𝐼𝐻𝑊&.11	

In	contrast	the	ideas	evoked	above	do	not	pick	out	a	unique	intended	height	for	the	
hierarchy	of	sets12.	Indeed,	as	we	will	now	review,	there	are	important	reasons	for	

	

10	Note	that	there’s	been	some	discussion	about	whether	extensionality	follows	from	the	
iterative	concept	of	sets	or	is	something	separate.	But	the	worries	I	raise	for	actualists	
won’t	depend	on	the	idea	that	our	conception	of	the	hierarchy	of	sets	must	be	‘unified’	in	
this	strong	sense.	The	question	I	will	be	pressing	in	sections	1.4	is	merely	whether	we	have	
a	coherent	conception	of	the	hierarchy	of	sets	(once	the	incoherence	of	our	naive	
conception	of	the	hierarchy	of	sets	is	recognized)	that	even	seems	to	pick	out	a	unique	
structure,	not	whether	that	conception	is	unified	in	the	strong	sense	evoked	above.	

11	However,	my	preferred	approach	will	reject	the	formalization	in	second-order	logic	in	
favor	of	one	𝐼𝐻𝑊◊	using	only	the	conditional	logical	possibility	operator	�…	introduced	in	
Chapter	3.	I’ll	understand	IHW	loosely	to	be	compatible	both	with	a	Boolos	style	two-sorted	
conception	as	well	as	the	standard	cumulative	hierarchy.	

12	We	could	add	the	principle	that	there	is	no	last	stage,	as	Boolos	(Boolos	1971b)	does.	But	
since	there	are	many	different	logically	possible	well-orderings	which	do	not	have	a	last	
element,	e.g.,	𝜔,	𝜔 + 𝜔,	etc.,	this	does	still	not	give	us	a	unique	intended	height.	



doubting	that	we	have	any	coherent	and	adequate	conception	of	‘absolute	infinity,’	the	
supposed	height	of	the	hierarchy	of	sets.	And	the	version	of	Potentialism	I	favor	will	wind	
up	denying	that	there	is,	strictly	speaking,	a	hierarchy	of	sets	(hence	anything	for	
mathematical	talk	of	‘the	height	of	the	hierarchy	of	sets’	to	refer	to13).	

2.2 A Burali-Forti Problem 

Notably,	the	problem	(which	I	will	now	present	below)	is	not	simply	that	it	might	be	
impossible	to	define	the	notion	of	absolute	infinity	in	other	terms.	After	all,	every	theory	
will	have	to	take	some	notions	as	primitive.	

Instead,	we	find	ourselves	in	the	following	situation.	

• Our	naive	conception	of	absolute	infinity	(the	height	of	the	actualist	hierarchy	of	sets)	
turns	out	to	be	incoherent,	not	just	unanalyzable.	

• And,	once	we	reject	this	naive	conception,	there’s	no	obvious	fallback	conception	that	
even	appears	to	specify	a	unique	height	for	the	hierarchy	of	sets	in	a	logically	coherent	
way.	

Specifically,	a	very	common	intuitive	conception	of	the	hierarchy	of	sets	says	that	the	
hierarchy	of	sets	goes	‘all	the	way	up’	–	so	no	restrictive	ideas	of	where	it	stops	are	needed	
to	understand	its	behavior.	However,	if	the	sets	really	do	go	‘all	the	way	up’	in	this	sense,	
then	it	would	seem	that	they	should	satisfy	the	following	naive	height	principle.	

Naive	Height	Principle	For	any	way	some	things	are	well-ordered	by	some	
relation	R,	there	is	an	ordinal	corresponding	to	it.	

But,	for	example,	the	ordinals	themselves	are	well-ordered,	and	there	is	no	ordinal	
corresponding	to	this	well-ordering,	i.e.,	there	is	no	ordinal	which	has	the	same	order-type	
as	the	class	of	all	ordinals.	Thus	(it	would	seem),	the	naive	height	ordering	principle	above	
can’t	be	correct.	

And	it	seems	arbitrary	to	say	that	the	hierarchy	of	sets	just	stops	somewhere	if	a	suitable	
stopping	point	is	not	pinned	down	by	something	in	our	conception	of	the	hierarchy	of	sets.	

To	clarify	this	worry,	note	that	I’m	not	suggesting	the	actualist	must	think	the	hierarchy	of	
sets	‘must	stop	somewhere’,	in	the	sense	that	they	must	say	there’s	a	largest	ordinal.	
There’s	no	problem	about	saying	that	for	every	set/ordinal	𝑥	there’s	a	strictly	larger	
set/ordinal	𝑦.	Nor	do	I	mean	to	suggest	that	there	could	somehow	be	‘sets	beyond	all	the	
sets.’,	or	that	there’s	something	wrong	with	taking	various	concepts	used	in	articulating	a	
conception	of	the	hierarchy	of	sets	as	primitive	(it’s	hard	to	see	how	one	could	avoid	doing	
the	latter!).		

	

13	Instead	we	will	analyze	set-theoretic	talk	as	expressing	potentialist	claims	about	logical	
possibility,	and	extendability.	



Rather,	the	problem	is	that	the	actualist	takes	there	to	be	some	plurality	of	objects	(the	
sets)	forming	an	iterative	hierarchy	structure	(i.e.,	satisfying	the	description	of	the	
intended	width	of	the	hierarchy	of	sets	above).	But	the	following	modal	intuition	seems	
appealing:	for	any	plurality	of	objects	satisfying	the	conception	of	an	iterative	hierarchy	
above	(i.e.,	for	any	model	of	IHW),	it	would	be	in	some	sense	(e.g.,	conceptually,	logically	or	
combinatorically	if	not	metaphysically)	possible	for	there	to	be	a	strictly	lager	model	of	
IHW	which,	in	effect,	adds	a	new	stage	above	all	the	ordinals	within	the	original	structure	
together	with	a	corresponding	layer	of	classes14.	And,	worryingly,	it	seems	that	the	
resulting	structure	generated	would	answer	everything	in	our	conception	of	the	sets	as	
well	as	the	original	structure	did.	For,	once	we’ve	rejected	the	naive	conception	of	the	
intended	height	of	the	hierarchy	of	sets	above	as	inconsistent,	we	don’t	seem	to	have	
anything	that	even	pretends	to	pick	out	a	unique	height.	

Thus,	the	actualist	seems	forced	to	say	that	the	plurality	of	existing	sets	just	happens	to	
instantiate	one	possible	structure.	The	hierarchy	of	sets	just	happens	to	have	some	
particular	height,	although	nothing	in	our	conception	of	the	sets	rules	out	epistemic	
possibilities	where	the	hierarchy	of	sets	is	taller.	

But	saying	that	the	hierarchy	of	sets	just	happens	to	stop	at	a	certain	point	seems	to	violate	
intuitive	principles	of	metaphysical	parsimony.	It	seems	to	require	acknowledging	an	extra	
---	otherwise	entirely	unmotivated	---	joint	in	reality,	namely	the	height	of	the	hierarchy	of	
sets.	One	might	also	worry	about	the	epistemology	of	this	stopping	point.	Why	we	should	
think	set	theorists’	reasoning	about	large	cardinals	etc.,	correctly	reflects	this	brute	fact	
about	where	the	hierarchy	of	sets	happens	to	stop?	

The	simplest	response	to	this	problem	might	be	to	find	some	other	restrictive	
characterization	of	the	sets	(in	particular,	some	other	characterization	of	the	intended	
height	of	the	hierarchy	of	sets)15.	However,	there’s	no	obvious	fallback/replacement	
conception	that	even	seems	to	pick	out	a	unique	structure.	It’s	not	clear	that	any	precise	
intuitive	conception	of	the	intended	height	of	the	sets	remains	once	the	paradoxical	well-
ordering	principle	above	is	retracted.	As	Wright	and	Shapiro	put	it	(Shapiro	and	Wright	
2006),	all	our	reasons	for	thinking	that	sets	exist	in	the	first	place	appear	to	suggest	that,	
for	any	given	height,	which	an	actual	mathematical	structure	could	have,	the	sets	should	
continue	up	past	this	height.	

Moreover,	the	sets	lose	a	substantial	aspect	of	their	appeal	as	a	mathematical	foundation	if	
we	can’t	capture	all	talk	of	coherent	mathematical	structures	within	set	theory,	i.e.,	via	
quantification	over	the	sets	or	some	set	model	that’s	at	least	isomorphic	to	the	relevant	
mathematical	structure.	However,	it	is	(at	best)	unclear	whether	we	can	do	this	if	we	accept	

	

14	I	won’t	say	more	about	how	to	spell	out	the	informal	notion	of	possibility	being	invoked	
here	now,	but	each	version	of	potentialist	set	theory	discussed	below	(mine	included)	
brings	with	it	a	candidate	modal	notion.	

15	Note	that	the	axioms	of	ZFC	and	even	ZFC&	don’t	suffice	to	categorically	determine	the	
height	of	the	hierarchy	of	sets.	



actualism	and	say	that	the	hierarchy	of	sets	doesn’t	‘go	all	the	way	up’	in	the	sense	
indicated	above.	Of	course,	by	Gödel’s	completeness	theorem	for	first-order	logic,	any	
consistent	collection	of	first-order	axioms	will	have	a	model.	However,	our	conceptions	of	
mathematical	structures	(like,	famously,	the	natural	numbers)	can	include	non-first-order	
notions.	So,	the	completeness	theorem	doesn’t	guarantee	that	our	conceptions	of	these	
structures	will	have	‘intended’	models	in	the	hierarchy	of	sets	(i.e.,	models	which	treat	their	
non-first-order	vocabulary	standardly).One	might	further	press	this	objection	by	arguing	as	
follows.	If	there	were	an	actualist	hierarchy	of	sets	we	could	refer	to,	then	we	could	also	
uniquely	describe	the	possible	structure	which	you	would	get	by	adding	a	single	layer	of	
classes	to	this	hierarchy	of	sets.	This	structure	is	a	legitimate	topic	for	mathematical	
investigation,	and	yet	this	structure	is	not	instantiated	anywhere	within	the	hierarchy	of	
sets16.	

Note	that,	if	some	actualist	claimed	to	have	a	suitably	primitive	and	seemingly	precise	
notion	of	absolute	infinity,	they	wouldn’t	face	the	arbitrariness	worry	I’m	pressing.	They	
could	appeal	to	this	notion	of	absolute	infinity	to	specify	the	height	they	take	the	sets	to	
have,	just	as	I’ve	suggested	that	one	could	appeal	to	a	notion	of	full	second	order	
quantification	(or,	instead,	as	I’ll	later	suggest	conditional	logical	possibility)	to	describe	
the	intended	height	of	the	hierarchy	of	sets.	However,	even	though	people	do	use	the	term	
‘absolute	infinity,’	this	seems	to	be	little	more	than	a	name	for	whatever	height	the	
hierarchy	of	sets	has.	They	don’t	claim	to	have	a	concept	that	seems	capable	of	picking	out	a	
precise	intended	height	without	deference	to	prior	facts	about	however	tall	a	hierarchy	of	
sets	there	happens	to	actually	be.	Arbitrariness	troubles	arise	because	we	start	out	with	the	
seemingly	precise	naïve	conception	of	the	intended	height	of	the	hierarchy	of	sets,	and	no	
other	seemingly	precise	notion	appears	to	fill	the	gap	once	this	naïve	conception	is	rejected	
as	paradoxical17.	

Now,	we	could	avoid	the	above	worry	about	arbitrariness	while	securing	a	definite	height	
for	the	hierarchy	of	sets	by	simply	adding	some	new	idea	about	height	to	our	current	
conception	of	the	hierarchy	of	sets.	For	example,	it	might	seem	natural	to	say	that	the	sets	
are	the	shortest	possible	structure	satisfying	𝑍𝐹𝐶&	(i.e.,	the	hierarchy	of	sets,	so	to	speak,	
stops	below	the	first	inaccessible).	This	proposal	is	somewhat	natural,	in	that	saying	this	
resembles	saying	that	the	numbers	are	‘as	short	as	can	be’	while	being	closed	under	
successor	and	satisfying	all	the	other	first-order	Peano	Axioms	–	as	we	do	when	we	take	

	

16	See	(Geoffrey	Hellman	1994a)	Hellman	for	a	version	of	this	generality	worry.	

17	That	is,	I	take	it	most	actualists	would	agree	that	we	don’t	even	seem	to	have	an	
independent	precise	(primitive	or	otherwise)	conception	of	the	intended	height	of	the	
hierarchy	of	sets	in	the	way	that	(many	would	say)	we	do	seem	to	have	a	conception	of	the	
intended	width	of	the	hierarchy	of	the	sets	or	what	second-order	collections	or	pluralities	
there	are	supposed	to	be.	An	actualist	who	(unlike	all	the	actualists	I’ve	encountered)	did	
claim	to	grasp	a	primitive	notion	of	absolute	infinity	that	picked	out	a	precise	structure	in	
this	way	would	not	face	the	arbitrariness	problem	above.	See	§1.5.2	for	much	more	detail	
regarding	this	distinction.	



the	natural	numbers	to	satisfy	induction.	However,	making	this	kind	of	height-minimizing	
stipulation	seems	to	fit	badly	with	actual	mathematicians’	interest	in	large	cardinals	(which	
require	the	set-theoretic	hierarchy	to	extend	far	beyond	the	shortest	model	of	ZFC).	And,	
more	generally,	stipulating	any	height	for	the	hierarchy	of	sets	does	nothing	to	help	with	
the	secondary	worry	above,	that	actualists	shortchange	the	intended	generality	of	set	
theory.	

2.3 Categoricity and Quasicategoricity Arguments 

2.3.1 McGee and Appeal to Ur-elements 

With	this	worry	about	stating	a	precise	conception	of	the	hierarchy	of	sets	(and	avoiding	
arbitrariness)	in	place,	let	me	quickly	explain	why	two	categoricity	theorems	which	might	
seem	to	help	the	actualist	don’t	help	her.	

In	‘How	we	learn	mathematical	language,’	(McGee	1997b)	Vann	McGee	advocates	a	
conception	of	an	iterative	hierarchy	of	sets	with	ur-elements,	and	proves	a	`quasi-
categoricity’	theorem	about	it,	which	might	seem	to	help	address	our	arbitrariness	and	lack	
of	a	definite	conception	of	the	actualist	hierarchy	of	sets	is	supposed	to	go.	

However,	I	will	argue	that	this	is	an	illusion.	Although	McGee’s	characterization	of	a	
hierarchy	of	sets	(McGee	1997b)	solves	the	problem	he	is	concerned	with	in	that	paper	
(addressing	a	certain	kind	of	referential	skepticism),	it	does	not	make	the	height	of	the	
actualist	hierarchy	of	sets	look	any	less	arbitrary.	

In	(McGee	1997a)	Van	McGee	defends	realist	claims	that	we	can	secure	definite	reference	
to	the	hierarchy	of	sets	up	to	isomorphism	(and	thereby	justify	our	presumption	that	all	
questions	in	the	language	of	set	theory	have	definite	right	answers)	from	a	reference	
skeptical	challenge.	

Specifically,	he	proposes	an	account	of	how	creatures	like	us	could	count	as	having	a	
definite	conception	of	the	sets	up	to	isomorphism,	given	the	presumption	that	we	can	
secure	definite	realist	reference	for	other	kinds	of	vocabulary,	and	(it	will	be	important	to	
note)	that	we	are	somehow	able	to	quantify	over	everything	(sets	included).	

McGee	explains	how	we	can	secure	(the	effect	of)	definite	reference	to	second-order	
quantification	and	thus	uniquely	describe	the	intended	width	of	the	hierarchy	of	sets,	via	a	
story	about	schemas	which	I	won’t	summarize	here.	Then	he	suggests	that	we	can	pin	
down	the	intended	height	of	the	hierarchy	of	sets	by	considering	a	conception	of	a	
hierarchy	of	sets	with	ur-elements.	

The	idea	of	set	theory	with	ur-elements	is	simply	to	allow	sets	to	have	elements	that	aren’t	
sets.	One	keeps	the	core	idea	of	an	iterative	hierarchy	of	sets	described	above	(with	each	
layer	containing	‘all	possible	subsets’	from	the	lower	layers),	but	takes		the	lowest	level	of	
the	hierarchy	of	sets	to	include	sets	corresponding	to	all	ways	of	choosing	from	among	all	
the	objects	that	aren’t	sets	(e.g.,	elephants,	billiard	balls,	electrons,	marriages	and	the	like),	
rather	just	the	empty	sets.	Note	that	the	hierarchy	of	sets	with	ur-elements	includes	all	
pure	sets.	Thus,	uniquely	pinning	down	a	hierarchy	of	sets	with	ur-elements	would	suffice	
to	pin	down	a	hierarchy	of	pure	sets	as	well.	



The	following	Ur-element	Set	Axiom	follows	from	the	statement	above.	It	says	that	there’s	a	
set	which	contains,	as	elements,	all	the	objects	that	aren’t	sets.	

Ur-element	Set	Axiom	(U)	(∃𝑥);𝑆𝑒𝑡(𝑥) ∧ (∀𝑦)(¬𝑆𝑒𝑡(𝑦) → 𝑦 ∈ 𝑥)D	

McGee	shows	that	we	can	(in	a	sense)	pin	down	the	intended	height	of	this	hierarchy	of	
sets	with	ur-elements	if	we	accept	the	axiom	above.	

Specifically,	McGee	proves	that	𝑍𝐹𝐶& + 𝑈	(the	result	of	adding	the	above	ur-element	
principle	to	second-order	ZFC	set	theory)	has	a	property	which	he	calls	‘quasi-
categoricity’18.	Given	any	single	choice	of	a	total	domain	(what	you	are	quantifying	when	
you	quantify	over	everything	including	the	sets)	there	cannot	be	two	non-isomorphic	(with	
respect	to	∈)	interpretations	of	set	theory	which	both	:	choose	‘sets’	from	within	this	
domain,	take	quantifiers	to	range	over	this	whole	domain	and	make	McGee’s	𝑍𝐹𝐶& + 𝑈	
come	out	true	(while	interpreting	all	logical	vocabulary	standardly).	

McGee’s	theorem	ensures	that	we	couldn’t	have	a	single	universe	containing	both	a	
hierarchy	of	red	sets	and	a	hierarchy	of	blue	sets,	such	that	both	hierarchies	satisfy	the	
constraints	imposed	by	𝑍𝐹𝐶& + 𝑈	on	their	relationship	to	the	total	universe	(red	sets	and	
blue	sets	included).	So,	it	does	the	job	McGee	wants	:	answering	skeptical	challenges	about	
definite	reference	to	the	hierarchy	of	sets	(up	to	isomorphism),	on	behalf	of	a	Platonist	who	
presumes	that	there’s	an	actualist	hierarchy	of	sets	and	grants	that	we	can	somehow	
unproblematically	quantify	over	everything	(sets	included).	

However,	this	theorem	does	nothing	to	address	the	objection	to	actualism	raised	at	the	
beginning	of	this	chapter:	that	actualists	seem	committed	to	an	additional	and	arbitrary	
joint	in	reality	–	a	point	where	the	hierarchy	of	sets	just	happens	to	stop.	

For	McGee’s	theorem	does	not	imply	that	we	have	any	beliefs	which	logically	necessitate	
(and	thereby	make	non-arbitrary)	facts	about	where	the	hierarchy	of	sets	happens	to	stop.	
As	McGee	himself	points	out,	the	conception	of	sets	he	articulates	is	not	categorical;	the	
beliefs	about	the	sets	which	he	invokes	are	compatible	with	many	different	possibilities	
about	how	large	the	total	universe	of	sets	is.	

Indeed,	it’s	crucial	to	notice,	McGee’s	theorem	doesn’t	even	show	that	𝑍𝐹𝐶& + 𝑈	is	quasi-
categorical	in	the	following	(to	my	mind,	more	natural)	sense	of	the	term.	It	doesn’t	show	
that,	fixing	the	facts	about	what	non-set	objects	there	are,	any	hierarchy	of	sets	satisfying	
𝑍𝐹𝐶& + 𝑈	must	have	a	certain	unique	structure.	Indeed,	given	certain	popular	assumptions	

	

18	One	might	worry	about	the	above	axiom	on	the	basis	of	Uzquiano’s	(Uzquiano	1996)	
proof	that	McGee’s	axioms	for	set	theory	with	urelements	are	incompatible	with	certain	
axioms	of	mereology,	but	I	leave	this	question	aside	as	the	concerns	I	will	be	raising	are	
unrelated.	



you	can	always19		take	one	possible	scenario	containing	a	hierarchy	of	sets	satisfying	
𝑍𝐹𝐶& + 𝑈	within	a	total	universe	of	a	certain	size,	add	some	sets	to	the	top	of	this	
hierarchy,	and	therefore	to	the	universe,	(without	changing	any	facts	about	the	non-sets)	
and	get	another	possible	scenario	satisfying	𝑍𝐹𝐶& + 𝑈.	

Thus	McGee’s	theorem	doesn’t	pin	down	a	unique	intended	structure	for	the	hierarchy	of	
sets	or	abolish	arbitrariness	by	explaining	why	the	hierarchy	of	sets	stops	at	some	
particular	point.	It	just	shows	that	you	couldn’t	have	two	non-isomorphic	hierarchies	of	
sets	satisfying	the	above	conception	within	the	same	universe.	

One	could	use	McGee’s	conception	of	sets	with	ur-elements	in	a	slightly	different	way	
which	would	block	the	arbitrariness	worries	for	actualism	I’ve	pressed	above,	as	follows.	
Assume	that	our	use	of	non-mathematical	vocabulary	to	pins	down	the	intended	
interpretation	of	certain	non-mathematical	kind	terms.	We	could	specify	the	intended	
height	of	the	hierarchy	of	sets	by	saying	that	(in	effect)	the	hierarchy	of	sets	stops	as	soon	
as	it	can	while	satisfying	𝑍𝐹𝐶& + 𝑈.	

Unfortunately,	however,	this	proposal	faces	the	same	worries	about	making	the	hierarchy	
of	sets	too	small	which	arose	for	the	idea	that	we	could	just	pick	a	restrictive	conception	of	
the	sets	in	§1.2	above.	It	also	suggests	the	height	of	the	hierarchy	of	sets	might	be	
contingent	and	that	the	result	of	physical	and	metaphysical	investigation	into	how	many	
non-mathematical	objects	there	are	should	have	bearing	on	facts	about	pure	set	theory	in	a	
way	that	seems	potentially	uncomfortable.	

2.3.2 Martin 

Similarly,	Martin’s	categoricity	theorem	about	set	theory	in	(D.	A.	Martin	2001)	might	at	
first	sound	like	it	helps	the	actualist	with	the	arbitrariness/lack	of	a	definite	conception	
worry,	but	actually	does	not.	Indeed,	Martin	seems	to	positively	endorse	a	version	of	this	
worry	in	(D.	Martin,	n.d.).20	

	

19	For	instance,	if	we	presume	the	existence	of	unboundedly	many	inaccessibles,	as	is	often	
thought	plausible,	we	are	guaranteed	multiple	models	of	𝑍𝐹𝐶& + 𝑈	with	a	particular	
collection	of	ur-elements.	

20	There	he	distinguishes	five	ingredients	in	our	conception	of	the	hierarchy	of	sets	as	
follows.	

The	modern,	iterative	concept	has	four	important	components:	
1. the	concept	of	the	natural	numbers;	
2. the	concept	of	sets	of	𝑥s;	
3. the	concept	of	transfinite	iteration;	
4. the	concept	of	absolute	infinity.	
	



In	(D.	A.	Martin	2001)	Martin	argues	against	plenitudinous	anti-objectivist	‘multiverse’	
approaches	to	set	theory	(like	(J.	D.	Hamkins	2012))	on	which	certain	set-theoretic	claims	
𝛷	are	not	determinately	true	or	false	for	the	following	reason.	

Multiverse	Idea:	The	platonic	realm	of	mathematical	objects	includes	many	
different	(non-isomorphic)	hierarchies	of	sets.	There’s	no	unique	intended	V,	even	
up	to	width.	Rather	each	hierarchy	V	in	the	multiverse	is	expanded	by	some	larger	
one	which	adds,	e.g.,	a	‘missing’	subset	of	the	natural	numbers	V	(So,	we	might	
note,	none	of	these	hierarchies	can	answer	our	conception	IHW	of	the	width	of	the	
hierarchy	of	sets	above).	Some	of	these	Vs	make	𝛷	true	and	others	make	𝛷	false.	
And	all	of	them	are	(absent	specific	mathematical	choice	to	‘work	in’	a	particular	
hierarchy	of	sets)	equally	intended.	

Martin	argues	against	this	multiverse	proposal	by	noting	that	if	we	accept	a	certain	
conception	of	the	hierarchy	of	sets	(including	the	principles	below),	we	can	derive	that	
there	could	not	be	two	different	hierarchies	of	sets	(‘the	red	sets’	and	‘the	blue	sets’).	

• a	‘uniqueness’	principle:	all	sets	are	extensional.	That	is,	if	there	are	two	distinct	sets	𝑥	
and	𝑦	(even	in	two	different	putative	hierarchies!),	then	there	must	be	some	object	
which	is	an	element	of	𝑥	but	not	𝑦	or	vice	versa.	Thus,	for	example,	there	can	be	only	
one	set	𝑀𝑎𝑟𝑠, 𝑉𝑒𝑛𝑢𝑠.	

• a	conception	of	the	hierarchy	of	sets,	including	(among	other	more	familiar	elements)	
the	following	height	closure	principle:	if	a	set	exists,	then	any	hierarchy	of	sets	
containing	the	elements	of	that	set	must	contain	the	set	itself	

Martin	points	out	that	it	follows	from	the	principles	above,	essentially	by	induction,	that	
there	can’t	be	two	different	hierarchies	of	sets.	Any	two	putative	hierarchies	of	sets	

	

Perhaps	we	should	include	the	concept	of	Extensionality	as	Component	(0).	
And	then	he	expresses	the	following	reservations	about	whether	we	have	a	definite	
coherent	notion	of	absolute	infinity.	

so	I	am	using	the	term	“absolute	infinity”	for	the	concept	that	is	the	fourth	
component	of	the	concept	of	set.	One	can	argue	that	the	concept	is	categorical,	
and	that	any	two	instantiations	of	the	concept	of	set	(of	the	concept	of	an	
absolutely	infinite	iteration	of	the	sets	of	x’s	operation)	have	to	be	isomorphic.	But	
it	is	hard	to	see	how	there	could	be	a	full	informal	axiomatization	of	the	concept	of	
set.	There	are	also	worries	about	the	coherence	of	the	concept.	People	worry,	e.g.,	
that	if	the	universe	of	sets	can	be	regarded	as	a	“completed	”	totality,	then	the	
cumulative	set	hierarchy	should	go	even	further.	Such	worries	are	one	of	the	
reasons	for	the	currently	popular	doubts	that	it	is	possible	to	quantify	over	
absolutely	everything.	I	am	also	dubious	about	the	notion	of	absolute	infinity,	but	
this	does	not	make	me	question	quantification	over	everything.	



satisfying	the	conditions	above,	must	agree	on	their	ur-elements,	and	then	on	their	first	
layer	and	their	second	layer	etc.	

One	can	call	this	a	categoricity	result.	But	it	doesn’t	answer	our	worry	about	arbitrary	
stopping	points.	For	it	doesn’t	imply	that	it’s	logically	or	metaphysically	necessary	that	any	
collections	of	objects	which	satisfy	the	above	conception	of	sets	must	have	a	certain	
(unique)	structure.	Rather,	it	merely	shows	that	there	can’t	be	two	distinct	actual	set-
theoretic	hierarchies.	For	example,	Martin’s	argument	doesn’t	rule	out	the	possibility	that	
there	could	be	some	description	of	an	ordinal	𝜙' ,	such	that	it	would	be	logically	possible	to	
have	a	structure	satisfying	our	conception	of	the	sets	containing	an	ordinal	satisfying	𝜙'	
but	also	logically	possible	to	have	such	a	structure	which	didn’t	contain	any	ordinal	
satisfying	𝜙' .	It	merely	shows	that	we	couldn’t	have	two	actual	hierarchies	of	sets	
satisfying	Martin’s	assumptions,	one	of	which	contains	𝜙'	while	the	other	does	not.	

2.4 A Problem Justifying Replacement 

In	addition	to	the	worry	above	(about	whether	we	have	a	coherent	conception	of	the	
intended	height	of	the	hierarchy	of	sets),	set-theoretic	actualists	also	face	a	problem	about	
justifying	the	axiom	schema	of	Replacement.	They	must	make	it	plausible	that	whatever	
unique	height	(and	hence	structure)	they	think	the	hierarchy	of	sets	has,	allows	it	to	satisfy	
Replacement.	

Informally,	the	axiom	schema	of	Replacement	tells	us	that	the	image	of	any	set	under	a	
definable	(with	parameters)	function	is	also	a	set.	More	formally,	let	𝜙	be	any	formula	in	
the	language	of	first-order	set	theory	whose	free	variables	are	among	𝑥, 𝑦, 𝐼, 𝑤(, … , 𝑤).	We	
can	think	of	the	formula	𝜙(𝑥, 𝑦)	(and	choice	of	parameters)	as	specifying	a	definable	
function	taking	𝑥	to	the	unique	𝑦	such	that	𝜙(𝑥, 𝑦).	Then	the	instance	of	axiom	schema	of	
Replacement	for	this	formula	𝜙	says	the	following:	

	
	∀𝑤(∀𝑤&…∀𝑤)(∀a	[∀x	(x ∈ a → (∃! 	y)ϕ(x, y, w_1, …w_n))]) 	
↔ ∃𝑏	∀𝑥	((𝑥 ∈ 𝑎	 → ∃𝑦	(𝑦 ∈ 𝑏	 ∧ 𝜙(𝑥, 𝑦, 𝑤_1, …𝑤_𝑛))))]		

So,	Replacement	says	that	whenever	some	first-order	formula	defines	a	function	on	a	set	𝑎,	
i.e.,	associates	each	element	𝑥	of	𝑎	with	a	unique	𝑦,	there	is	a	set	𝑏	equal	to	the	image	of	𝑎	
under	this	function.	In	other	words,	the	hierarchy	of	sets	extends	far	enough	up	that	all	the	
elements	in	the	image	of	𝑎	can	be	collected	together.	

As	Boolos	points	out	in	(Boolos	1971a),	the	axiom	of	Replacement	imposes	a	kind	of	
closure	condition	on	the	height	of	the	hierarchy	of	sets,	which	doesn’t	obviously	follow	
from	the	iterative	hierarchy	conception	of	the	sets	above,	even	if	we	add	the	claim	that	
there	is	no	last	stage.	For	consider	𝑉*+* .	This	structure	satisfies	both	of	the	assumptions	in	
IHW	plus	the	extra	claim	that	there	isn’t	a	last	layer.	However,	it	doesn’t	satisfy	
Replacement,	since	you	could	take	the	set	𝜔	(formed	at	layer	𝑉*+()	and	write	down	a	
function	𝜙	which	associates	1	with	𝜔 + 1,	2	with	𝜔 + 2	etc.	Then,	for	each	𝑥	in	𝜔,	there’s	a	𝑦	
in	𝑉*+*	satisfying	𝜙(𝑥, 𝑦).	But	there	isn’t	any	set	𝑏	in	𝑉*+*	which	collects	together	the	
image	of	every	member	of	𝜔.	That	set	𝑏	is	only	formed	at	a	𝑉*+*+(.	This	raises	a	worry	



about	how	to	justify	Replacement,	and	(indeed)	whether	mathematicians	are	justified	in	
using	it	at	all.	

So	(even	if	we	take	for	granted	that	there	are	objects	satisfying	the	iterative	hierarchy	
conception	of	sets),	if	we	want	to	justify	use	of	the	ZFC	axioms,	a	question	remains	about	
how	to	justify	the	axiom	of	Replacement.	

There	has	been	much	interest	and	sympathy	with	this	worry	in	the	subsequent	literature.	
As	mentioned	in	the	introduction	(Hilary	Putnam	2000)	Putnam	writes,	“Quite	frankly,	I	
see	no	intuitive	basis	at	all	for	.	.	.	the	axiom	of	Replacement.	Better	put,	I	do	not	see	that	a	
notion	of	set	on	which	that	axiom	is	clearly	true	has	ever	been	explained.”	

And,	more	recently,	in	a	discussion	of	the	history	of	set	theory	Michael	Potter	remarks	that,	
“it	is	striking,	given	how	powerful	an	extension	of	the	theory	Replacement	represents,	how	
thin	the	justifications	for	its	introduction	were,”21	and	then	reports	of	our	present	situation	
that	“In	the	case	of	Replacement	there	is,	it	is	true,	no	widespread	concern	that	it	might	be,	
like	Basic	Law	V,	inconsistent,	but	it	is	not	at	all	uncommon	to	find	expressed,	if	not	by	
mathematicians	themselves	then	by	mathematically	trained	philosophers,	the	view	that,	
insofar	as	it	can	be	regarded	as	an	axiom	of	infinity,	it	does	indeed,	as	von	Neumann	...	said,	
‘go	a	bit	too	far’’’(M.	D.	Potter	2004).	

To	my	knowledge,	four	main	(actualist)	strategies	for	justifying	Replacement	are	currently	
popular.	

First,	one	can	try	to	justify	the	axiom	of	Replacement	‘extrinsically’	in	the	way	we	often	
justify	a	scientific	hypothesis,	by	appeal	to	its	fruitful	consequences,	arguing	it	helps	prove	
many	things	we	independently	have	reason	to	believe	and	hasn’t	yet	been	used	to	derive	
contradiction	or	consequences	we	think	are	wrong.	See	(Koellner	2009)	on	Gödel’s	
proposal	below,	

“Even	disregarding	the	intrinsic	necessity	of	some	new	axiom,	and	even	in	case	it	
had	no	intrinsic	necessity	at	all,	a	decision	about	its	truth	is	possible	also	in	
another	way,	namely,	inductively	by	studying	its	“success”,	that	is,	its	fruitfulness	
in	consequences	and	in	particular	in	“verifiable”	consequences,	i.e.,	consequences	
demonstrable	without	the	new	axiom,	whose	proofs	by	means	of	the	new	axiom,	

	

21	He	supports	this	assessment	by	quoting	“Skolem...	gives	as	his	reason	that	‘Zermelo’s	
axiom	system	is	not	sufficient	to	provide	a	complete	foundation	for	the	usual	theory	of	
sets’,	because	the	set	{𝜔, 𝑃(𝜔), 𝑃(𝑃(𝜔)), . . . }	cannot	be	proved	to	exist	in	that	system;	yet	
this	is	a	good	argument	only	if	we	have	independent	reason	to	think	that	this	set	does	exist	
according	to	‘the	usual	theory’,	and	Skolem	gives	no	such	reason.	Von	Neumann’s	...	
justification	for	accepting	Replacement	is	only	that,	‘	in	view	of	the	confusion	surrounding	
the	notion	‘not	too	big’	as	it	is	ordinarily	used,	on	the	one	hand,	and	the	extraordinary	
power	of	this	axiom	on	the	other,	I	believe	that	I	was	not	too	crassly	arbitrary	in	
introducing	it,	especially	since	it	enlarges	rather	than	restricts	the	domain	of	set	theory	and	
nevertheless	can	hardly	become	a	source	of	antinomies.’.’’	



however,	are	considerably	simpler	and	easier	to	discover,	and	make	it	possible	to	
condense	into	one	proof	many	different	proofs.”	

However,	it’s	at	least	prima	facie	appealing	to	expect	central	principles	of	set	theory	which	
are	used	without	comment	to	have	intrinsic	justification,	and	this	expectation	seems	
common	in	other	areas	of	mathematics.	For	example,	it	seems	that	everything	we	want	to	
say	about	the	natural	numbers	(in	the	language	of	arithmetic)	follows	from	(say)	our	
second-order	conception	of	the	natural	numbers.	

If	it	turns	out	that	adequate	intrinsic	justification	cannot	be	given,	it	might	be	reasonable	to	
accept	extrinsic	justification	(for	we	do	this	in	the	sciences,	after	all).	And	perhaps	we	will	
reach	a	point	with,	e.g.,	large	cardinal	axioms	where	extrinsic	justification	is	all	we	can	
provide.	However,	one	might	hope	to	do	better	with	regard	to	the	ZF	axioms,	which	are	
treated	as	quite	secure	and	used	to	provide	a	foundation/explication	of	normal	
mathematical	claims	that	we	are	very	confident	in.	Even	if	appeal	to	the	fruitful	good	
consequences	of	Replacement	provides	some	justification	for	believing	it,	this	doesn’t	
secure	the	kind	of	intrinsic	convincingness	we	usually	expect	(and	hope	for)	from	
mathematical	axioms.	

Second,	(M.	D.	Potter	2004)	suggested	justifying	Replacement	by	appeal	to	a	kind	of	
inference	to	the	best	explanation	along	the	following	lines.	Russell’s	paradox	tells	us	that	
not	all	pluralities	of	objects	can	form	a	set	(there	isn’t	a	set	of	all	sets	that	aren’t	members	
of	themselves).	So,	if	there	are	any	sets,	there	should	be	a	principled	division	between	those	
pluralities	of	objects	which	can	form	sets	and	those	which	can’t.	But	sets	don’t	have	that	
many	features.	So	(one	might	think)	size	is	the	only	natural	choice	for	the	limitation	on	
what	pluralities	count	as	sets	and	it	should	be	the	only	such	limitation.	(M.	D.	Potter	2004).	
As	Michael	Potter	puts	it,	we	should	accept	the	following	Size	Principle,	“If	there	are	just	as	
many	Fs	as	Gs,	then	the	Fs	form	a	collection	if	and	only	if	the	Gs	do.”	(which	implies	
Replacement)	because	

“[A]	collection	is	barely	composed	of	its	members:	no	further	structure	is	imposed	
on	them	than	they	have	already.	So...	what	else	could	there	be	to	determine	
whether	some	objects	form	a	collection	than	how	many	there	are	of	them?	What	
else	could	even	be	relevant?”	

I	don’t	find	this	inference	to	the	best	explanation	very	convincing	because	sets	do	have	
some	other	features	than	their	size	which	could	be	used	to	explain	why	certain	pluralities	of	
sets	fail	to	form	a	set	in	a	style		analogous	to	Potter’s	explanation	for	this	fact.	

In	particular	note	that	on	the	iterative	hierarchy	conception	of	sets	(which	Potter	accepts)	
each	set	will	have	the	property	of	first	being	generated	at	some	ordinal	level	𝛼.	This	feature	
of	sets	as	a	fairly	natural	and	principled	one.	One	can	think	of	it	as	reflecting	how	many	
layers	of	indirect	and	metaphysically	derivative	object	existence	(given	the	common	idea	



that	sets	are	in	some	sense	metaphysically	dependent	on	their	elements,	not	vice	versa)22	
one	has	to	go	through	to	arrive	at	that	set.	

So,	rather	than	hypothesizing	(with	Potter)	that	the	iterative	hierarchy	of	sets	stops	at	a	
certain	point	because	ascending	any	further	would	require	collecting	objects	which	are	too	
plentiful	to	form	a	set,	couldn’t	we	just	as	well	hypothesize	that	the	iterative	hierarchy	of	
sets	stops	somewhere	because	any	further	sets	formed	would	have	to	occur	too	high	up	in	
an	iterative	hierarchy	(i.e.,	one	would	have	to	ascend	through	too	many	layers	of	
abstraction/metaphysical	dependence	to	form	a	set	from	the	relevant	elements)?	To	the	
same	(rather	fanciful)	extent	that	we	can	imagine	that	the	rubber	band	holding	together	
the	elements	of	a	sets	just	happens	to	be	too	small	to	collect	any	plurality	of	elements	of	a	
certain	size	𝜅,	we	could	imagine	that	the	power	of	lower-level	sets	to	ground	the	existence	
of	higher-level	sets	and	thereby	indirectly	to	ground	the	existence	of	still	higher-level	sets	
etc.	eventually	becomes	too	attenuated	to	allow	any	further	sets	to	be	formed	at	some	
height	𝛼.	

So,	if	we’re	just	accepting	Replacement	on	the	basis	of	inference	to	the	best	explanation,	
how	do	we	know	there’s	an	upper	bound	to	the	sizes	sets	can	have	vs.	an	upper	bound	to	
the	rank	they	can	have?	One	might	also	object	to	Potter’s	methodology	more	generally,	on	
the	grounds	that	even	philosophers	who	are	happy	to	use	the	kind	of	metaphysical	
inference	to	the	best	explanation	suggested	by	Potter’s	justification	don’t	usually	take	
applying	this	method	to	justify	the	great	confidence	and	certainty	we	feel	in	typical	
mathematical	results.	

Third,	one	can	provide	a	kind	of	justification	for	Replacement	by	noting	it	follows	from	a	
set-theoretic	reflection	principle23.	I	take	this	proposal	(and	the	one	that	follows)	to	
typically	arise	from	the	attempt	to	find	a	unified	conception	of	the	sets	from	which	the	ZFC	
axioms	follow	(whether	or	not	that	conception	is	obviously	true	or	coherent)	as	per	§1.4,	
rather	than	any	attempt	to	derive	the	axiom	of	Replacement	from	something	that	seems	
more	obviously	true.	But	I	will	discuss	both	proposals	for	completeness.	

Informally,	the	idea	behind	reflection	principles	is	that	the	height	of	the	universe	is	
“absolutely	infinite”	and	hence	cannot	be	“characterized	from	below”.	A	specific	reflection	
principle	will	assert	that	any	statement	𝜙	in	some	language	that’s	true	in	the	full	hierarchy	
of	sets	V	is	also	true	in	some	smaller	𝑉, .	This	ensures	that	one	cannot	define	V	as	the	unique	
collection	which	satisfies	𝜙	(or	the	shortest	such	collection)	since	there	will	be	a	proper	
initial	segment	𝑉, 	of	V	that	satisfies	𝜙.	

	

22	See,	for	example	(Bliss	and	Trogdon	2016)	for	the	a	development	of	the	intuition	that	the	
existence	of	Socrates’s	singleton	is	to	be	grounded	in	the	existence	of	Socrates	and	depends	
on	that,	in	a	way	that	the	existence	of	Socrates	does	not	depend	on	the	existence	of	his	
singleton,	and	use	of	this	intuition	to	motivation	a	notion	of	grounding	which	is	distinct	
from	metaphysically	necessary	covariation	and	supervenience.	

23	My	summary	of	this	approach	follows	(Koellner	2009)	



More	formally,	once	accepts	first-order	reflection/second-order	reflection	etc.	insofar	as	
one	accepts	all	instances	of	the	following	schema,	where	𝜙	is	a	first-order/second-order	
etc.	formula.	

Reflection	Schema	For	any	objects	𝑎(, … , 𝑎)	in	𝑉, ,	we	have	𝜙(𝑎(, … , 𝑎)) ↔ 𝑉, ⊨
𝜙(𝑎(, … , 𝑎)).	

If	one	accepts	first-order	reflection,	then	one	can	justify	Replacement24.	

This	third	strategy	(justification	by	appeal	to	a	reflection	principle)	is	somewhat	attractive.	
For,	as	Koellner	reviews	in	(Koellner	2009)	one	can	motivate	reflection	principles25	by	
Gödel’s	idea	that	the	total	hierarchy	of	sets	(𝑉)	should	be	impossible	to	define.	For	
reflection	principles	(in	effect)	say	that	anything	that’s	true	of	the	whole	hierarchy	of	sets	
will	also	be	true	in	some	proper	initial	segment	of	it.	If	some	instance	of	a	reflection	
principle	failed	(so	there	was	some	fact	about	the	whole	hierarchy	of	sets	that	didn’t	reflect	
down	to	be	true	of	a	proper	initial	segments	of	the	sets)	then	we	could	(in	a	sense)	define	
the	hierarchy	of	sets	by	saying	it	is	the	shortest26	iterative	hierarchy	structure	satisfying	
this	claim.	Gödel	writes	

“Generally,	I	believe	that,	in	the	last	analysis,	every	axiom	of	infinity	should	be	
derivable	from	the	(extremely	plausible)	principle	that	𝑉	is	indefinable,	where	
definability	is	to	be	taken	in	[a]	more	and	more	generalized	and	idealized	
sense.”27	

I	admit	that	the	idea	in	the	quote	above	has	a	kind	of	elegance	and	provides	a	kind	of	
internal	justification	for	reflection	(as	opposed	to	the	external	justification	by	
consequences	evoked	above).	

However,	it’s	not	obvious	(or	not	as	obvious	as	we’d	naively	hope	foundational	axioms	for	
mathematics	could	be)	that	there	could	be	a	structure	satisfying	the	intuition	behind	
reflection	(or	even	second-order	reflection)	together	with	our	other	expectations	about	the	
hierarchy	of	sets	(e.g.,	the	other	ZFC	axioms,	and	the	width	conditions	discussed	above).	

Also,	to	the	extent	that	Gödel’s	idea	in	the	quote	above	motivates	the	first-order	Reflection	
principle	used	to	justify	Replacement	above,	it	would	seem	to	also	motivate	third	order	
reflection,	some	instances	of	which	(as	Koellner	notes	in	the	article	cited	above)	have	been	

	

24	See,	for	example,	(Button,	2009).	

25	Different	reflection	principles	correspond	to	different	classes	of	sentences	being	
reflected.	For	instance,	you	might	think	only	first-order	sentences	reflect	or	first-order	
formulas	with	parameters	or	second-order	sentences	etc.	

26	That	is,	the	sets	satisfy	the	non-reflected	claim	but	no	initial	segment	does.	

27	This	is	quoted	from	(Wang	1998)	in	(Koellner	2009).	



shown	to	be	inconsistent(Reinhardt	1974).	So,	one	might	think	that	justifying	Replacement	
by	merely	noting	that	it	follows	from	Reflection	doesn’t	provide	enough	justification28.	

Fourth,	philosophers	like	Boolos	(Boolos	1971a,	1989)	justify	Replacement	from	a	size	
principle.	(Speaking	informally),	the	idea	is	to	say	that	some	plurality	of	objects	forms	a	set	
if	and	only	if	it	is	‘small’	where	the	latter	means	that	its	members	can’t	be	bisected	with	the	
total	universe.	This	principle	justifies	Replacement,	because	the	set	you	get	by	applying	
Replacement	to	a	set	𝑢	must	be	the	same	size	as	𝑢	or	smaller.		

But,	just	as	with	Reflection,	it’s	not	as	clear	as	one	would	like	that	it	would	be	coherent	for	
there	to	be	a	structure	with	the	intended	width	of	the	hierarchy	of	sets	that	satisfies	this	
property	together	with	the	axiom	of	infinity29.	

	A	fifth	style	of	justification	considered	by	(Button	2019)	derives	Replacement	from	the	
following	principle.	

``Stages-are-super-cofinal.	If	A	is	a	set	and	τ(x)	is	a	stage	for	every	x	∈	A,	then	there	is	a	stage	
which	comes	after	each	τ(x)	for	x	∈	A.	‘’	

Button	notes	that	we	can	motivate	the	following	formal	claim	by	appealing	to	to	the	
informal	principle	below,	which	he	says	is	``consonant	with'’	the	cumulative-iterative	
conception	of	set.		

``Stages-are-inexhaustible.	There	are	absolutely	infinitely	many	stages;	the	hierarchy	is	as	
tall	as	it	could	possibly	be'’	

However,	I	don't	currently	grasp	the	kind	of	modality	that’s	intended	to	be	evoked	by	the	
term	`possibly’	in	Stages-are-Inexhaustible.	Earlier	in	this	chapter	I’ve	tried	to	invoke	an	
intuitive	sense	of	possibility	on	which	there	couldn’t	be	an	iterative	hierarchy	`as	tall	as	it	
could	possibly	be’	(for	any	structure	of	objects	satisfying	IHW,	there	could	be	a	strictly	
taller	one).	And	we	will	see	below	that	Potentialists	like	Putnam,	Parsons,	Hellman,	Linnebo	
and	Studd	have	appealed	to	notions	of	logical	or	interpretational	possibility	which	(they	
think)	conform	to	this	intuition.		

And	without	the	additional	justification	provided	by	the	informal	principle	Stages-are-
Inexhaustible,	we	find	ourselves	in	an	epistemic	situation	similar	to	just	taking	Replacement	
or	some	form	of	Reflection	as	an	axiom,	as	regards	Stages-are-super-cofinal.	It's	not	
implausible,	but	also	not	seemingly	obvious/clearly	true	that	it	would	be	logically	coherent	
for	there	to	be	an	iterative	hierarchy	that	satisfies	the	relevant	closure	principle.	Thus,	I	
don't	think	merely	pointing	out	that	Stages-are-super-cofinal	implies	Replacement	doesn’t	
suffice	to	justify	the	latter	from	principles	that	seem	clearly	true.		

So,	to	summarize	the	discussion	of	different	actualist	strategies	for	justifying	Replacement	
above,	we	get	the	following	picture.	In	order	to	justify	the	level	of	confidence	we	have	in	set	

	

	

	



theory,	and	particularly	Replacement,	(as	well	as	for	aesthetic	reasons)	we	would	like	our	
set-theoretic	axioms	to	follow	from	some	simple,	intuitive	conception	which	strikes	us	as	
prima	facie	clearly	logically	coherent.	

For	instance,	we	think	of	number	theory	as	describing	the	sequence	built	by	starting	at	0	
and	continuing	to	add	successors	‘as	long	as	is	needed	to	ensure	that	there	is	no	last	natural	
number,	but	no	longer’	in	a	sense	which	can	be	cashed	out	via	the	second-order	axiom	of	
induction.	And	we	can	think	of	the	real	numbers	as	describing	a	line	extending	to	infinity	in	
both	directions	without	gaps	(i.e.,	such	that	it’s	impossible	to	add	any	further	‘number’	
anywhere	on	the	line	without	it	being	equal	to	a	real30).	In	both	these	cases,	we	seem	to	
have	a	unified,	precise,	and	intuitively	consistent	conception	of	the	relevant	mathematical	
structure,	from	which	our	first-order	axioms	describing	the	natural	numbers/real	numbers	
flow.	

The	iterative	hierarchy	idea	sketched	in	§1.1	plausibly	specifies	the	width	of	the	hierarchy	
of	sets	in	a	way	that’s	logically	coherent	(on	its	own).	But	just	assuming	that	the	sets	satisfy	
this	width	requirement	(or	even	that	adding	that	there’s	no	last	stage	to	the	hierarchy	of	
sets)	doesn’t	suffice	to	justify	Replacement.	Adding	principles	like	Reflection	or	Boolos’	size	
principle	to	our	conception	would	ensure	that	our	conception	of	the	intended	structure	of	
the	sets	implies	Replacement	(and	hence	perhaps	that	if	there	are	sets,	then	they	satisfy	
Replacement).	However,	we	have	little	or	no	reason	to	think	this	enlarged	conception	is	
coherent.	So,	it	provides	little	justification	for	thinking	that	the	axiom	of	Replacement	is	
even	consistent	with	the	other	principles	about	the	hierarchy	of	sets	(hence	little	
justification	for	thinking	it’s	true).	

In	the	next	few	chapters,	I	will	argue	that	adopting	a	Potentialist	approach	to	set	theory	lets	
us	do	better	with	regard	to	both	the	arbitrariness	and	justification	problems	above.	

2.5 Indefinite Extensibility 

But,	before	I	go	on	to	the	development	and	defense	of	Potentialism,	let	me	end	this	chapter	
by	quickly	saying	something	about	the	limits	of	the	argument	above.	

Many	other	philosophers	interested	in	Potentialism	about	the	height	of	the	hierarchy	of	
sets,	such	as	I	will	develop	in	response	to	the	arbitrariness	worry	above,	have	also	explored	
more	general	versions	of	Potentialism,	which	go	further	and	reject	the	idea	that	we	have	a	
definite	conception	of	the	structure	of	the	natural	numbers	or	the	width	of	the	hierarchy	of	
sets.	Thus,	one	might	wonder	if	there	is	a	principled	reason	for	taking	a	potentialist	
approach	to	the	height	of	the	hierarchy	of	sets	but	not	to	the	width	of	the	hierarchy	of	sets	
or	the	natural	numbers.	

In	the	remainder	of	this	chapter,	I	will	answer	the	above	question	by	clarifying	why	I	think	
the	above	motivation	for	height	Potentialism	about	set	theory	doesn’t	generalize	in	the	
ways	just	mentioned.	I	will	contrast	the	claims	I’ve	made	about	our	lacking	a	coherent	

	

30	One	can	think	of	a	Dedekind	cut	which	doesn’t	correspond	to	a	real	number	as	a	kind	of	
gap,	i.e.,	a	vertical	line	passing	through	the	x-axis	that	somehow	misses	every	real	number.	



categorical	conception	of	an	actualist	hierarchy	of	sets	above	with	Dummett’s	famous	–	and	
famously	obscure	–	remarks	about	indefinite	extensibility.	

2.5.1 Height Potentialism And No More  

In	a	nutshell,	I	think	my	limited	Potentialism	gains	principled	motivation	from	the	fact	that	
our	naive	conception	of	the	height	of	the	hierarchy	of	sets	gives	rise	to	a	Burali-Forti	
paradox,	while	no	similar	paradox	prevents	us	from	taking	the	appearance	that	we	have	a	
precise	coherent	conception	of	things	like	the	natural	number	structure	or	the	width	of	the	
hierarchy	of	sets	at	face	value.	

Here’s	another	way	of	thinking	about	the	disanalogy.	One	can	fairly	concretely	imagine	an	
ordinal-like-object	above	any	well-ordered	plurality	of	ordinals	and	a	layer	of	set-like-
objects	above	any	plurality	of	sets	satisfying	IHW.	We	can	specify	exactly	how	≤	and	∈	
would	relate	the	new	sets/ordinals	to	all	the	old	sets/ordinals	previously	considered	so	as	
to	form	a	new	structure	satisfying	IHW	equally	well.	And	structure	we	imagine	forming	by	
extending	any	given	plurality	of	ordinals	has	as	good	a	claim	to	contain	all	the	objects	that	
satisfy	our	conception	of	‘the	ordinals’/	‘the	sets’	as	the	original	structure,	if	our	conception	
after	rejecting	the	naïve	height	principle	is	just	IHW.	And	in	any	case	our	conception	of	the	
ordinals/sets	doesn’t	seem	to	include	any	(coherent)	negative	conditions,	which	say	that	
the	height	of	the	hierarchy	must	stop	at	a	certain	point.	

But	we	can’t	do	the	same	thing	with	our	concepts	of	‘full’	second-order	quantification	(aka	
arbitrary	subsets	of	a	given	collection),	natural	number,	and	real	number.	Perhaps,	in	a	
sense,	it’s	intuitive	that,	for	any	collection	of	natural	numbers	(finite	or	infinite),	we	can	
imagine	a	strictly	larger	vaguely	number-like	object.	For	we	can	always	imagine	adding	
(something	like)	a	successor	or	a	limit	ordinal	after	all	numbers	within	any	collection	of	
numbers.	However,	our	grasp	of	the	natural	numbers	does	very	centrally	include	such	a	
principle	saying	the	numbers	must	stop	at	a	certain	point,	namely	the	second-order	
induction	axiom!	We	think	the	numbers	are	(so	to	speak)	as	few	as	can	be31	while	
containing	0	and	the	successor	of	everything	they	include	and	that	for	this	reason,	any	
property	which	applies	to	0	and	applies	to	the	successor	of	everything	it	applies	to	must	
apply	to	all	the	numbers.	The	same	goes	for	the	concept	of	full	second-order	
quantification/all	possible	subsets	of	a	given	collection.	We	have	no	positive	intuition	about	
how	to	generate,	for	any	given	collection	of	sets	of	cats,	a	new	set-of-cats-like	object	which	
is	distinct	from	all	the	ones	previously	considered32.	

	

31	Here	I	mean	‘few’	in	an	order	type	sense,	not	a	cardinal	sense.	Maybe	it	would	be	better	
to	say	that	the	natural	number	structure	is	as	short/small	as	can	be	while	satisfying	this	
condition	

32	Perhaps	Hamkins’	radical	multiverse	proposal	provides	a	way	of	developing	the	latter	
counter-intuitive	idea.	But	see	my	discussion	of	Hamkins	in	§9.4.	



2.5.2 Contrast with Dummett 

It	may	be	helpful	at	this	point	to	contrast	my	arbitrariness	problem	for	actualism	with	
Michael	Dummett’s	influential	arguments	about	indefinite	extensibility.	In	‘What	is	
Mathematics	About?’	(M.	Dummett	1993),	Dummett	raises	something	very	much	like	the	
Burali-Forti	worry	I	pressed	above	concerning	the	height	of	the	hierarchy	of	sets.	

If	it	was...	all	right	to	ask,	“How	many	numbers	are	there?",	in	the	sense	in	which	
“number"	meant	‘finite	cardinal,’	how	can	it	be	wrong	to	ask	the	same	question	
when	“number"	means	‘finite	or	transfinite	cardinal?’	A	mere	prohibition	leaves	
the	matter	a	mystery.	It	gives	no	help	to	say	that	there	are	some	totalities	so	large	
that	no	number	can	be	assigned	to	them.	We	can	gain	some	grasp	on	the	idea	of	a	
totality	too	big	to	be	counted,	even	at	the	stage	when	we	think	that,	if	it	cannot	be	
counted,	it	does	not	have	a	number;	but,	once	we	have	accepted	that	totalities	too	
big	to	be	counted	may	yet	have	numbers,	the	idea	of	one	too	big	even	to	have	a	
number	conveys	nothing	at	all.	And	merely	to	say,	“If	you	persist	in	talking	about	
the	number	of	all	cardinal	numbers,	you	will	run	into	contradiction,”	is	to	wield	
the	big	stick,	not	to	offer	an	explanation.33	

And	one	might	say	that	both	of	us	reject	standard	actualist	set	theory	on	the	grounds	that	
our	conception	of	sets	is,	in	some	sense,	‘indefinitely	extensible.’	However,	Dummett	is	
concerned	with	indefinite	extensibility	in	a	different	sense	than	I	am.	Specifically,	one	might	
say	that	I	reject	standard	(actualist)	Platonism	about	set	theory	because	our	concept	of	sets	
and	ordinals	is	‘indefinite	extensibility’	in	the	following	strong	sense	(if	we	take	the	natural	
conception	of	set	that	remains,	once	we	reject	the	naive	and	paradoxical	conception	that	
the	sets	go	‘all	the	way	up,’	to	be	IHW).	

Strong	Indefinite	Extensibility	We	have	a	positive	intuition	that	for	any	
hierarchy	of	sets/ordinals	there	could	be,	there	could	be	a	strictly	larger	one	
which	matches	our	conception	of	the	sets	(IHW)/ordinals	equally	well.	

In	contrast,	Dummett	seems	to	reject	standard	Platonist	set	theory	because	our	concept	of	
sets	is	‘indefinite	extensible’	in	this	weaker	sense:	

Weak	Indefinite	Extensibility	For	any	collection	of	numbers/sets/ordinals	we	
can	form	a	definite	conception	of	(which	Dummett	says	he	will	start	by	presuming	
means	any	finite	collection!)	this	collection	can	be	extended	so	as	to	contain	extra	
things	which	would	also	fall	under	our	conception	of	that	structure	

For	Dummett	writes,	“[A]n	indefinitely	extensible	concept	is	one	such	that,	if	we	can	form	
a	definite	conception	of	a	totality	all	of	whose	members	fall	under	the	concept,	we	can,	by	
reference	to	that	totality,	characterize	a	larger	totality	all	of	whose	members	fall	under	it.”	
(M.	Dummett	1993)	pg.	440	(emphasis	mine).	

	

33	(M.	Dummett	1993)	pg.	439	



To	support	this	reading,	consider	how	Dummett	argues	that	the	concepts	of	natural	
numbers	are	‘indefinitely	extensible’	by	(seemingly)	assuming	that	all	totalities	of	numbers	
we	can	form	a	definite	conception	of	collect	numbers	from	0	ton	for	some	n.	His	story	about	
how	to	extend	an	arbitrary	totality	of	natural	numbers	(that	we	can	definitely	conceive	of)	
is	simply	the	following.	

given	any	initial	segment	of	the	natural	numbers,	from	0	ton,	the	number	of	
terms	of	that	segment	is	again	a	natural	number,	but	one	larger	than	any	term	of	
the	segment.	

Similarly,	the	argument	Dummett	takes	to	show	that	our	concept	‘real	number’	is	
indefinitely	extensible	is	simply	Cantor’s	diagonal	argument	that	any	countable	plurality	of	
real	numbers	must	be	leaving	some	real	numbers	out.	

Indeed	Dummett	explicitly	notes	that	he’s	making	these	assumptions	(of	finiteness	and	
countability)	in	the	quote	below	and	(unsurprisingly)	recognizes	they	will	strike	opponents	
as	question-begging.	

A	natural	response	is	to	claim	that	the	question	has	been	begged.	In	classing	real	
number	as	an	indefinitely	extensible	concept,	we	have	assumed	that	any	totality	
of	which	we	can	have	a	definite	conception	is	at	most	denumerable;	in	classing	
natural	number	as	one,	we	have	assumed	that	such	a	totality	will	be	finite.	
Burden-of-proof	controversies	are	always	difficult	to	resolve,	but,	in	this	instance,	
it	is	surely	clear	that	it	is	the	other	side	that	has	begged	the	question.	

Dummett	goes	on	to	defend	this	burden	of	proof	claim	by	arguing	that	it’s	mysterious	how	
a	definite	conception	of	an	infinite	structure	could	be	communicated,	and	the	burden	of	
showing	such	communication	is	possible	falls	on	his	opponent.	

I	won’t	try	to	adjudicate	this	dispute	here.	Much	can	and	has	been	said	about	whether	this	
succeeds	and	how	to	understand	Dummett’s	infamously	“dark”	(Refit	2015)	notion	of	
indefinite	extensibility	(M.	A.	E.	Dummett	1991).	

Instead,	I	merely	want	to	note	that	Dummett’s	arguments	for	the	(weak)	indefinite	
extensibility	of	the	natural	numbers	and	real	numbers	don’t	even	pretend	to	show	the	
strong	indefinite	extensibility	of	these	notions.	They	don’t	pretend	to	show	that,	for	any	
totality	of	objects	related	by	some	relation	R	in	the	way	we	believe	the	natural	numbers	to	
be	related	by	successor,	it	would	be	it	would	be	intuitively	possible/logically	coherent	to	
have	a	strictly	larger	structure	that	accords	with	our	conception	of	the	natural	numbers	
equally	well.	Thus,	Dummett’s	reason	for	worrying	about	the	sets	arguably	applies	to	the	
natural	numbers	and	real	numbers	(any	finite	collection	of	these	will	be	missing	a	number	
which	could	be	added)	etc.	while	(we’ve	just	seen	above	that)	mine	doesn’t.	

Philosophically	speaking,	I	suspect	these	different	‘indefinite	extensibility’	worries	arise	
from	different	philosophical	projects	and	background	assumptions	as	follows.	

I	take	both	the	naive	intuition	that	we	mean	something	definite	by	both	‘all	possible	
subsets’	and	‘all	the	way	up’	at	face	value	until	Burali-Forti	paradox	shows	the	latter	is	



contradictory.	Since	no	analogous	paradox	seems	to	arise	for	‘all	possible	subsets,’	I’m	
happy	to	invoke	this	notion	in	expressing	a	conception	of	the	natural	numbers,	etc.	

In	contrast,	Dummett	starts	from	a	more	skeptical/cautious	position	and	asks	to	be	shown	
how	one	could	‘convey’	a	definite	concept	of	structures	to	someone	who	starts	out	only	
understanding	finite	collections.	And	he	prima	facie	doubts	that	you	could	do	so	by,	e.g.,	
giving	an	operation	like	adding	one	and	talking	about	closing	under	it	or	relating	your	
natural	number	concept	to	reference	magnetic	notions	of	second-order	quantification	or	
logical	possibility.34	

Thus,	I	think,	the	fact	that	Dummett’s	more	skeptical	worry	applies	more	widely	than	the	
Burali-Forti	driven	worry	I’ve	pressed	is	unsurprising.		

Chapter 3 Putnamian Potentialism: Putnam and Hellman 

Let	us	now	turn	to	Potentialism,	a	different	approach	to	set	theory.	There	are	two	broad	
schools	of	Potentialism	which	I	will,	following	(Linnebo,	2018a),	call	Putnamian	and	
Parsonian	Potentialism,	and	discuss	in	this	book.	

In	this	chapter	I	will	present	Potentialism	from	a	Putnamian	point	of	view.	Later,	in	Chapter	
5	I	will	discuss	rival	Parsonian	proposals.	

Unlike	actualists,	(Putnamian)	potentialists	don’t	take	set	theory	to	describe	actual	or	
possible	existence	of	special	objects	called	‘sets.’	

In	a	nutshell,	Potentialists	interpret	mathematicians	who	appear	to	be	quantifying	over	the	
sets	as	really	talking	about	the	possibility	and	extensibility	of	structures	satisfying	the	
iterative	hierarchy	conception	of	sets	discussed	above.	We	might	say	that	potentialist	
translations	talk	about	the	possibility	of	there	being	(objects	with	the	structure	of)	
standard	width	initial	segments	𝑉, 	of	the	total	hierarchy	of	sets	𝑉,	and	how	some	such	
initial	segments	could	be	extended	by	longer	initial	segments.	They	don’t	interpret	set	
theorists	as	quantifying	over	any	collection	of	existing	objects,	or	even	as	talking	about	

	

34	Perhaps	we	can	latch	onto	a	notion	of	logical	possibility	which	(we	will	see	below)	
suffices	to	categorically	describe	the	numbers	and	sets	in	the	same	way	(whatever	it	is)	
that	we	can	latch	on	to	a	notion	of	objective	physical	possibility/law.	For	example,	it	might	
be	that	we	get	both	notions	by	making	certain	core	good	inferences	(e.g.,	the	actual	to	
possible	Axiom	8.1	and	uniform	relabling	Axiom	8.5	principles	I	introduce	below	the	case	
of	logical	possibility,	and	some	other	kind	of	extrapolation	in	the	case	of	physical	
possibility)	which	in	a	way	under-determine	which	modal	notion	we	mean	and	then	
benefiting	from	reference	magnetism.	Thus,	I	suspect	that	Dummett’s	worry	either	(despite	
protests	to	the	contrary)	comes	down	to	an	argument	from	some	principle	of	
manifestability	which	would	call	reference	to	realist	physical	possibility/law	facts	into	
doubt	as	well	reduces	to	mine	or.	However,	I	won’t	pursue	this	argument	here	because	my	
present	aim	is	only	to	explain	how	my	worry	differed	from	Dummett’s,	not	to	answer	his	
worry.	



what	follows	from	some	axioms	describing	the	supposed	structure	of	the	sets.	Instead,	they	
systematically	interpret	mathematical	utterances	which	appear	to	quantify	over	the	sets	as	
having	a	much	more	complicated	logical	form.	

Crudely	speaking,	the	potentialist	will	interpret	singly	quantified	existential	claims	
(∃𝑥);𝜙(𝑥)D	in	set	theory	(e.g.,	(∃𝑥)(𝑥 = 𝑥)),	as	saying	(something	like)	that	it’s	possible	for	
there	to	be	a	standard	width	initial	segment	of	the	hierarchy	of	sets	containing	an	object	𝑥	
satisfying	𝜙	(in	this	case	𝑥 = 𝑥).	And	they	will	interpret	set-theoretic	claims	of	the	form	
∀𝑥𝜙(𝑥),	where	𝜙	is	quantifier	free,	(e.g.,	(∀𝑥)(¬𝑥 ∈ 𝑥)),	as	saying	(something	like)	that	it’s	
necessary	that	any	object	𝑥	within	a	standard	width	initial	segment	of	the	hierarchy	of	sets	
has	the	property	𝜙.	

What	about	set-theoretic	claims	involving	nested	quantification?	The	potentialist	will	
interpret	statements	of	the	form	(∀𝑥)(∃𝑦)𝜙(𝑥, 𝑦)	(where	𝜙	has	no	quantifiers)	as	saying	
(something	like):	it’s	necessary	that	for	any	standard	width	initial	segment	𝑉	and	object	𝑥	
within	it,	it’s	possible	to	have	larger	initial	segment	𝑉-	extending	𝑉,	containing	an	object	𝑦,	
such	that	𝜙(𝑥, 𝑦).	And	the	same	pattern	continues	for	more	logically	complex	sentences.	

In	this	chapter	I’ll	discuss	how	Putnam	and	Hellman	have	developed	Putnamian	so	far	and	
how	it	promises	to	answer	some	of	the	problems	for	traditional	actualist	set	theory	
discussed	in	the	previous	chapter.	I’ll	then	raise,	and	begin	to	answer,	some	worries	for	
(Parsonian)	Potentialism,	about	how	to	spell	out	the	relevant	notions	of	possibility	and	
extensibility.	

3.1 Putnam 

In	(Hillary	Putnam	1983a)	Hilary	Putnam	sketches	a	way	of	thinking	about	set	theory	in	
terms	of	modal	logic:	as	talk	about	what	‘models’	of	set	theory	are,	in	some	sense,	possible	
and	how	such	models	can	be	extended.	

He	introduces	a	notion	of	being	a	standard	model	of	set	theory,	which	is	a	model	of	set	
theory	closed	under	subsets,	i.e.,	a	hierarchy	of	sets	having	full	width	and	no	infinite	
descending	chains	under	∈35.	Putnam	says	that	we	can	‘make	this	notion	concrete’	by	
thinking	of	models	as	physical	graphs	consisting	of	pencil	points	(or	the	analog	of	pencil	
points	in	space	of	some	higher	cardinality)	and	arrows	connecting	these	pencil	points.	And	
he	“ask[s]	the	reader	to	accept	it	on	faith”	that	we	can	express	the	claim	that	some	model	is	
standard	in	this	way	“using	no	‘non-nominalistic’	notions	except	the	‘ ’”	(where	 	denotes	
the	logical	necessity	operator).	

	

35	Specifically,	Putnam	writes	“[A	concrete]	model	will	be	called	standard	if	(1)	there	are	no	
infinite-descending	‘arrow’	paths;	and	(2)	it	is	not	possible	to	extend	the	model	by	adding	
more	“sets”	without	adding	to	the	number	of	“ranks”	in	the	model.	(A	‘rank’	consists	of	all	
the	sets	of	a	given-possibly	transfinite-type.	‘Ranks’	are	cumulative	types;	i.e.,	every	set	of	a	
given	rank	is	also	a	set	of	every	higher	rank.	It	is	a	theorem	of	set	theory	that	every	set	
belongs	to	some	rank.)”	



With	this	notion	of	a	concrete	model	in	place,	Putnam	suggests	that	we	can	understand	set-
theoretic	statements	as	claims	about	what	such	models	are	possible,	and	how	they	can	be	
expanded.	For	example,	he	proposes	that	we	can	paraphrase	a	set-theoretic	statement	of	
the	form	‘(∀𝑥)(∃𝑦)(∀𝑧)𝜙(𝑥, 𝑦, 𝑧)’	where	𝜙	is	quantifier	free,	as	saying	that,	if	𝐺	is	a	
standard	concrete	model,	and	𝑝	is	a	point	within	𝐺,	then	it	is	possible	that	there	is	a	model	
𝐺-	which	extends	𝐺,	and	a	point	𝑦	within	𝐺-	such	that	necessarily,	for	any	model	𝐺.	which	
extends	𝐺-	and	contains	a	point	𝑧,	𝜙(𝑥, 𝑦, 𝑧)	holds	within	the	concrete	model	𝐺..	And	we	
can	treat	arbitrary	quantified	statements	in	set	theory	in	an	analogous	fashion.	

Putnam	then	suggests	that	adopting	this	potentialist	approach	to	set	theory	can	help	us	
dispel	the	kind	of	arbitrariness	and	indefinite	extensibility	worries	I	discussed	in	§1.2	
above.	For,	the	potentialist	can	understand	set-theoretic	talk	without	imposing	or	positing	
arbitrary	limits	on	the	size	of	structures	(as	we	would	do	if	we	just	stipulated	a	point	at	
which	the	hierarchy	of	sets	stopped	or	inferred	that	it	must	stop	somewhere)	in	a	way	that	
seems	faithful	to	our	intuitions	about	the	generality	of	set-theoretic	reasoning36.	As	Putnam	
puts	it,	

“[W]e	have	a	strong	intuitive	conviction	that	whenever	As	are	possible,	so	is	a	
structure	that	we	might	call	‘the	family	of	all	sets	of	As.’	...from	the	standpoint	of	
the	modal-logic	picture	...	the	Russell	paradox	...	shows	that	no	concrete	structure	
can	be	a	standard	model	for	the	naive	conception	of	the	totality	of	all	sets;	for	any	
concrete	structure	has	a	possible	extension	that	contains	more	“sets."	(If	we	
identify	sets	with	the	points	that	represent	them	in	the	various	possible	concrete	
structures,	we	might	say:	it	is	not	possible	for	all	possible	sets	to	exist	in	any	one	
world!)	Yet	set	theory	does	not	become	impossible.	Rather,	set	theory	becomes	
the	study	of	what	must	hold	in,	e.g.,	any	standard	model	for	Zermelo	set	theory.”	

I	think	Putnam	is	right	that	his	proposal	indicates	an	appealing	style	of	response	to	the	
worries	about	arbitrary	stopping	points	for	the	hierarchy	of	sets	indicated	above.	And	(as	
we	will	see)	it	has	inspired	many	other	philosophers.	However,	this	proposal	is	(explicitly)	
sketchy	on	certain	formal	and	philosophical	points.	For	instance,	Putnam	doesn’t	provide	
any	criteria	for	what	it	would	take	for	some	physical	graph	(formed	of	pencil	points	and	the	
like)	to	form	“a	standard	model	for	Zermelo	set	theory”	but	rather	(as	we	saw	above)	asks	
the	reader	to	“accept	it	on	faith	that	the	statement	that	a	certain	graph	𝐺	is	a	standard	
model	for	Zermelo	set	theory	can	be	expressed	using	no	‘non-nominalistic’	notions	except	
the	` .”37	

	

36	In	particular,	(before	thinking	about	the	paradoxes)	we’d	hoped	for	set	theory	to	be	
general	in	the	sense	that	every	possible	structure	will	have	a	copy	somewhere	in	the	sets.	

37	Here	nominalistic	notions	are	ones	that	aren’t	committed	to	the	literal	existence	of	
mathematical	objects.	



And,	philosophically,	Putnam	says	very	little	about	the	notion	of	‘mathematical	possibility’	
which	he	intends	to	capture	with	the	 .	Indeed,	he	seems	to	vacillate	between	a	purely	
mathematical	understanding	of	necessity	and	a	physical	understanding.	

For	example,	at	some	points	he	seems	to	have	a	notion	of	explicitly	‘mathematical	
possibility’	in	mind.	For	example,	he	writes	(brackets	in	original)	“assuming	that	the	
notions	of	mathematical	possibility	and	necessity	are	clear	[and	there	is	no	paradox	
associated	with	the	notion	of	necessity	as	long	as	we	take	the	‘ ’	as	a	statement	connective	
(in	the	degenerate	sense	of	“unary	connective”)	and	not...as	a	predicate	of	sentences],	I	
wish	to	employ	these	notions	to	try	to	give	a	clear	sense	to	talk	about	‘all	sets.’’	(Hillary	
Putnam	1983a)	However,	at	earlier	points	in	the	same	article	Putnam	seems	to	appeal	to	
something	more	like	metaphysical	possibility	or	a	priori	conceivability.	For	he	writes	as	if	
constraints	on	how	we	can	conceive	the	structure	of	physical	space	might	block	the	
possibility	of	relevant	models,	(and	makes	assumptions	about	this	which	philosophers	such	
as	Parsons	(Parsons	2007)	and	Tait	(Tait	2005)	have	been	unwilling	to	grant),	e.g.,	Putnam	
says,	“I	assume	that	there	is	nothing	inconceivable	about	the	idea	of	a	physical	space	of	
arbitrarily	high	cardinality;	so	models	of	this	kind	need	not	necessarily	be	denumerable,	
and	may	even	be	standard.”	

Additionally,	Putnam	advocates	Potentialism	as	merely	one	possible	and	helpful	
‘perspective’	on	mathematics,	and	claims	that	it	is,	in	some	sense,	equivalent	to	a	more	
familiar	actualist	understanding	of	set	theory,	which	only	appears	to	be	incompatible	with	
it.	But	cashing	this	idea	out	clearly	requires	serious	and	disputable	metaphysics38.	

Furthermore,	it’s	not	clear	that	saying	both	perspectives	are	equally	good	is	compatible	
with	honoring	Putnam’s	Potentialism-motivating	intuition	that	“whenever	As	are	possible,	
so	is	a	structure	that	we	might	call	‘the	family	of	all	sets	of	As’’	(Putnam	1983b).	We	seem	
forced	to	either	say	that	the	idea	that	for	any	structure	there	could	be	a	larger	one	is	only	
true	‘from	the	potentialist	perspective’	on	mathematics	or	to	say	that	it	is	true	simpliciter,	
even	from	the	actualist	perspective.	

The	former	position	can	feel	a	little	mysterious	and	unsatisfying,	but	the	latter	is	
uncomfortable	for	two	reasons.	First	(like	more	straightforward	forms	of	actualism)	it	
involves	positing	arbitrariness	in	mathematical	reality	by	saying	the	actualist	hierarchy	of	
sets	just	happens	to	stop	somewhere,	though	it	could	go	on	further.	Second,	it’s	not	clear	
(even	at	a	very	loose	intuitive	level)	how	talking	about	any	such	actualist	hierarchy	could	
be	equivalent	to	a	practice	of	modal	set	theory	which	considers	arbitrary	logically	possible	
extendibility39.	

	

38	See,	for	example,	John	Burgess’	vigorous	objections	to	Putnam’s	stance	in	(Burgess	
2018).	

39	Perhaps	one	could	say	that	the	actualist	hierarchy	is	the	smallest	standard	width	
structure	whose	truth	conditions	for	all	first-order	logical	claims	agree	with	those	provided	
by	the	potentialist	set	theory.	



3.2 Hellman 

In	(Geoffrey	Hellman	1994a;	Geoffrey	1996)	and	(Geoffrey	Hellman	2011)	Hellman	
develops	Putnam’s	ideas	about	potentialist	set	theory	as	part	of	a	larger	purely	nominalist	
philosophy	of	mathematics,	in	a	way	that	addresses	or	avoids	some	of	the	worries	above.	

First,	Hellman	drops	Putnam’s	suggestion	that	actualist	and	potentialist	approaches	to	set	
theory	are	(somehow)	supposed	to	be	two	equally	good	perspectives	on	the	same	thing.	
Instead,	he	simply	advocates	and	develops	a	potentialist	understanding	of	set	theory.	I	will	
follow	suit.	

Second,	Hellman	provides	a	somewhat	clearer	picture	of	what	the	key	modal	notion	◊	in	
(his	version	of)	Putnam’s	potentialist	set	theory	is	supposed	to	mean,	saying	that	it’s	
supposed	to	express	a	primitive	modal	notion	of	logical	possibility.	However,	he	does	
relatively	little	to	describe	this	notion.	He	does	say	that	“[when	evaluating	logical	
possibility]	we	are	not	automatically	constrained	to	hold	material	or	natural	laws	fixed.”	So,	
it	may	be	logically	possible	that	(∃𝑥);pig(𝑥) ∧ flies(𝑥)D,	but	physically	impossible.	And	he	
adds	that,	“we	are	free	to	entertain	the	possibility	of	additional	objects	—	even	material	
objects	—	of	a	given	type.”	So,	for	example	it’s	logically	possible	that	there	are	infinitely	
many	objects	even	if	there	are	actually	only	finitely	many	objects.	And	it’s	logically	possible	
for	there	to	be	say	2&! 	cats,	even	if	it’s	not	metaphysically	possible	for	there	to	be	so	many	
cats.	This	(arguably)	lets	us	avoid	concerns	about	limitations	on	the	cardinality	of	space	
unduly	limiting	the	range	of	possible	models	considered	above.	Beyond	this	remark,	
however,	Hellman	just	suggests	that	his	applications	of	logical	possibility	will	make	the	
notion	he	has	in	mind	clear.	

Hellman	also	does	a	lot	to	fill	in	the	other	promissory	notes	left	by	Putnam’s	sketch.	He	
cashes	out	Putnam’s	appeal	to	‘standard	models’	of	set	theory	by	saying	that	standard	
models	are	models	which	satisfy	𝑍𝐹𝐶&	(i.e.,	the	version	of	standard	ZFC	set	theory	which	
replaces	the	inference	schemas	of	Replacement	and	comprehension	with	corresponding	
second-order	axioms)40.	

Two	details	of	how	Hellman	spells	this	idea	out	will	be	particularly	important	to	note,	
insofar	as	I	think	they	can	raise	problems	and	my	own	potentialist	paraphrases	will	follow	
Putnam	rather	than	Hellman	in	these	matters.	

3.2.1 Which Hierarchies? 

Note	that	where	Putnam	spoke	of	models	of	“Zermelo	set	theory"	(which	doesn’t	include	
Replacement)	Hellman	talks	about	models	satisfying	second-order	ZFC,	and	hence	

	

40	So,	for	example,	ZFC	expresses	comprehension	via	an	axiom	schema	which	contains	an	
axiom	for	every	formula	𝜙	in	the	language	of	set	theory.	In	contrast,	by	using	second-order	
logic	one	can	state	a	single	comprehension	axiom	as	follows	(∀𝑥)(∀𝐶)(∃𝑦)(∀𝑧)(𝑧 ∈ 𝑦 ↔
𝑧 ∈ 𝑥 ∧ 𝐶(𝑧)).	The	same	goes	for	the	first-order	axiom	schema	of	Replacement	and	its	
second-order	analog.	



Replacement.	That	is,	Hellman	takes	the	initial	segments	whose	possible	extensions	
Potentialism	considers	to	themselves	satisfy	ZFC&	,	

Now	if	one	accepts	the	relevant	large	cardinal	axioms,	then	there’s	a	sense	in	which	this	
change	makes	no	difference.	For	(it	turns	out)41	that	potentialist	translations	taking	initial	
segments	to	themselves	satisfy	ZFC2	will	be	logically	equivalent	to	translations	involving	
initial	segments	that	satisfy	much	weaker	requirements	𝐼𝐻𝑊&	or	Zermelo	set	theory.	But	it	
may	make	a	difference	to	our	current	project	of	justifying	the	potentialist	version	of	ZFC	
from	intuitively	compelling	principles42.	For	note	that	to	infer	even	the	simplest	existential	
claim	in	set	theory	(e.g.,	to	say	that	there	is	a	set	that	is	self-identical),	we	would	need	to	
know	that	it	was	logically	possible	for	a	structure	to	satisfy	ZFC&.	And	the	logical	coherence	
of	a	hierarchy	of	sets	satisfying	second-order	ZFC	is	by	no	means	obvious,	especially	in	the	
context	of	our	current	doubts	about	Replacement.	

One	might	also	feel	that	requiring	the	initial	segments	being	extended	to	satisfy	𝑍𝐹𝐶&	or	
even	constitute	a	‘standard	model	of	Zermelo	set	theory’	(rather	than	merely	satisfying	our	
conception	of	being	an	intended	width	hierarchy	IHW	above,	e.g.,	𝐼𝐻𝑊&)	is	slightly	
unnatural.	In	Chapter	2	I	tried	to	paint	the	following	picture.	We	seem	to	have	a	precise	and	
consistent	conception	of	the	intended	width	of	the	hierarchy	of	sets,	but	(as	we	see	when	
deriving	contradiction	from	the	Naive	conception	of	absolute	infinity	in	§	2.2)	no	such	
conception	of	its	intended	height.	Now	one	might	say:	the	point	of	Potentialism	as	a	
solution	to	the	arbitrariness	problem,	is	to	solve	this	problem	of	heights.	So	potentialist	set	
theory	should	talk	about	how	iterative	hierarchies	of	standard	width	could	be	extended,	
rather	than	imposing	any	height	constraints.	But	I	admit	that	perhaps	this	is	a	matter	of	
taste.	

3.2.2 Appeal to Second-order Logic or Plurals 

Finally,	Hellman	also	makes	one	more	change	in	(Geoffrey	Hellman	1994b)	which	I	want	to	
highlight	because	my	own	proposal	will	wind	up	being	closer	to	Putnam’s	original	proposal	
in	this	regard.	When	Putnam	talks	about	the	modal	perspective	on	mathematics,	he	
considers	possibility	of	objects	being	related	by	specific	first-order	relations	as	per	
certain	set-theoretic	axioms.	So,	for	example,	we	might	consider	the	possibility	that	the	
pencil	points	form	an	intended	model	of	Zermelo	set	theory	when	considered	under	the	
relation	‘an	arrow	points	from...	to	...’.	If	we	followed	Hellman	in	requiring	our	hierarchies	
to	satisfy	𝑍𝐹𝐶&,	this	would	amount	to	saying	that	all	axioms	of	𝑍𝐹𝐶&	become	true	when	you	
replace	‘set’	with	‘point’	and	‘element	of’	with	‘an	arrow	points	from...	to	...’	However,	he	

	

41	See	§1.4	

42	I	gather	Hellman	(Geoffrey	Hellman	2020)	chooses	to	go	this	way	in	an	attempt	to	bring	
out	a	kind	of	analogy	between	Replacement	and	large	cardinal	axioms,	something	which	I	
don’t	attempt	here.	



notes	that	any	relations	of	the	right	arity	will	do.43	We	could	translate	a	given	sentence	of	
set	theory	equally	well	by	talking	about	how	it	would	be	logically	(or	logico-mathematically	
in	whatever	sense	Putnam	has	in	mind)	possible	for	the	pencil	points	to	arrow	one	another	
or	the	angels	to	admire	one	another.	

In	contrast,	Hellman	interprets	set-theoretic	claims	purely	in	terms	of	second-order	
quantification	in	(Geoffrey	Hellman	1994b).	That	is,	instead	of	saying	something	about	how	
it’s	logically	possible	for	penciled	points	to	arrow	one	another,	we	talk	about	the	possibility	
of	there	being	second-order	class	and	functions	objects	𝑋	and	𝑓	such	that	𝑍𝐹𝐶&[set/X,∈/f]	
(where	this	indicates	that	the	structure.	

In	later	work,	(Hellman	1996)	Hellman	modified	this	view	slightly,	as	motivated	by	his	
nominalism	and	famous	Quinean	sentiment	that	second-order	logic	is	ontologically	
committal	(W.	V.	O.	Quine	1970)	(so	accepting	second-order	comprehension	commits	one	
to	abstract	objects).	He	notes	that	quantifying	over	all	pluralities	𝑥𝑥	automatically	lets	you	
simulate	second-order	𝑋	quantification,	and	that	(if	you	can	make	certain	assumptions	
about	the	size	of	the	universe	and	use	mereology)	you	can	also	simulate	second-order	
relation	or	function	quantification	𝑓	via	the	strategy	indicated	in	the	appendix	of	David	
Lewis’	Parts	of	Classes	(D.	K.	Lewis	1991).	Accordingly,	he	proposes	to	rewrite	all	the	
paraphrases	above	plurality	of	objects	𝑥𝑥	(in	effect)	satisfying	second-order	set	theory,	
written	𝑍𝐹𝐶&// ,	rather	that,	rather	than	second-order	objects	𝑋, 𝑓	doing	so44.	

	

43	For	example,	on	pages	10-11	of	(Hilary	Putnam	1967a)	he	writes	“Let	’AX’	abbreviate	the	
conjunction	of	the	axioms	of	the	finitely	axiomatizable	subtheory	of	first-order	arithmetic	
just	alluded	to.	Then	Fermat’s	last	theorem	is	false	just	in	case	’𝐴𝑋 ⊃ ¬	Fermat’	is	valid,	i.e.,	
just	in	case	

(1)	□(𝐴𝑋 ⊃ ¬	Fermat)	

Since	the	truth	of	(1),	in	case	(1)	is	true,	does	not	depend	upon	the	meaning	of	the	
arithmetical	primitives,	let	us	suppose	these	to	be	replaced	by	“dummy	letters”	(predicate	
letters).	To	fix	our	ideas,	imagine	that	the	primitives	in	terms	of	which	𝐴𝑋	and	¬Fermat	are	
written	are	the	two	three-term	relations	“𝑥	is	the	sum	of	𝑦	and	𝑧"	and	“𝑥	is	the	product	of	𝑦	
and	𝑧"	(exponentiation	is	known	to	be	first-order-definable	from	these,	and	so,	of	course,	
are	zero	and	successor).	Let	𝐴𝑋(𝑆, 𝑇)	and	¬Fermat(𝑆, 𝑇)	be	like	𝐴𝑋	and	¬Fermat	except	for	
containing	the	“dummy”	triadic	predicate	letters	𝑆,	𝑇	,	where	𝐴𝑋	and	¬Fermat	contain	the	
constant	predicates	“𝑥	is	the	sum	of	𝑦	and	𝑧"	and	“𝑥	is	the	product	of	𝑦	and	𝑧."	Then	(1)	is	
essentially	a	truth	of	pure	modal	logic	(if	it	is	true),	since	the	constant	predicates	occur	
“inessentially”;	and	this	can	be	brought	out	by	replacing	(1)	by	the	abstract	schema:	(2)	
□[𝐴𝑋(𝑆, 𝑇) ⊃ ¬FERMAT(𝑆, 𝑇)]	-and	this	is	a	schema	of	pure	first-order	modal	logic.”	

44	In	even	later	work	(G.	Hellman	2011)	Hellman	switches	to	a	two	sorted	view	(more	like	
Parsonian	views	discussed	below)	above	where	we	have	stages	s,	and	plural	quantification	
	



I	have	some	doubts	about	the	success	of	this	move.	In	particular,	I’m	not	convinced	that	this	
use	of	mereology	to	simulate	second-order	quantification	can	be	combined	with	taking	the	
◊	to	express	logical	possibility	rather	than	metaphysical	possibility.	For	reasons	that	will	
become	clear	below45,	I	don’t	think	that	the	axioms	of	mereology	are	logically	necessary.	If	
logical	possibility	ignores	metaphysically	necessary	constraints	on	how	many	concrete	
objects	can	exist	in	space	and	time,	shouldn’t	it	ignore	the	metaphysically	necessary	laws	of	
mereology	too?	Thus,	I	think	that	employing	this	strategy	to	formulate	potentialist	set	
theory	(rather	than	just	modally	paraphrasing	talk	of	smaller	structures	like	the	numbers	
and	the	reals	as	Hellman	suggests	in	(Geoffrey	Hellman	1994b))	would	reawaken	the	
problems	about	the	metaphysical	possibility	of	arbitrarily	large	cardinalities	of	objects	
noted	above.	And,	as	we	will	see,	my	approach	also	eliminates	use	of	second-order	
quantification	in	favor	of	a	notion	of	logical	possibility	with,	arguably,	a	stronger	claim	to	
ontological	innocence	than	plural	quantification.	

But	I	won’t	dwell	on	this	issue	more	here,46	as	I’m	not	a	nominalist	myself.	

3.3 Remaining Problems 

Altogether,	I	think	adopting	potentialist	set	theory	in	the	manner	developed	by	Putnam	and	
Hellman	has	significant	appeal.	As	noted	above,	it	helps	solve	the	arbitrariness	problem	
which	actualists	face	regarding	the	height	of	the	set-theoretic	hierarchy.	But	with	this	
picture	of	the	current	state	of	Putnamian	potentialist	set	theory	in	mind,	I’ll	now	note	three	
lingering	problems	about	Hellman’s	system.	

First,	as	mentioned	above,	there’s	a	concern	about	how	precisely	to	understand	Putnam’s	
notion	of	possibility	and	Hellman’s	notion	of	logical	possibility.	I’ll	argue	in	§3.1.0.3	that	
independent	work	in	the	philosophy	of	logic	provides	significant	clarification	of	the	
relevant	notion	of	logical	possibility,	and	an	attractive	way	of	spelling	out	the	relevant	
notion.	

	

over	pluralities	of	stages	𝑠𝑠,	and	also	plural	quantification	over	objects	𝑥𝑥	which	will	play	
the	role	of	sets	in	satisfying	𝑍𝐹𝐶&	

On	this	view	these	stages	is	understood	in	terms	of	there	actually	being	a	growing	sequence	
of	objects	in	a	Parsonaian	sense.	But	the	claim	that	some	𝑥𝑥	satisfy	𝑍𝐹𝐶&

//,11	(will	now	
include	the	claim	that	these	sets	same	heights	as	some	stages)	will	still	be	understood	
structurally	as	saying	that	certain	axioms	are	satisfied.	

45	If	we	take	logical	possibility	to	be	interdefinable	with	validity	in	the	way	advocated	in	
§3.1,	the	logical	contingency	of	mereology	seems	to	follow.	

46	I	do	consider	switching	to	my	potentialist	framework	as	a	friendly	suggestion	to	
advocates	of	nominalism	(as	I	suggest	in	(S.	Berry	2018a))	



3.3.1 Quantified Modal Logic 

Second,	there’s	a	problem	about	the	infamous	controversialness	of	quantified	modal	logic.	
Putnam	and	Hellman	both	‘quantify	in’	to	the	◊	of	logical	possibility	(or	whatever	other	
modality	is	used	to	cash	out	Potentialist	set	theory).	That	is,	they	use	sentences	like	
∃𝑥◇𝑅(𝑥),	where	the	logical	possibility	operator	is	applied	to	a	formula	with	free	variables.	
But	there	are	significant	controversies	about	the	truth	value	(and/or	meaning)	of	even	very	
simple	sentences	involving	quantifying	in	to	the	◇	of	logical	or	metaphysical	possibility.	
Additionally,	as	I’ll	suggest	below,	working	in	a	language	that	allows	both	quantifying	into	
the	modal	operator	and	standard	FOL	inferences	can	make	the	consequences	of	axioms	
difficult	to	survey,	and	thus	makes	it	harder	to	see	that	these	axioms	are	clearly	true	(as	
needed	for	our	foundational	project).	

These	roadblocks	to	finding	uncontroversial	modal	principles	that	can	be	easily	seen	to	be	
true	for	the	language	of	Hellman’s	potentialist	paraphrases	make	using	these	paraphrases	
inconvenient	for	the	key	project	of	this	book:	justifying	set	theory	via	principles	that	are	as	
intuitively	obvious	seeming	as	possible.	

I’ll	use	this	worry	about	the	meaning	and	truth-value	of	basic	claims	in	the	language	of	
quantified	modal	logic,	to	motivate	a	switch	to	my	preferred	version	of	Putnamian	
Potentialism’	in	chapter	4.	

3.3.1.1 Quinean Qualms 

Most	radically,	Quine	famously	argued	against	quantifying	into	modal	contexts	all	together.	
I	take	Quine’s	main	problem	with	quantifying	in,	in	(W.	V.	Quine	1953b),	to	be	that	he	
dislikes	the	“Aristotelian	essentialism”	of	saying	that	some	properties	belong	to	an	object	
like	the	number	7	essentially	(e.g.,	being	less	than	9)	while	others	apply	only	contingently	
(e.g.,	being	the	number	of	planets).	After	all,	taking	there	to	be	such	an	abundance	of	facts	
about	essences	can	seem	like	positing	a	bunch	of	arbitrary	and	unneeded	metaphysical	
facts.	But	perhaps	these	concerns	are	less	severe	if	we	specify	that	we’re	only	talking	about	
logical	possibility,	because	objects’	logical	essences	will	be	(somehow)	‘minimal.’	

3.3.1.2 Contingent Objects 

More	influentially	at	the	moment,	there’s	debate	among	philosophers	who	accept	
quantified	modal	logic	(and	quantifying	in)	about	whether	everything	exists	necessarily.	In	
most	(reasonably	strong)	quantified	modal	logics	we	can	prove	the	following	claim	which	
seems	to	say	that	everything	exists	necessarily47	

(∀𝑥)(∃𝑦)(𝑦 = 𝑥)	

	

47	In	particular,	if	we	take	𝜙(𝑥)	to	be	𝑥 = 𝑥 → (∃𝑦)(𝑦 = 𝑥)	we	easily	see	that	(∀𝑥)𝜙(𝑥)	is	
logically	true	and	thus	infer	(∀𝑥)□𝜙(𝑥),	i.e.,	(∀𝑥)□[𝑥 = 𝑥 → (∃𝑦)(𝑦 = 𝑥)].	We	can	thus	
infer	the	sentence	above.	



Hellman	follows	Kripke	(Geoffrey	Hellman	1994b)	(Kripke	1963b),	in	saying	that	familiar	
principles	from	sentential	modal	logic	like	the	necessitation	rule	and	K	in	S548	only	apply	to	
complete	sentences	in	quantified	modal	logic.	And	perhaps	this	is	intuitively	motivated.	We	
wouldn’t	want	to	say	it’s	logically	necessary	or	a	tautology	that	𝑥 = 𝑥,	because	formulas	
with	free	variables	aren’t	even	sentences	and	thus	lack	truth	values.	

However,	this	response	is	controversial.	

For	example,	an	alternative	approach	would	be	to	allow	quantifying	in,	but	use	free	logic	
(Nolt	2018)49.	

Also	note	that	on	Kripke’s	(Kripke	1963a)	approach	sentences	like	(∃𝑥) ◊ [¬Fox(𝑥) ∧
(∀𝑦)Fox(𝑦)]	are	true	if	there	are	any	contingent	objects	(a	conclusion	which	can’t	be	easily	
avoided50),	a	consequence	which	Williamson	(Williamson	2013)	points	out	is	fairly	
counterintuitive51.	

3.3.1.3 Necessary Distinctness 

Next,	disagreement	can	arise	about	whether	all	pairs	of	things	that	are	actually	distinct	are	
necessarily	distinct.	For	example,	in	(Fine	2006)	Fine	considers	making	this	assumption	
and	whether	it	can	address	Quinean	worries	about	(logical)	essences	mentioned	above.	

There	are,	of	course,	familiar	Quinean	difficulties	in	making	sense	of	first-order	
quantification	into	modal	contexts	when	the	modality	is	logical.	Let	me	here	just	

	

48	These	rules	are,	respectively:	if	⊢ 𝐴	then	⊢ □𝐴)	(□(𝐴 → 𝐵) → (□𝐴 → □𝐵)	

49	Switching	to	an	free	logic	would	let	us	block	the	above	argument	by	blocking	the	initial	
proof	that	‘(∃𝑦)(𝑦 = 𝑥)’,	rather	than	the	application	of	necessitation	to	this	formula	in	the	
last	sentence	as	free	logics	neither	assume	that	all	singular	terms	refer	to	members	of	the	
domain	nor	that	the	domain	is	non-empty.	

I	think	this	strategy	is	prima	facie	quite	appealing,	because	it	would	allow	us	to	capture	the	
intuitive	logical	possibility	of	entirely	empty	domains.	However,	because	as	a	matter	of	
sociological	fact,	no	free	logic	is	currently	widely	accepted	(and	because	avoiding	
quantifying	in	makes	the	implications	of	adding	any	given	axiom	more	obvious),	I	have	
preferred	to	sacrifice	intuitions	about	empty	domains	and	use	classical	first-order	logic	
rather	than	arguing	for	new	views	on	both	first-order	logic	and	set	theory	in	this	book.	

50	For	note	that,	when	considering	the	truth	value	of	Fox(𝑥)	under	an	assignment	of	‘𝑥’	to	
some	contingent	object	𝑜	that	doesn’t	exist	at	some	possible	world	𝑤,	it	seems	we	must	say	
that	𝑥	isn’t	in	the	extension	of	‘Fox’	at	𝑤,	(since	it	would	be	weird	to	insist	that	objects	that	
don’t	exist	at	𝑤	were	nonetheless	foxes)	and	hence	that	¬𝐹𝑜𝑥(𝑥)	should	be	true	under	this	
assignment.	

51	While	this	debate	is	commonly	conducted	in	terms	of	metaphysical	possibility,	it	
naturally	raises	similar	concerns	for	logical	possibility.	



dogmatically	assume	that	these	difficulties	may	be	overcome	by	allowing	the	
logical	modalities	to	‘recognize’	when	two	objects	are	or	are	not	the	same.	Thus	
□∀𝑥(𝑥 = 𝑦 → 𝑥 = 𝑦)	
and	
□∀𝑥(𝑥 ≠ 𝑦 → 𝑥 ≠ 𝑦)	
will	both	be	true	though,	given	that	the	modalities	are	logical,	it	will	be	assumed	
that	they	are	blind	to	any	features	of	the	objects	besides	their	being	the	same	or	
distinct.	

But	(to	the	extent	that	we	have	any	grip	on	quantifying	into	logical	possibility)	this	
assumption	is	disputable.	For	example,	some	have	argued	that	it’s	metaphysically	(and	
hence	presumably	logically	possible)	for	there	to	be	two	people	who	could	have	been	one	
person.	Suppose	that	two	people	are	formed	by	a	contingent	event	of	person	splitting	e.g.,	a	
Star	Trek	transporter	malfunction	or	a	brain	getting	split	in	half	and	each	side	regrowing.	
One	might	think	these	people	are	distinct	but	could	have	been	identical52.	

3.3.1.4 Metaphysical Shyness? 

Additionally,	in	(Linnebo,	2018a),	Linnebo	formulates	a	worry	specific	to	Hellman,	
concerning	the	possibility	of	a	kind	of	metaphysical	or	logical	shyness.	He	writes,	“Do	we	
really	know	that	there	cannot	be	‘metaphysically	shy’	objects,	which	can	live	comfortably	in	
universes	of	small	infinite	cardinalities,	but	which	would	rather	go	out	of	existence	than	to	
cohabit	with	a	larger	infinite	number	of	objects?’’	This	existence	of	such	‘shy’	objects	would	
pose	a	problem	for	Hellman,	because	it	could	block	us	from	saying	that	every	plurality	of	
objects	forming	a	hierarchy	of	a	certain	kind	could	be	extended	in	a	certain	way.	

Linnebo	also	notes	that	if	Hellman’s	notion	of	logical	possibility	allows	for	an	analog	to	
metaphysically	incompatible	objects	(e.g.,	two	metaphysically	possible	knives	formed	by	
joining	a	single	handle	with	different	blades)	this	can	make	certain	assumptions	Hellman	
uses	to	justify	the	existence	of	potentialist	translations	ZFC	come	out	false.	

Paraphrasing	sentences	of	set	theory	with	modal	sentences	that	quantifying	in	to	the	◊	of	
logical	possibility	forces	us	to	consider	when	objects	from	one	logically	possible	world	are	
identical	to	or	counterparts	of	objects	in	another.	We	are	forced	to	ask	whether,	for	some	
particular	object,	that	very	object	could	count	as	persisting	in	a	world	where	the	total	
universe	has	some	cardinality,	or	some	other	possible	object	exists.	

	

52	I	take	this	point	from	(Schwarz	2013).	



3.3.1.5 What to Do? 

These	controversies	can	raise	doubts	about	whether	our	intuitions	about	quantifying	in	are	
reliable53	and	whether	we	can	choose	axioms	for	modal	logic	which	are	both	powerful	
enough	to	justify	potentialist	formalizations	of	the	ZFC	axioms	and	clearly	and	(fairly)	
uncontroversially	true,	in	the	way	we’d	like	foundational	mathematical	axioms	to	be.	

One	could	debate	about	whether	the	disagreements	above	are	best	understood	as	a	
philosophical	disagreement	about	a	proposition	(e.g.,	that	everything	exists	necessarily)	or	
as	showing	that	we	don’t	have	a	good	grip	on	what	quantifying	in	means	or	that	the	
formalism	of	quantified	modal	logic	(that	allows	quantifying	in)	means	different	things	to	
different	people.	But	for	my	purposes	either	option	would	be	a	sufficient	reason	to	avoid	
formulating	our	foundational	modal	axioms	(used	to	justify	set	theory)	in	terms	of	
quantifying	in.	

In	general,	one	might	try	to	solve	this	kind	of	problem	by	stipulating	that	sentences	which	
quantify	in	to	the	◊	should	be	understood	as	having	whatever	meaning	is	necessary	to	
make	certain	axioms	true.	But	note	that,	for	the	purpose	of	formalizing	set	theory	(as	
evenly	modestly	truth	value	realistically	construed),	this	is	approach	won’t	do.	For	insofar	
as	we	need	there	to	be	proof	transcendent	facts	about	set	theory,	we	can’t	just	say	that	any	
interpretation	of	our	◇	quantified	modal	statements	that	satisfies	certain	axioms	
(sufficient	to	justify	potentailist	translations	of	set-theoretic	claims)	is	equally	intended.	We	
have	to	try	to	latch	on	to	an	intuitively	meaningful	notion,	about	which	truth	can	outrun	
proof.	

Instead,	I	propose	to	solve	the	above	problem	in	a	different	way:	by	eliminating	
quantification	in	to	the	◊	of	logical	possibility,	as	we	will	see	in	Chapter	6.	Beyond	these	
philosophical	motivations	there	is	an	important	practical	advantage	to	this	approach	which	
will	be	covered	below.	

3.3.2 Justifying Replacement 

Finally,	issues	about	justifying	Potentialism	from	an	actualist	point	of	view	remain.	Merely	
adopting	Hellman’s	Putnamian	Potentialism	doesn’t	suffice	to	secure	our	foundational	aim	
of	justifying	set-theoretic	theorems	from	obvious	seeming	assumptions.	

Hellman	does	prove	a	version	of	the	main	theorem	one	needs,	to	vindicate	standard	first-
order	reasoning	about	set	theory.	

𝑍𝐹𝐶 ⊢ 𝜙	then	𝜙◊	

	

53	My	proposed	account	of	set	theory	is	compatible	with	taking	Williamson	to	show	that	
any	modal	notion	which	allows	quantifying	in	(such	as	metaphysical	possibility)	must	have	
a	fixed	domain	–	provided	one	thinks	it	doesn’t	make	sense	to	quantify	in	to	logical	
possibility.	Of	course,	it’s	not	compatible	with	taking	Williamson	to	show	that	every	modal	
notion	must	have	a	fixed	domain.	



However,	the	premises	he	uses	in	this	proof	aren’t	(and	aren’t	claimed	to)	seem	clearly	
true.	For	instance,	in	(Geoffrey	Hellman	1994b)	Hellman	simply	assumes	that	the	
translation	of	Replacement	into	a	Potentialist	context	as	an	axiom	and	explicitly	flags	that	it	
is	not	intuitively	obvious.	

In	later	work,	Hellman	experiments	with	other	justifications	for	Replacement.	But	it	should	
be	noted	that,	in	doing	this	his	aim	is	only	to	motivate	unifying	principles	by	showing	key	
set-theoretic	beliefs	follow	from	a	single	natural	hypothesis	(as	per	§1.4),	not	significantly	
justify	Replacement	itself.	So,	the	hypotheses	from	which	Hellman	derives	Replacement	
don’t	seem	any	more	clearly	true	than	the	Potentialist	translation	of	Replacement,	and	
often	much	less	so.	For	example,	in	(Hellman	1994)	Hellman	considers	a	modal	reflection	
principle,	which	would	justify	Potentialist	Replacement	but,	just	as	in	the	actualist	case,	
seems	no	more	obvious	than	Replacement	itself54	And	in	(Roberts	2017),	Roberts	argues	
this	principle	is	inconsistent	with	other	axioms	Hellman	should	plausibly	endorse.	

Chapter 4 Overview of My Proposal 

Let	me	now	turn	to	my	preferred	form	of	Putnamian	Potentialism,	which	will	let	us	avoid	
the	above	(§3.3.1)	problem	of	controversies	about	quantified	modal	logic.	

In	this	chapter,	I’ll	clarify	the	notion	of	logical	possibility	in	answer	to	the	worries	above.	
Then	I’ll	introduce	my	key	conditional	logical	possibility	operator,	(which	generalizes	the	
logical	possibility	operator	just	mentioned)	and	discuss	how	using	it	to	formulate	
Potentialist	set	theory55	is	helpful.	However,	I’ll	delay	actually	using	this	notion	to	
paraphrase	set-theoretic	claims	until	chapter	3.	

4.1 What is Logical Possibility? 

4.1.1 On Logical Possibility 

So,	let	me	begin	by	clarifying	and	motivating	the	notion	of	logical	possibility	that	I	will	
appeal	to	(and	one	might	think	Hellman	wants	to	invoke	as	well).	

	

54	He	motivates	this	principle	by	considering	the	following	statement	of	a	potentialist	
Replacement	principle,	“The	mathematical	possibilities	of	ever	larger	structures	are	so	vast	
as	to	be	“indescribable”:	whatever	condition	we	attempt	to	lay	down	to	characterize	that	
vastness	fails	in	the	following	sense:	if	indeed	it	is	accurate	regarding	the	possibilities	of	
mathematical	structures,	it	is	also	accurate	regarding	a	mere	segment	of	them,	where	such	
a	segment	can	be	taken	as	the	domain	of	a	single	Structure.”	However	he	notes	this	is	
inconsistent,	and	tries	restricts	its	application	to	things	consistent	with	𝑍𝐹𝐶&.	But	this	
principle	doesn’t	seem	any	more	obvious	that	the	reflection	principles	invoked	by	
actualists	discussed	in	Chapter	2.4.	

55	I	first	advocated	doing	this	as	a	way	to	remove	redundancies	from	Hellman’s	modal	
structuralism	in	(S.	Berry	2018a)	



We	seem	to	have	an	intuitive	notion	of	logical	possibility	which	applies	to	claims	like	
(∃𝑥);red(𝑥) ∧ round(𝑥)D	and	makes	sentences	like	the	following	come	out	true.	

• It	is	logically	possible	that	(∃𝑥);red(𝑥) ∧ round(𝑥)D	

• It	is	not	logically	possible	that	(∃𝑥);red(𝑥) ∧ ¬red(𝑥)D	

• It	is	logically	necessary	that	(∀𝑥);red(𝑥)D → ¬(∃𝑥);¬red(𝑥)D.	

This	notion	of	logical	possibility	is	interdefinable	with	validity.	An	argument	is	valid	if	and	
only	if	it’s	logically	impossible	for	all	its	premises	to	be	true	and	its	conclusion	to	be	false.	
And	it	is	(roughly)	what’s	analyzed	by	saying	some	theory	has	a	set-theoretic	model56	
(modulo	concerns	about	size,	as	noted	in	the	appendix	below).	It	concerns	whether	some	
state	of	affairs	is	allowed	by	the	most	general	‘subject	matter	neutral’	laws	of	how	there	can	
be	some	pattern	of	objects	standing	in	relations	of	various	arities	(in	something	like	Frege’s	
sense	of	logical	laws	being	subject	matter	neutral(Gottlob	Frege	1980)).	

Philosophers	representing	a	range	of	different	views	of	mathematics	have	made	use	of	this	
notion	and	are	comfortable	applying	it	to	non-first-order	sentences.	

To	evaluate	whether	a	claim	𝜙	is	logically	possible	(in	this	sense),	we	hold	fixed	the	
operation	of	logical	vocabulary	(like	∃,∧,∨, ¬)	but	abstract	away	from	any	further	
metaphysically	necessary	constraints	on	the	application	of	particular	relations.	Thus,	we	
consider	all	possible	ways	for	relations	to	apply	(including	those	ways	that	aren’t	
definable).	For	example,	it	is	logically	possible	that	(∃𝑥);Raven(𝑥) ∧ Vegetable(𝑥)D,	even	if	
it	would	be	metaphysically	impossible	for	anything	to	be	both	a	raven	and	a	vegetable.	

We	also	abstract	away	from	constraints	on	the	size	of	the	universe,	so	that	◊
(∃𝑥)(∃𝑦)(¬𝑥 = 𝑦)	would	be	true	even	if	the	actual	universe	contained	only	a	single	object.	

4.1.2 Contrast with Other Modal Notions 

It	may	be	useful	to	note	how	the	above	notion	of	logical	possibility	differs	from	three	
vaguely	similar	modal	notions	in	the	literature,	namely	Tarskian	re-interpretability,	
metaphysical	possibility	and	conceptual	possibility.	

The	notion	of	logical	possibility	is	(potentially)	less	demanding	than	the	notion	of	truth	
under	some	Tarskian	reinterpretation,	for	approximately	the	reason	discussed	above	(and	
emphasized	in	(Etchemendy	1990b)).	Certain	scenarios	might	be	genuinely	logically	
possible	but	require	the	existence	of	more	objects	than	actually	exist,	and	hence	not	permit	
any	Tarskian	reinterpretation.	For,	Tarskian	reinterpretations	of	a	sentence	must	still	take	
the	sentence’s	quantifiers	to	range	over	some	collection	of	objects	in	the	actual	world.	

	

56	When	considering	non-first-order	sentences	we	might	specify	that	this	model	must	treat	
all	logical	vocabulary	standardly,	so	that,	e.g.,	Henkin	models	of	second-order	quantification	
are	not	allowed.	



The	notion	of	logical	possibility	is	also	prima	facie	less	demanding	than	the	notion	of	
metaphysical	possibility57.	For,	as	Frege	noted,	the	laws	of	logic	hold	at	all	possible	worlds.	
Yet	it	would	seem	that	statements	like	(∃𝑥);Raven(𝑥) ∧ Vegetable(𝑥)D	can	require	
something	which	is	logically	possible	but	metaphysically	impossible.	

Finally,	the	notion	of	logical	possibility	is	also	less	demanding	than	the	notions	of	idealized	
conceivability	and	conceptual	possibility	at	issue	in	debates	over	philosophical	zombies	
and	in	Chalmers’	Constructing	the	World(Chalmers	2012)	(and	are,	inconveniently,	
sometimes	also	labeled	logical	possibility).	For	the	notion	of	conceptual	possibility	reflects	
something	like	ideal	a	priori	acceptability.	So,	when	evaluating	whether	it	is	conceptually	
possible	that	𝜙	we	have	to	preserve	all	analytic	truths	associated	with	relations	occurring	
in	𝜙.	In	contrast	(as	I	have	noted	above)	logical	possibility	abstracts	away	from	all	such	
specific	features	of	relations.	Thus,	for	example,	if	we	assume	it	is	analytic	that	
(∀𝑥);𝑏𝑎𝑐ℎ𝑒𝑙𝑜𝑟(𝑥) → 𝑚𝑎𝑙𝑒(𝑥)D,	then	it	will	be	logically	possible	but	not	conceptually	
possible	that	(∃𝑥);𝑏𝑎𝑐ℎ𝑒𝑙𝑜𝑟(𝑥) ∧ ¬𝑚𝑎𝑙𝑒(𝑥)D.	

4.1.3 Not Reducible to Set Theory 

Because	(as	noted	above)	the	notion	of	logical	possibility	is	interdefinable	with	validity,	I	
think	nearly	all	my	readers	will	accept	that	claims	about	logical	possibility	are	meaningful.	

However,	at	first	glance,	one	might	argue	that	claims	about	logical	possibility	are	merely	
shorthand	for	claims	about	the	existence	of	set-theoretic	models.	And	if	one	identified	
logical	possibility	the	notion	of	logical	possibility	with	claims	asserting	the	existence	of	set-
theoretic	models,	then	we’d	have	(at	least)	an	uncomfortable	regress,	and	one	couldn’t	use	
the	notion	of	logical	possibility	in	formulating	potentialist	set	theory	to	solve	the	
arbitrariness	problem	above.	

Luckily	however,	there	are	strong	independent	reasons	pointed	out	in	(Gómez-Torrente	
2000;	Hanson	2006;	Boolos	1985)	(see	also	(H.	H.	Field	2008b)	2.3	and	Etchemendy	
(Etchemendy	1990a))	for	not	doing	this.	Many	philosophers	have	argued,	as	follows,	that	
we	shouldn’t	identify	claims	about	logical	possibility	with	claims	about	set-theoretic	
models.	

The	claim	that	what’s	actual	is	logically	possible	is	central	to	the	above	notion	of	logical	
possibility	(interdefinable	with	validity),	if	anything	is.	For	an	argument	to	be	valid	surely	
at	least	requires	that	it	doesn’t	actually	lead	from	truth	to	falsehood.	

However,	if	we	think	about	logical	possibility	in	terms	of	set-theoretic	models,	then	the	
actual	world	is	strictly	larger	than	the	domain	of	any	set-theoretic	model	(e.g.,	because	it	
contains	all	the	sets).	So,	it’s	not	prima	facie	clear	why	we	should	assume	that	what	can’t	be	

	

57	I	want	to	leave	it	open	the	possibility	that	on	some	kind	of	ideal	logical	analysis,	logical	
possibility	turns	out	to	be	the	same	thing	as	metaphysical	possibility.	I’m	just	noting	that	
we	have	a	concept	of	logical	possibility	independent	of	this	assumption,	and	that	this	
suffices	to	give	an	attractive	account	of	set	theory.	



satisfied	in	any	set-theoretic	model	isn’t	actually	true.	Thus,	we	seem	to	antecedently	grip	a	
notion	of	logical	possibility	(interdefinable	with	validity)	on	which	it’s	an	open	question	
whether	every	logically	possible	state	of	affairs	has	a	set-theoretic	model.	

Now	it	is	currently	possible	for	mathematicians	talking	about	first-order	logical	sentences	to	
replace	talk	of	logical	possibility	with	talk	of	set-theoretic	models	via	the	completeness	
theorem	for	first-order	logic58.	However,	as	Boolos	puts	it,	“it	is	rather	strange	that	appeal	
must	apparently	be	made	to	one	or	another	non-trivial	result	in	order	to	establish	what	
ought	to	be	obvious:	viz.,	that	a	sentence	is	true	if	it	is	valid"(Boolos	1985).	

A	further	benefit	of	adopting	a	primitive	logical	possibility	operator	is	that	it	lets	us	capture	
Boolos’	intuition	that	there’s	something	odd	about	identifying	claims	about	logical	
possibility	and	validity	with	set-theoretic	claims	(claims	about	the	existence	of	set-
theoretic	models).	We	can	agree	with	Boolos	that,	“one	really	should	not	lose	the	sense	that	
it	is	somewhat	peculiar	that	if	G	is	a	logical	truth,	then	the	statement	that	G	is	a	logical	truth	
does	not	count	as	a	logical	truth,	but	only	as	a	set-theoretical	truth.”	and	so	reject	cashing	
out	claims	about	failures	of	logical	truth/validity	in	terms	of	logically	contingent	claims	
about	the	existence	of	certain	objects	(even	mathematical	objects).	To	foreshadow	slightly,	
following	Boolos’	suggestion,	I	will	treat	the	◊	of	logical	possibility	a	primitive	modal	
operator,	and	furthermore	logical	operator	whose	meaning	must	be	held	fixed	when	we’re	
evaluating	claims	about	logical	possibility	and	entailment.	Thus,	we	can	affirm	that	facts	
about	logical	possibility	are	themselves	logically	necessary	truths.	

In	view	of	all	the	points	above,	I	take	it	that	there’s	no	problem	in	(and	indeed	significant	
independent	motivation	for)	accepting	that	we	have	a	primitive	modal	notion	of	logical	
possibility.	Talk	of	arguments’	validity	(in	some	sense)	seems	to	be	widely	understood	and	
useful.	And	cashing	validity	claims	out	by	appeal	to	a	primitive	modal	notion	of	logical	
possibility	(rather	than	attempting	to	reduce	it	to	a	notion	of	having	a	set-theoretic	model	
or	truth	under	some	Tarskian	reinterpretation),	seems	like	the	wisest	course.	

4.2 Conditional Logical Possibility 

So	much	for	clarifying	and	defending	appeal	to	the	logical	possibility	operator.	Now	let’s	
turn	to	the	philosophical	controversies	about	quantified	modal	logic	(and	the	practical	
problems	of	making	axioms	for	it	surveyable)	that	threatened	to	block	our	foundational	
ambitions	in	§3.3.1	above.	I	propose	that	we	can	solve	these	problems	by	thinking	about	
potentialist	extensibility	claims	as	concerning	what’s	allowed	by	a	given	structure,	rather	

	

58	The	completeness	theorem	shows	that	all	syntactically	consistent	first-order	theories	
have	models.	And	the	notion	of	logical	possibility	is	intuitively	‘sandwiched	between’	
syntactic	consistency	and	having	a	model	(anything	that	has	a	model	must	be	logically	
possible,	and	anything	that’s	logically	possible	must	be	syntactically	consistent),	so	this	
shows	that	all	three	notions	apply	to	exactly	the	same	first-order	logical	sentences	(H.	H.	
Field	2008a).	



than	what’s	possible	for	given	objects.	And	I’ll	suggest	that	a	certain	natural	generalization	
of	the	logical	possibility	operator	will	help	us	do	this.	

4.2.1 Motivation 

As	modal	structuralists	like	Hellman	have	observed,	mathematicians	are	unconcerned	with	
questions	about	the	nature	and	essence	of	particular	objects.	They	don’t	care	whether	the	
number	‘1’	refers	to	the	set		or	the	set	,	or	Julius	Caesar,	only	that	whatever	objects	the	
predicate	‘natural	number’	applies	to	have	a	certain	structure	(under	whatever	relations	
are	expressed	by	the	terms	‘successor,’	‘+’	‘⋅’	etc.).	And	any	copy	of	this	structure	(whether	
formed	of	sets	or	emperors)	is,	in	some	sense,	equally	relevant	to	number	theory59.	
Considering	any	objects	under	any	relations	of	the	right	arity	will	do,	provided	the	right	
pattern	in	how	these	relations	apply	is	instantiated.	Neither	the	particular	relation	playing	
the	role	of	‘successor’	nor	the	particular	objects	playing	the	role	of	‘numbers’	matter,	from	a	
pure	mathematical	point	of	view.	

Developing	potentialist	set	theory	requires	us	to	compare	possible	structures,	to	give	some	
precise	meaning	to	claims	about	how	it	would	be	possible	for	one	initial	segment	of	a	
cumulative	hierarchy	of	sets	to	extend	another.	And	Putnam	and	Hellman	do	this	by	
quantifying	in.	But	perhaps	the	point	that	mathematics	is	fundamentally	concerned	with	
structure	alone	rather	than	objects	suggests	a	different	way	to	achieve	the	same	goal.	

I’ll	suggest	it	suffices	to	reconstruct	potentialist	set	theory	to	consider	what’s	possible	
given	the	pattern	of	how	some	relations	(instantiating	some	mathematically	relevant	
structure)	apply,	rather	than	asking	what’s	possible	for	the	particular	objects	or	plurality	of	
objects	which	these	relations	happen	to	apply	to.	As	the	discussion	of	metaphysically	shy	
objects	in	§3.3.1.4	above	suggests,	it	doesn’t	intuitively	matter	to	the	truth	value	of	a	
potentialist	set-theoretic	claim	whether	some	particular	objects	forming	an	iterative	
hierarchy	structure	(under	some	relation	like	‘there	is	an	arrow	pointing	from...	to	...’)	could	
continue	to	exist	while	this	structure	is	supplemented	by	additional	objects	so	as	to	form	an	
extending	iterative	hierarchy.	All	that	matters	is	whether	the	structure	of	how	the	relation	
‘there	is	an	arrow	pointing	from...	to	...’	applies	to	these	objects	could	be	preserved,	while	
objects	forming	a	suitable	extended	hierarchy	(under	some	other	relation)	are	added.	

	

59	So,	for	example,	suppose	you	take	some	strokes	that	form	an	instance	of	the	natural	
number	structure	under	‘to	the	right	of’	and	erase	one	stroke	and	then	rewrite	a	new	
stroke	in	the	same	place,	(so	that	the	patterns	of	how	the	relations	‘stroke’	and	‘to	the	right	
of’	apply	is	preserved	but	the	objects	are	different).	Then	you	have	another	copy	of	the	
natural	number	structure	and	(in	a	way)	nothing	that	matters	has	changed.	Similarly	the	
particular	relations	under	which	objects	form	a	copy	of	the	natural	number	structure	don’t	
matter	(turning	your	stroke	sequence	on	its	side	and	changing	each	stroke	to	an	
exclamation	mark	so	that	you	now	have	an	𝜔	sequence	of	exclamation	marks	under	‘below’	
produces	something	equally	relevant).	Any	relations	of	the	right	arity	will	do.	



4.2.2 Introducing Conditional Logical Possibility 

To	informally	introduce	the	notion	of	conditional	logical	possibility	(aka	logical	possibility	
given	structural	facts	about	how	some	relations	apply)	arises	in	natural	language,	consider	
claims	that	some	map	isn’t	three	colorable.	

	

When	you	say	a	map	isn’t	three	colorable,	you	don’t	just	mean	that	it	would	be	physically	or	
metaphysically	impossible	for	the	map	to	be	three	colored	(without	some	change	in	the	
extensions	of	‘country	on	the	map’	and	‘adjacent	to’).	Rather,	you	are	saying	something	
stronger,	which	we	might	make	explicit	by	saying	that	it’s	logically	impossible	given	the	
structural	facts	about	(aka	pattern	of)	how	the	relations	‘country’	and	‘adjacent	to’	apply	for	
the	map	to	be	three	colored.	This	means	two	things.	

First,	the	mere	pattern	of	how	the	relations	‘country’	and	‘adjacent’	apply	(rather	than	any	
special	features	of	the	objects	in	question)	suffice	to	block	three	colorability.	For	instance,	if	
wars	and	revolutions	change	replace	one	country	with	another	and	shift	national	



boundaries	but	don’t	change	the	pattern	of	how	countries	are	related	by	adjacency	then	
this	new	map	is	three	colorable	only	if	the	old	one	was,	as	it’s	the	structure	of	how	the	
relations	adjacent	and	country	apply	which	determines	if	the	map	is	three-colorable.	

Second,	this	pattern	of	how	the	relations	‘country’	and	‘adjacent’	apply	makes	three	
coloring	logically	(as	opposed	to	merely	physically	or	metaphysically)	impossible,	i.e.,	it	
blocks	three	coloring	in	virtue	of	completely	general,	subject	matter	neutral,	laws	that	treat	
all	relations	of	the	same	arity	alike.	Thus,	it’s	equally	impossible	for	the	map	to	be	three	
scented	or	three	textured.	And	if	any	other	relations	(e.g.,	‘city’	and	has	a	‘has	a	direct	flight	
to’)	instantiated	the	same	pattern,	then	they	wouldn’t/couldn’t	be	three	colored/textured	
etc.	either.	

The	notion	of	conditional	possibility	(◊…)	generalizes	the	notion	of	logical	possibility	(◇)	in	
a	way	that	lets	us	naturally	express	claims	like	the	three	colorability	statement	above.	The	
subscript	will	specify	certain	relations	–	in	this	case	‘is	a	country’	and	‘is	adjacent	to’	–	
whose	pattern	of	application	we	want	to	hold	fixed.	And,	as	will	become	clear	in	a	moment,	
we	can	write	the	non-three-colorability	claim	above	as	follows:	

Non-Three-Colourability	¬◊adjacent,country 	Each	country	is	either	yellow,	green	or	
blue	and	no	two	adjacent	countries	are	both	yellow,	both	blue	or	both	green.	
	

I	will	read	this	as	meaning,	“It’s	not	logically	possible,	given	the	structural	facts	about	how	
‘adjacent’	and	‘country’	apply,	that:	each	country	is	either	yellow,	green	or	blue	and	no	two	
adjacent	countries	are	the	same	color.”	

If	you	accept	a	primitive	modal	notion	of	logical	possibility	(interdefinable	with	validity)	
advocated	in	§3.1,	it	seems	only	natural	to	allow	restriction	of	that	notion	to	the	scenarios	
which	preserves	the	structure	of	how	some	relations	apply.	To	further	precisify	what	I	
mean,	consider	the	following,	even	simpler,	example.	

Crowded	Cats	Given	what	cats	and	basket	there	are,	it	is	logically	impossible	that	
each	cat	is	sleeping	in	a	different	basket.	

If	we	take	logical	possibility	to	mean	logical	possibility	simpliciter,	this	sentence	must	be	
false.	However,	it	also	has	an	intuitive	reading	which	on	which	it	could	be	true.	One	might	
express	the	latter	by	saying	‘Cathood	and	baskethood	apply	in	a	way	that	ensures	that	(as	a	
matter	of	mere	logic	and	combinatorics)	it	can’t	be	that	each	cat	is	sleeping	in	a	different	
basket.’	A	moment’s	thought	will	reveal	that	(on	this	reading)	the	above	sentence	is	true	if	
and	only	if	there	are	more	cats	than	baskets.	

As	we	saw	above,	I	will	express	such	claims	about	conditional	logical	possibility	using	an	
operator	◊ ((… ) …).	This	conditional	logical	possibility	operator	takes	a	sentence	𝜙	and	a	
finite	(potentially	empty)	list	of	relation	symbols	𝑅(, … , 𝑅)	and	produces	a	sentence	
◊ 𝜙4",...4# 	which	says	that	it	is	logically	possible	for	𝜙	to	be	true,	without	any	change	to	
(structural	facts	about)	how	the	relations	𝑅(, …𝑅)	apply.	But	for	ease	of	reading,	I	will	sink	
the	specification	of	relevant	relations	into	the	subscript	as	follows:	◊ 𝜙4",...4# .	So,	I’ll	write	
the	claim	about	cats	and	baskets	above	as	follows.	



Crowded	Cats:	¬◊678,971:;8 	[Each	cat	slept	in	a	different	basket.]	

Now	let	me	specify	three	things	about	how	this	notion	of	conditional	logical	possibility	is	to	
be	understood.	

The	first	concerns	how	conditional	logical	possibility	relates	to	logical	possibility	
simpliciter.	We	saw	that	claims	about	logical	possibility	simpliciter	(◊)	concern	what’s	
possible	if	we	let	both	the	size	of	the	domain	of	discourse	and	the	application	of	relations	to	
that	domain	vary	with	complete	freedom.	In	contrast,	claims	about	conditional	logical	
possibility	(◊4",...4# )	concern	what’s	logical	possible	if	we	hold	fixed	the	structural	facts	
about	how	some	relations	𝑅(, … , 𝑅)	apply	(while	still	letting	the	size	of	the	domain	
extending	this	structure	and	the	application	of	other	relations	vary	freely	).	

Second,	what	does	it	mean	to	‘hold	the	(structural	facts)	about	how	some	relations	apply	
fixed?’	In	line	with	the	motivating	case	above,	keeping	the	structural	facts	about	how	some	
relations	apply	fixed	doesn’t	mean	preserving	these	relations’	extensions	(the	particular	
objects	they	apply	to/relate).	Rather	it	means	preserving	the	pattern	of	how	all	these	
relations	apply.	So,	for	example,	metaphysically	possible	scenarios	where	one	cat	dies	early	
and	one	kitten	is	born	early	will	count	as	preserving	the	structural	facts	about	what	cats	
and	baskets	there	are	(i.e.,	the	pattern	formed	by	how	cathood	and	baskethood	apply).	And	
preserving	the	structural	facts	about	how	cat(⋅)	and	basket(⋅)	will	require	preserving:	the	
number	of	cats,	the	number	of	baskets	and	the	number	of	things	(0)	that	are	both	cats	and	
baskets.	In	more	familiar	Platonist	language,	we	might	say	it	means	holding	the	extensions	
(where	these	are	𝑛-tuples	for	𝑛-ary	relations)	of	these	relations	fixed	up	to	isomorphism.	

To	bring	out	the	difference	between	preserving	structure	and	preserving	objects	at	issue,	
and	explain	why	claims	formulated	in	terms	of	structure	preserving	logical	possibility	
should	be	vastly	less	controversial	than	claims	about	de	re	possibility	note	that	I	can	
suspend	judgement	(or	deny	that	there’s	a	legitimate	question)	about	which	properties	
Nixon	had	essentially	(politician,	human,	liar,	man)	while	accepting	and	evaluating	claims	
about	what’s	metaphysically	or	logically	possible	given	the	structure	of	how	relations	like	
‘reports	to’	and	‘is	a	politician’	that	are	actually	satisfied	by	Nixon	and	his	cronies	apply.	

Third,	note	that	I	don’t	take	structure	preservation	to	require	holding	fixed	the	whole	size	
of	the	universe.	The	structure	which	◊4",...4# 	claims	hold	fixed	is	the	structure	formed	by	the	
objects	which	at	least	one	of	the	relations	𝑅(, …𝑅)	apply	to,	considered	under	the	relations	
𝑅(, …𝑅).	In	this	case	that	means	considering	the	structure	of	the	cats	and	baskets	under	the	
relations	cat(⋅)	or	basket(⋅)).60	

To	motivate	this	way	of	thinking	about	what	it	takes	to	preserve/agree	on	structural	facts	
about	some	list	of	relations,	consider	when	we’d	say	two	different	interpretations	of	some	

	

60	Speaking	metaphorically,	we	want	to	consider	logically	possible	scenarios	where	there’s	
a	bijection	𝑓	between	the	set	of	objects	which	at	least	one	of	the	relations	𝑅(…𝑅)	apply	to	
in	the	actual	world,	and	the	set	of	objects	these	relations	apply	to	in	that	logically	possible	
situation,	such	that	𝑅(𝑥, 𝑦)	iff	𝑅(𝑓(𝑥), 𝑓(𝑦)).	



person’s	language	agree	on	the	structure	of	the	natural	numbers	(under	successor).	Two	
interpretations	will	agree	on	the	structure	of	the	natural	numbers	if	they	both	take	
‘number’	and	‘successor’	to	apply	to	some	𝜔	sequence,–	even	if	they	disagree	about	the	
total	size	of	the	universe	or	whether	Julius	Caesar	or	the	empty	set	are	identical	to	any	
numbers	etc.61	My	understanding	of	what	it	takes	to	keep	structural	facts	fixed	generalizes	
this	way	of	thinking	about	of	what’s	required	to	preserve	the	natural	number	structure	(the	
structure	of	objects	under	the	relations	‘natural	number’	and	‘successor’).	

4.2.3 Isomorphisms and Kripke Models 

Given	readers’	presumed	prior	familiarity	with	set	theory	and	metaphysics,	it	may	help	
indicate	the	modal	notion	I	have	in	mind	to	relate	conditional	logical	possibility	facts	to	
common	ideas	about	set	theory	and	possible	worlds.	However,	it	should	be	noted	that	this	
comparison	is	made	purely	for	expository	efficiency.	I’m	putting	conditional	logical	
possibility	forward	as	a	conceptual	and	metaphysical	primitive	which	we	could	learn	by	
immersion,	in	the	same	way	we	learn	‘set’	and	‘∈’	and	all	I	aim	to	do	here	is	to	evoke	the	
idea	using	more	familiar	notions.	

If	we	could	talk	about	functions	between	(the	objects	in)	different	logically	possible	worlds,	
then	we	could	specify	what	it	takes	to	hold	the	structural	facts	about	how	some	relation	
(say,	‘admires()’)	applies	fixed,	in	terms	of	isomorphisms	as	follows.	

A	world	𝑤&	counts	as	holding	fixed	the	structural	facts	about	how	‘admires’	applies	in	𝑤(	iff	
the	objects	related	by	admiration	𝑤(	are	isomorphic	to	those	related	by	admiration	in	𝑤&	
(you	can	map	one	collection	of	objects	to	the	other	in	a	way	that’s	1-1	and	respects	
admiration).	

A	logically	possible	world	𝑤&	counts	as	holding	fixed	the	structural	facts	about	
how	admires()	applies	in	𝑤(	iff	some	function	𝑓	bijectively	maps	the	objects	
which	either	admire	or	are	admired	in	𝑤(	to	the	objects	which	either	admire	or	
are	admired	in	𝑤&,	so	that	for	all	objects	𝑥	and	𝑦	in	𝑤(	which	either	admire	or	are	
admired	in	𝑤(,	we	have	𝑥	admires	𝑦	iff	𝑓(𝑥)	admires	𝑓(𝑦)62	

We	will	also	see	that	facts	about	potentialist	set	theory	can	be	mimicked	(modulo	
limitations	of	size)	by	talk	about	models	in	set	theory	with	ur-elements,	in	4.2.6	below.	

	

61	Or	consider	the	way	that	a	Platonist	would	say	the	structure	of	the	natural	numbers	is	
fixed	necessarily	and	will	always	remain	the	same,	even	if	the	total	size	of	the	universe	can	
be	changed	by	the	creation	or	destruction	of	physical	objects	or	changes	to	the	structure	of	
space	etc.	

62	And	more	generally,	a	logically	possible	world	𝑤&	preserves	the	structural	facts	about	
how	relations	𝑅(, … , 𝑅)	(say	admires()	and	cat())	apply	iff	some	function	𝑓	bijectively	maps	
the	objects	which	𝑅(, … , 𝑅)	apply	to	in	𝑤(	(i.e.	those	things	which	are	either	cats	or	admire	
something	or	are	admired	by	something)	to	the	objects	which	𝑅(, … , 𝑅)	apply	to	in	𝑤&	in	a	
way	that	respects	all	these	relations.	



In	terms	of	Kripke	models	(if,	impossibly,	logical	possibilities	could	be	witnessed	by	
models)	logical	possibility	simpliciter	demands	that	every	world	be	accessible	to	every	
other	world	else.	Indeed,	logical	possibility	simpliciter	satisfies	the	modal	axiom	system	S5.	
One	can	think	of	conditional	logical	possibility	as	modifying	this	picture	by	allowing	the	
selection	of	an	accessibility	relation	based	on	which	relations	are	subscripted.	Thus,	the	
◊4",…,4# 	operator	considers	the	same	set	of	possible	worlds	but	makes	use	of	an	
accessibility	relation	in	which	𝑤&	is	accessible	to	𝑤(	iff	there’s	a	bijection	between	the	
objects	at	𝑤(	and	𝑤&	which	fall	under	some	𝑅< 	that	respects	the	relations	𝑅(, … , 𝑅).	As	the	
accessibility	relation	for	◊4",…,4# 	is	an	equivalence	relation,	◊4",…,4# 	will	also	satisfy	S5.	

4.2.4 Comparison with Shapiro 

One	can	further	explain	and	motivate	the	notion	of	conditional	(i.e.,	structure	preserving)	
logical	possibility	by	relating	it	to	Stewart	Shapiro’s	notion	of	structures	qua	abstract	
objects,	instantiated	by	various	physical	(and	otherwise)	systems	in	(Stuart	Shapiro	1997).	
There	he	says	that	a	structure	is	‘the	abstract	form’	of	a	system	of	objects,	which	we	get	by	
“highlighting	the	interrelationships	among	the	objects	and	ignoring	any	features	of	them	
that	do	not	affect	how	they	relate	to	other	objects	in	the	system.”	Thus,	for	example,	“The	
natural-number	structure	is	exemplified	by	the	strings	on	a	finite	alphabet	in	lexical	order,	
an	infinite	sequence	of	strokes,	an	infinite	sequence	of	distinct	moments	of	time,	and	so	on.”	
And	adding	or	subtracting	objects	to	the	world	outside	of	a	given	system,	will	make	no	
difference	to	which	structure	that	system	instantiates.	

Again,	I	mean	to	propose	the	conditional	logical	possibility	operator	as	a	conceptual	
primitive,	and	I	don’t	endorse	Shapiro’s	structures	qua	abstract	objects63.	However,	one	can	
(roughly)	explain	my	notion	of	conditional	logical	possibility	(aka	structure	preserving	
logical	possibility)	in	terms	of	Shapiro’s	notions	as	follows.	

It	is	logically	possible,	given	the	𝑅(…𝑅)	facts,	that	𝜙	(i.e.,	◊4"…4# 	iff	some	logically	possible	
scenario	makes	𝜙	true	while	holding	fixed	what	structure	(in	Shapiro’s	sense)	the	system	
formed	by	the	objects	related	by	𝑅(…𝑅)	(considered	under	the	relations	𝑅(…𝑅))	
instantiates.	

4.2.5 Nested Logical Possibility Claims 

If	we	accept	the	notion	of	conditional	logical	possibility,	we	can	also	make	nested	logical	
possibility	claims.	That	is,	we	can	make	claims	about	the	logical	possibility	of	scenarios	
which	are	themselves	described	in	terms	of	logical	possibility.	So,	for	example,	I	could	say	
that	it	would	be	logically	possible	for	the	Crowded	Cats	claim	above	to	be	true.	

Possibly	Crowded	Cats:	◇(¬◇678,971:;8[Each	cat	slept	in	a	different	basket.])	

	

63	See	Chapter	17.2	for	some	reasons	why.	



When	evaluating	such	sentences,	I	want	to	hold	fixed	the	meaning	of	the	conditional	logical	
possibility	operator	(i.e.,	treat	it	as	a	piece	of	logical	vocabulary).	And	I	take	the	above	
sentence,	Possibly	Crowded	Cats,	to	express	a	truth	because	(reading	from	the	outside	in):	

• It	is	logically	possible	(holding	fixed	nothing)	that	there	are	4	cats	and	3	baskets.	

• Relative	to	the	logically	possible	scenario	where	there	are	4	cats	and	3	baskets,	it	is	not	
logically	possible	(given	what	cats	and	baskets	there	are),	that	each	cat	slept	in	a	
basket	and	no	two	cats	slept	in	the	same	basket.	

Note	that	when	evaluating	a	nested	logical	possibility	claims	with	the	form	◊ (¬◇4𝜓),	I	will	
take	the	subscripted	◇4 	to	freeze	the	facts	about	how	the	relation	R	applies	in	the	sttae	of	
affairs	under	consideration,	which	may	not	be	the	state	of	affairs	in	the	actual	world64.	

In	this	way	I	take	logical	possibility	sentences	of	the	form	◊ 𝜙4",…,4# 	to	be	meaningful,	even	
in	cases	where	𝜙	itself	makes	claims	about	conditional	logical	possibility.	And	I	will	work	in	
a	formal	language	ℒ◇,	which	I	will	call	the	language	of	logical	possibility,	that	allows	such	
claims65.	However,	as	foreshadowed	above,	the	language	of	logical	possibility	will	not	
include	sentences	which	quantify	in	to	the	◇	of	logical	possibility,	e.g.,	sentences	of	the	
form	(∃𝑥)◇𝜙(𝑥).	

4.2.6 Comparison to Set Theory with Ur-Elements 

We	can	use	the	familiar	background	of	actualist	set	theory	mimic	intended	truth	conditions	
for	statements	in	a	language	containing	the	logical	possibility	operator	◊	alongside	usual	
first-order	logical	vocabulary	(where	distinct	relation	symbols	𝑅(	and	𝑅&	always	express	
distinct	relations)	as	follows.	

	

64	So,	for	example,	◇CATS	expresses	a	metaphysically	necessary	truth.	For,	whatever	the	
actual	world	is	like,	it	will	always	be	logically	possible	for	there	to	be,	say,	3	cats	and	2	
baskets.	And	any	such	scenario	is	one	in	which	it	is	logically	necessary	(holding	fixed	the	
structural	facts	about	what	cats	and	baskets	there	are)	that:	if	each	cat	slept	in	a	basket,	
then	multiple	cats	slept	in	the	same	basket.	So,	it	is	metaphysically	necessary	that	◇CATS	
even	if	the	actual	world	contains	more	baskets	than	cats.	

65	To	describe	this	language	more	explicitly,	fix	some	infinite	collection	of	variables	and	
relation	symbols	of	every	arity	together	with	⊥	and	define	the	language	of	logical	
possibility	to	be	the	smallest	language	built	from	these	variables	using	these	relation	
symbols	and	equality	closed	under	applications	of	the	normal	first-order	connectives	and	
quantifiers	and		◇…	(where	◇…	expressions	can	only	be	applied	to	sentences	(so	there	is	no	
quantifying	in).	We	will	also	use	□…	in	our	sentences	but	regard	it	as	an	abbreviation	for	
¬◇…¬.	



A	formula	𝜓	is	true	relative	to	a	model	ℳ	(	ℳ ⊨ 𝜓	)	and	an	assignment	𝜌	which	
takes	the	free	variables	in	𝜓	to	elements	in	the	domain	of	ℳ66	just	if:	

• 𝜓 = 𝑅):(𝑥(…𝑥:)	and	ℳ ⊨ 𝑅):;𝜌(𝑥(), … , 𝜌(𝑥:)D.	

• 𝜓 = 𝑥 = 𝑦	and	𝜌(𝑥) = 𝜌(𝑦).	
• 𝜓 = ¬𝜙	and	𝜙	is	not	true	relative	to	ℳ,𝜌.	
• 𝜓 = 𝜙 ∧ 𝜓	and	both	𝜙	and	𝜓	are	true	relative	to	ℳ,𝜌.	
• 𝜓 = 𝜙 ∨ 𝜓	and	either	𝜙	or	𝜓	are	true	relative	to	ℳ,𝜌.	
• 𝜓 = ∃𝑥𝜙(𝑥)	and	there	is	an	assignment	𝜌-	which	extends	𝜌	by	assigning	a	value	to	

an	additional	variable	𝑣	not	in	𝜙	and	𝜙[𝑥/𝑣]	is	true	relative	to	ℳ,𝜌-67.	
• 𝜓 = ◊ 𝜙4"…4# 	and	there	is	another	model	ℳ-	which	assigns	the	same	tuples	to	the	

extensions	of	𝑅(…𝑅)	as	ℳ	and	ℳ- ⊨ 𝜙.68	

Note	that	this	means	that	⊥	is	not	true	relative	to	any	model	ℳ	and	assignment	𝜌.	

If	we	ignore	the	possibility	of	sentences	which	demand	something	coherent	but	fail	to	have	
set	models	because	their	truth	would	require	the	existence	of	too	many	objects,	we	could	
then	characterize	the	true	sentences	in	the	language	of	logical	possibility	as	follows:	

Set-theoretic	Approximation:	A	sentence	in	the	language	of	logical	possibility	is	
true	(on	some	interpretation	of	the	quantifier	and	atomic	relation	symbols	of	the	
language	of	logical	possibility)	iff	it	is	true	relative	to	a	set-theoretic	model	whose	
domain	and	extensions	for	atomic	relations	captures	what	objects	there	are	and	
how	these	atomic	relations	actually	apply	(according	to	this	interpretation)	and	
the	empty	assignment	function	𝜌.	

4.3 Advantages 

4.3.1 Some Advantages 

Appealing	to	the	notion	of	structure	preserving	logical	possibility	(aka	conditional	logical	
possibility)	when	formulating	potentialist	set	theory	provides	three	important	benefits.	

First,	of	course,	it	lets	you	do	potentialist	set	theory	without	incurring	controversial	
commitments	to	object	essences	and	cross-world	identity	facts	as	discussed	in	§3.3.1.	So,	it	

	

66	Specifically:	a	partial	function	𝜌	from	the	collection	of	variables	in	the	language	of	logical	
possibility	to	objects	in	ℳ,	such	that	the	domain	of	𝜌	is	finite	and	includes	(at	least)	all	free	
variables	in	𝜓	

67	As	usual,	𝜙[𝑥/𝑣]	substitutes	v	for	x	everywhere	where	x	occurs	free	in	𝜙	

68	As	usual,	I	am	taking	□	to	abbreviate	¬◇¬.	



lets	you	assert	axioms	which	can	be	accepted	by	those	who	share	Quine’s	doubts	about	
whether	quantifying	in	is	meaningful	and	avoid	Linnebo’s	shyness	worry.69	

Second,	even	if	you	don’t	object	to	the	metaphysical	primitives	required	to	make	sense	of	
quantifying-in	(and	feel	that	most	relevant	disagreement	could	be	revealed	to	be	mere	
verbal	disputes	by	more	carefully	evoking	Hellman’s	intended	reading	of	quantifying-in)	
stating	axioms	in	terms	of	conditional	logical	possibility	helps	us	articulate	principles	that	
can	be	widely	and	easily	recognized	as	true.	Of	course,	this	is	not	to	say	that	people	can’t	
philosophically	disagree	about	the	meaning	of	the	conditional	logical	possibility	operator70,	
or	that	disagreement	over	mathematical	axioms	is	completely	impossible.	However,	there	
aren’t	multiple	widely	held	views	about	the	nature	of	logical	possibility	which	would	assign	
different	truth	values	to	commonly	used	sentences.		

Third,	there’s	a	practical	benefit	to	using	the	conditional	logical	possibility	operator	rather	
than	quantifying	in	because	it	(in	effect)	cleaves	good	reasoning	about	logical	possibility	
into	two	parts.	

• In	one	part	we	use	standard	first-order	logic	to	reason	about	a	given	logically	possible	
scenario.	

• In	another	part,	we	use	special	modal-structural	principles	to	establish	which	
scenarios	are	logically	possible,	and	‘transfer’	facts	about	one	scenario	to	another.	

This	helps	us	avoid	the	potentially	confusing	and	hard	to	survey	interactions	between	
modal	principles	and	free	variables	that	we	see	in	examples	like	the	proof	of	the	converse	
Barcan-Marcus	formula.	This	is	an	especially	important	property	for	foundational	axioms	
to	have,	as	their	truth	should	be	evident.	

	

69	Note	that	one	might	well	accept	that	there	are	definite	facts	about	metaphysical	or	logical	
possibility	such	as	could	be	‘coded’	by	set-theoretic	models	specifying	the	size	of	the	
domain	and	extensions	for	properties,	while	not	thinking	there	are	meaningful	(or	non-
context	relative)	facts	about	essences.	I	can	specify	the	facts	about	what	metaphysically	
possible	worlds	there	are	in	terms	of	how	many	objects	exist	in	each	and	how	all	properties	
apply	(hence	pining	down	facts	about	what’s	conditionally	logically	possible	with	respect	to	
each	possible	world	w	and	list	of	relation	𝑅(…𝑅)	),	without	telling	you	anything	about	
essences	or	counterpart	hood	relations	which	would	let	you	determine	facts	about	what’s	
de	re	metaphysically	possible	for	a	given	individual.	Thus,	one	might	well	think	it’s	
meaningful	to	ask	whether	it’s	structure-preservingly	possible	that	𝜙	without	asking	
whether	certain	particular	objects	could	exist	in	a	world	where	𝜙.	

70	There	are	plenty	of	ways	of	disagreeing	about	how	the	intuitive	notion	of	conditional	
logical	possibility	should	be	cashed	out	e.g.,	disagreements	about	whether	logical	
possibility	simpliciter	should	be	understood	in	terms	of	possible	interpretations	for	words	
transfer	to	this	case.	



4.3.2 Simplification 

A	final	advantage	of	reformulating	potentialist	set	theory	using	conditional	logical	
possibility	is	that	it	lets	us	eliminate	appeals	to	second-order	or	plural	quantification	from	
our	potentialist	paraphrases.	Hellman	uses	these	notions	to	give	categorical	descriptions	of	
the	natural	numbers	and	(categorical	up	to	height)	of	the	iterative	hierarchy	of	sets.	
However,	we	can	use	the	conditional	logical	possibility	operator	to	do	this	work	(S.	Berry	
2018a),	thereby	simplifying	of	our	basic	ideology.	

4.3.2.1 Natural Numbers 

First,	consider	the	natural	number	structure.	We	can	use	conditional	logical	possibility	to	
state	axioms	that	uniquely	pin	down	the	intended	structure	of	the	natural	numbers	(a	job	
which	philosophers	usually	use	second-order	quantification	to	do)	as	follows.	The	second-
order	induction	axiom	below,	when	combined	with	first-order	axioms,	suffices	to	pin	down	
a	unique	model	of	the	natural	numbers	(up	to	isomorphism).	

(∀𝑋) ��𝑋(0) ∧ (∀𝑛);𝑋(𝑛) → 𝑋(𝑛 + 1)D� → (∀𝑛);𝑋(𝑛)D�	

We	can	reformulate	this	claim	using	conditional	logical	possibility	as	follows71.	

• Induct:	‘□ℕ,> 	If	0	is	happy	and	the	successor	of	every	happy	number	is	happy	then	
every	number	is	happy.	

In	other	words:	it	is	logically	necessary,	given	how	ℕ	and	𝑆	apply,	that	if	0	is	happy	and	the	
successor	of	every	happy	number	is	happy	then	every	number	is	happy.	Note	that,	this	has	
the	same	force	as	the	second-order	version.	For,	the	second-order	quantifier	can	pick	out	a	
counterinductive	(i.e.,	a	successor	closed	collection	of	natural	numbers	which	doesn’t	
contain	every	natural	number)	collection	of	natural	numbers	if	and	only	if	it	would	be	
logically	possible	for	‘happy’	to	apply	to	exactly	those	numbers,	in	violation	of	the	above	
principle.	

Thus,	we	can	give	a	categorical	description,	𝑃𝐴◊,	of	the	natural	numbers	in	terms	of	
conditional	logical	possibility	by	conjoining	the	above	induction	axiom	with	the	familiar	
first-order	axioms	of	PA?	(i.e.,	all	the	axioms	of	Peano	Arithmetic	except	for	the	induction	
axioms).	Recall	that	the	Second-order	Peano	Axioms	are	just	the	axioms	of	PA?	plus	the	
second-order	induction	axiom	above72.	

	

71	I	write	0	below	for	readability	but	recall	that	one	can	contextually	define	away	all	uses	of	
0	by	instead	using	its	unique	characterization	as	the	unique	element	which	isn’t	a	
successor.	

72	See	section	J.3	of	the	online	appendix	for	a	more	formal	presentation	of	this	point.	



4.3.2.2 IHW 

We	can	use	essentially	the	same	trick	to	eliminate	second-order	quantification	to	
characterize	the	iterative	hierarchy	conception	of	the	sets	as	spelled	out	in	Definition	1.1.	

There	are	two	difficulties	we	face	in	spelling	out	this	conception:	capturing	the	notion	of	a	
well-ordering	and	ensuring	the	full	width	requirement,	(i.e.,	that	at	any	level	𝑙	there	are	sets	
corresponding	to	all	ways	of	choosing	a	collection	of	sets	available	at	levels	below	𝑙).	I	will	
only	discuss	the	second	concern	here,	as	capturing	the	notion	of	a	well-ordering	is	a	simple	
modification	of	the	mechanism	we	used	to	construct	PA◊,	and	those	interested	in	the	details	
can	consult	Definition	E.2	in	section	E	of	the	natural.	

When	it	comes	to	the	full	width	requirement,	we	can	again	use	conditional	logical	
possibility	to	substitute	for	second-order	logic.	One	expresses	this	idea	in	second	order	
logic	by	saying	that	for	every	way	a	second-order	object	X	can	apply	to	the	sets	available	
below	𝑙,	there’s	a	set	available	at	level	l	which	contains	exactly	the	objects	that	X	applies	to.	
But	we	can	express	the	same	idea	by	saying	it’s	necessary,	holding	fixed	the	structure	of	the	
sets,	that	any	way	the	1	place	predicate	happy	applies	to	the	sets	available	below	𝑙	
corresponds	to	the	membership	of	some	set	available	at	level	𝑙.	See	Definition	A.2	in	the	
appendixes.	

4.3.2.3 Avoiding Duplication of Primitives 

I	would	further	suggest	that	eliminating	second	order	and	plural	quantification	from	our	
formulations	of	potentialist	set	theory	in	this	way	allows	us	to	avoid	a	kind	of	unappealing	
conceptual	redundancy.		

Specifically,	I	think	there’s	a	kind	of	undesirable	conceptual	duplication	in	employing	both	
the	◊	of	logical	possibility	and	a	notion	of	second-order	or	plural	quantification	treated	as	
an	unrelated	primitive	(as	Hellman	does).	For,	intuitively,	there’s	something	in	common	
between	the	way	we	consider	‘all	possibilities’	for	how	some	first-order	relations	could	
apply	when	evaluating	logical	possibility	and	the	way	we	consider	‘all	possibilities’	for	
choosing	some	first-order	objects	from	a	given	collection	when	considering	what	second-
order	objects	exist	or	when	performing	plural	quantification.	

Perhaps	actualists	about	set	theory	can	straightforwardly	explain	this	similarity.	For	they	
can	define	both	notions	in	terms	of	what	sets	exist73.	In	particular,	they	can	appeal	to	the	
same	notion	of	‘all	subsets	over	a	given	first-order	domain’	when	defining	logical	possibility	
in	terms	of	the	existence	of	a	set-theoretic	model	and	when	cashing	out	second-order	(and	
perhaps	plural)	quantification	in	terms	of	set	existence.	

But	potentialists	cannot	do	the	same.	For,	we	potentialists	understand	set	existence	in	
terms	of	possibility,	rather	than	the	other	way	around.	So,	we	can’t	account	for	the	sense	of	
conceptual	overlap	between	the	notions	of	logical	possibility	and	second-order	

	

73	Or	at	least,	they	can	do	this	if	we	bracket	Field’s	objection	to	identifying	claims	about	
logical	possibility	with	claims	about	set	theory	discussed	in	Chapter	4.1	



quantification	by	cashing	out	both	notions	in	terms	of	set	theory.	Thus,	we	lose	the	above	
benefit	and,	e.g.,	Hellman	winds	up	treating	logical	possibility	and	second	order	
logic/plural	quantification	as	separate	conceptual	primitives.	

Happily,	however,	we	can	solve	this	problem	if	we	embrace	the	notion	of	conditional	logical	
possibility,	for	this	single	notion	can	be	used	to	articulate	and	analyze	both	claims	about	
logical	possibility	and	second-order	quantification74.	

4.3.3 Ontology and Conceptual Primitives 

In	this	chapter,	I	have	proposed	that	we	should	make	one	choice	of	primitive	(at	least	for	a	
certain	foundational	project),	while	another	has	been	historically	familiar.	Some	readers	
may	fear	that	employing	a	conditional	logical	possibility	operator	is,	or	enables,	cheating	at	
the	project	of	ontology.	

However,	it	should	be	noted	that	my	aim	is	not	to	defend	any	kind	of	materialism	or	
nominalism	(I’ll	ultimately	argue	for	the	existence	of	some	pure	mathematical	objects).	Nor	
do	I	mean	to	argue	that	facts	about	set	theory	are	somehow	metaphysically	or	epistemically	
trivial	(or	in	any	other	sense	a	‘free	lunch’)75.	For	example,	I	take	the	concept	of	logical	
possibility	to	be	a	significant	part	of	fundamental	ideology,	something	that	should	certainly	
be	counted	when	evaluating	the	metaphysical	parsimony	of	any	theory	that	employs	it.	

I’ll	suggest	that	philosophy	of	set	theory	will	go	better	in	certain	ways	(e.g.,	we	can	do	a	
better	job	avoiding	intuitive	paradoxes	and	explaining	why	apparently	good	mathematical	
arguments	are	justified)	if	set	theory	is	formulated	potentialistically,	using	the	conditional	
logical	possibility	operator	indicated	above.	I	ask	that	readers	evaluate	this	choice	of	
primitives	on	the	basis	of	philosophical	fruitfulness,	problems	raised	and	solved,	and	
avoidance	of	redundancy,	rather	than	by	familiarity	bias.	If	taking	conditional	logical	
possibility	as	a	primitive	is	favored	on	the	former	grounds,	then	(I	take	it)	using	it	as	a	
primitive	when	formalizing	set	theory	is	(in	some	sense)	appropriate	and	acceptable.	

4.4 Looking Forward 

In	Chapter	6	I	will	provide	details	about	how	to	use	(nested)	conditional	logical	possibility	
claims	to	state	Putnamian	potentialist	paraphrases	of	set	theory	which	avoid	quantifying	in	
(and	plural	and	second-order	quantification).	

Following	Hellman,	my	paraphrases	will	specifically	invoke	a	notion	of	logical	possibility	
(so	metaphysical	limits	on	the	cardinality	of	objects	are	irrelevant),	and	I	will	develop	
Potentialism	without	claiming	that	some	actualist	perspective	on	set	theory	is	equally	good.	

	

74	We	have	seen	how	to	do	this	in	for	the	purposes	of	second-order	claims	needed	to	
formulate	potentialist	set	theory.	See	(S.	Berry	2018a)	for	an	argument	that	we	can	
reformulate	second-order	claims	more	generally	

75	I	will	consider	what	a	nominalist	who	thinks	logical	possibility	facts	are	ontologically	
innocent	can	say	about	indispensability	worries	in	Part	II	



But	following	Putnam	I	will	employ	non-mathematical	relations	of	suitable	arities	(e.g.,	
‘pencil	point’	and	‘	an	arrow	from...to...’	or	‘angel’	and	‘admires’)	to	talk	about	the	possible	
existence	of	iterative	hierarchy	structures,	rather	than	second-order	class	and	function	
objects	(or	pluralities	simulating	such	objects).	I	will	also	differ	from	Hellman	in	
considering	iterative	hierarchies	satisfying	a	version	of	IHW	rather	than	hierarchies	
satisfying	𝑍𝐹𝐶&.	

Chapter 5 Parsonian Potentialism 

5.1 Introduction 

I	will	conclude	Part	I	of	this	book	by	contrasting	the	Putnamian	school	of	Potentialism	to	be	
developed	in	the	rest	of	this	book	with	a	different,	Parsonian,	approach	developed	by	
Parsons(Parsons	1977a,	2005,	2007),	Linnebo(Linnebo	2010,	2013b,	2018b)	Studd(Studd	
2019)	and	Roberts	(Roberts	2017,	2018).	In	a	nutshell,	the	difference	between	the	
Parsonian	and	Putnamian	schools	is	that	Parsonians	interpret	set	theory	as	talking	about	
what	sets	(as	objects	with	a	special	kind	of	essence)	could	be	formed,	while	Putnamians	
understand	set	theory	as	making	claims	about	how	structures	satisfying	an	explicit	
axiomatization	for	an	initial	segment	of	the	set-theoretic	hierarchy	(e.g.,	ZFC&	or	IHW&)	
could	be	extended.	

At	first	glance,	the	choice	between	Parsonian	and	Putnamian	approaches	to	set	theory	
makes	little	difference	to	our	foundational	project.	Advocates	of	both	views	have	proved	
that	their	favored	potentialist	translations	of	all	theorems	of	ZFC	are	provable	from	certain	
modal	principles,	but	don’t	claim	prima	facie	obviousness	for	(all)	these	modal	principles.	
Indeed,	both	sides	tend	to,	in	effect,	take	their	potentialist	translation	of	Replacement	as	an	
axiom	(sometimes	noting	that	similar	assumptions	have	been	made	elsewhere	(Linnebo	
2013a)).	However,	we’ll	see	that	it	turns	out	to	be	more	convenient	to	adopt	a	Putnamian	
framework	(at	least	temporarily)	for	this	justificatory	project.	

5.2 The Parsonian Approach 

In	(Linnebo,	2018a)	Linnebo	explains	the	contrast	between	his	preferred	Parsonian	
approach	to	potentialist	set	theory	and	the	Putnamian	Potentialism	discussed	above	as	
follows.	

[On	a	Parsonian	approach	to	set	theory]	the	idea	is	not	to	‘trade	in’	one’s	
mathematical	objects	in	favor	of	modal	claims	about	possible	realizations	of	
structures	but	rather	to	locate	some	modally	characterized	features	in	the	
mathematical	objects	themselves.	The	mathematical	universe	is	not	‘flat.’	Rather,	
some	of	its	objects	stand	in	relations	of	ontological	dependence,	and	the	existence	
of	some	of	its	objects	is	merely	potential	relative	to	that	of	others.	
‘A	multiplicity	of	objects	that	exist	together	can	constitute	a	set,	but	it	is	not	
necessary	that	they	do.	Given	the	elements	of	a	set,	it	is	not	necessary	that	the	set	
exists	together	with	them.	...	However,	the	converse	does	hold	and	is	expressed	by	
the	principle	that	the	existence	of	a	set	implies	that	of	all	its	elements.’	(Parsons,	
1977,	pp.	293–4)(Parsons	1977b)	



As	Parsons	emphasizes,	this	approach	can	also	be	used	to	explicate	the	influential	iterative	
conception	of	sets,	which	tends	to	be	explained	by	suggestive	but	loose	talk	about	a	
‘process’	of	‘set	formation.’	It	would	be	better,	Parsons	claims,	So,	replace	this	talk	of	time	
and	construction	with	‘the	more	bloodless	language	of	potentiality	and	actuality’.	

So,	the	Parsonian	takes	the	term	‘set’	to	have	pre-existing	meaning	(and	facts	about	the	
essential	nature	of	sets	to	do	critical	work	in	their	theory),	while	(as	we	have	seen)	the	
term	‘set’	is	completely	eliminable	from	the	Putamian’s	theory.	And	Parsonian	potentialists	
take	facts	about	what	pure	sets	exist	to	be	(in	some	sense	of	the	word)	contingent,	with	the	
existence	of	a	set	requiring	the	existence	of	that	set’s	elements,	but	the	overall	height	of	the	
hierarchy	of	sets	being	contingent.	Accordingly,	Parsonian	paraphrases	of	set-theoretic	
sentences	have	a	similar	large-scale	structure	to	Putnamian	paraphrases,	replacing	∃	
claims	with	◊	claims	and	∀	claims	with	□	claims.	However,	they	take	the	relevant	notion	of	
possibility	to	concern	what	sets	could	(in	some	relevant	sense)	be	formed.	And	Parsonians	
don’t	write	any	description	of	the	iterative	hierarchy	structure	into	their	potentialist	
paraphrases.	Instead,	they	take	the	fact	that	whatever	sets	exist	must	form	(part	of)	an	
iterative	hierarchy	to	fall	out	of	—	and	be	explained	by	—	facts	about	the	essences	of	sets	
and	dependency	relations	between	them.	

For	example,	we	saw	that	a	Putnamian	like	Hellman	might	paraphrase	“(∀𝑥)(∃𝑦)(𝑥 ∈ 𝑦)”	

,	as	follows.	Recall	that	here	we	are	using	quantification	over	all	𝑉< 	as	shorthand	for	
quantification	over	all	second-order	objects	𝑋, 𝑓	(or	pluralities	simulating	them)	satisfying	
some	axioms	like	𝑍𝐹𝐶&	(in	the	sense	that	𝑍𝐹𝐶&[𝑠𝑒𝑡/𝑋, ∈/𝑓]	).	

(∀𝑉()(∀𝑥)[𝑥 ∈ 𝑉( →◊ (∃𝑉&)(∃𝑦)(𝑦 ∈ 𝑉& ∧ 𝑉& ≥ 𝑉(,∧ 𝑥 ∈ 𝑦)]	

If	we	were	to	fully	expand	out	the	notation	above,	the	resulting	sentence	would	only	use	
modal	and	logical	primitives	(not	including	either	set	or	∈).	

In	contrast	Parsonians	would	translate	“(∀𝑥)(∃𝑦)(𝑥 ∈ 𝑦)”	more	simply	along	the	following	
lines.	

(∀𝑥)[set(𝑥) →◊ (∃𝑦)(set(𝑦) ∧ 𝑥 ∈ 𝑦)]	

They’d	then	appeal	to	substantive	assumptions	about	set	essences	and	what	they	entail	
about	the	possibility	of	set	formation.	For	example,	Linnebo	and	Studd	take	the	fact	that	
whatever	sets	have	been	formed	always	fit	into	an	iterative	hierarchy	to	be	explained	by	
facts	about	sets	and	plurals	like	the	following.	

• There	are	pluralities	𝑥𝑥	corresponding	to	(so	to	speak)	all	possible	ways	of	choosing	
some	objects	that	already	exist	(e.g.,	some	sets	that	have	already	been	formed)	

• Whenever	there’s	a	plurality	𝑥𝑥	of	sets,	a	corresponding	set	(i.e.,	a	set	whose	elements	
are	exactly	the	members	of	the	plurality)	could	be	formed.	

• Sets	and	pluralities	have	their	elements	necessarily	(so	a	set	can’t	be	formed	before	its	
elements	have	been	formed),	and	sets	are	extensional	(i.e.,	two	sets	are	identical	iff	
they	have	the	same	elements).	



Thus,	we	could	imagine	a	Parsonian	hierarchy	of	sets	growing	as	follows	(if	we	knew	what	
forming	a	set	involved).	The	empty	plurality	always	exists.	So,	an	empty	set	could	be	
formed.	Form	it.	Now	there’s	a	plurality	𝑥𝑥	whose	sole	member	is	the	empty	set,	so	a	set			
could	be	formed.	Form	that.	Now	that	both	these	sets	exist	then	so	there	are	four	pluralities	
𝑥𝑥	of	sets.	And	two	of	them	correspond	to	sets	we	don’t	already	have.	So,	we	could	form			
and		,	etc.	

Remember,	however,	there	are	two	readings	of	set-theoretic	talk.	In	especially	literal	
philosophical	contexts,	like	the	paragraph	above,	we	can	quantify	over	the	sets	that	literally	
exist.	However,	in	mathematical	contexts,	talk	which	appears	to	say	that	certain	sets	exist	is	
always	shorthand	for	corresponding	claims	about	what	sets	could	be	formed.	

5.2.3 Which modal notion? 

One	obvious	question	(and	potential	source	of	problems	for	the	Parsonian)	is	this:	how	
shall	we	understand	the	Parsonian’s	modal	notion	◊?	In	what	sense	could	there	have	been	a	
different	number	of	(pure)	sets?	And	how	many	sets	are	there	really?	For	example,	if	we	
understand	talk	of	possible	set	formation	as	making	a	claim	about	how	one	could	
reconceptualize	the	world	to	think	in	terms	of	more	sets	(as	we	will	see	Linnebo	does),	how	
many	sets	are	mathematicians	currently	thinking	and	talking	in	terms	of?	It’s	prima	facie	
unclear	how	the	Parsonians	can	answer	this	question	in	a	principled	fashion	(especially	if	
mathematical	practice	is	always	better	understood	by	interpreting	mathematicians	as	
thinking	potentialistically).	

Parsons	(Parsons	1977b)	argues	that	we	can’t	understand	the	possibility	invoked	in	
Parsonian	paraphrases	as	meaning	physical,	metaphysical,	mathematical	or	logical	
possibility	as	follows.	One	can’t	appeal	to	physical	or	metaphysical	possibility,	because	the	
existence	of	sets	isn’t	physically	or	metaphysically	contingent.	Similarly,	Parsons	
understands	mathematical	possibility	to	mean	possibility	dropping	‘all	constraints	of	a	
metaphysical	nature’	and	considering	only	what	is	‘compatible	with	the	laws	of	
mathematics’	(where	the	latter	include	facts	about	what	set	exist).	Thus,	he	also	holds	that	
it	wouldn’t	be	mathematically	possible	for	there	to	be	a	larger/smaller	set-theoretic	
universe.	

What	about	logical	possibility?	Linnebo	notes	that	(Linnebo	2018a)	appeal	to	“‘logical	
modality	in	the	strict	sense’...	is	fairly	quickly	set	aside	by	Parsons,	who	finds	it	to	be	‘either	
...	an	awkward	notion	generally	or	not	in	the	end	[different]	from	mathematical	modality.’’	
Now	I	take	the	arguments	of	§4.1	to	show	that	there	is	a	very	natural	and	appealing	notion	
of	logical	possibility	(interdefinable	with	validity).	However,	we	cannot	interpret	the	◊	
occurring	in	Parsonian	formalization	of	set	theory	to	mean	logical	possibility	in	this	sense.	
For	key	claims	that	the	Parsonian	wants	to	say	are	necessary	(e.g.,	the	fact	that	the	sets	are	
extensional)	aren’t	logically	necessary76.	

So,	what	modal	notion	should	the	Parsonian	invoke?	

	

76	Kit	Fine	makes	a	version	of	this	point	in	(Fine	1984).	



5.3 Constructivist vs. Interpretationalist Options 

5.3.1 The Constructivist Option 

One	option,	suggested	by	taking	talk	about	generating	sets	at	face	value,	would	be	to	say	
that	sets	are	literally	brought	into	being	—	perhaps	by	some	act	of	social	construction,	like	
that	which	creates	contracts	and	corporations77.	For	example,	one	might	say	that	adopting	
an	acceptable	new	axiom	of	set	theory	suffices	to	socially	construct	or	extend	the	hierarchy	
of	sets	to	a	sufficient	height	to	satisfy	all	of	ones	(now	expanded)	set-theoretic	axioms.	

One	way	of	developing	this	social	constructivist	approach	would	involve	biting	the	bullet	
and	rejecting	the	idea	just	mentioned,	that	sets	exist	metaphysically	necessarily.	One	might	
propose	an	error	theory	about	why	we	falsely	think	the	sets	exist	necessarily	along	the	
following	lines.	It	sounds	odd	to	deny	that	sets	exist	necessarily	and	timelessly	because	(as	
noted	above)	in	all	normal	mathematical	contexts	apparent	claims	about	set	existence	
really	express	modal	claims	(as	per	the	Parsonian	paraphrase	strategy).	And	the	
potentialist	paraphrase	of	the	claim	that	some	sets	exist	really	is	a	timeless	necessary	truth.	

Alternately,	one	might	reconcile	the	that	sets	are	socially	constructed	with	the	idea	that	all	
mathematical	objects	are	metaphysically	necessary	and	timeless,	by	drawing	on	some	ideas	
from	Cole(Cole	2013a)	and	Searle(Searle	1995)	about	social	construction	and	the	
possibility	of	decisions	(about	when	a	company	came	to	exist,	or	when	a	player	first	
qualified	as	on	the	injured	list)	taking	effect	retroactively78.	

However,	I	take	it	that	significant	work	would	be	needed	to	develop	either	of	the	above	
positions.	So,	it’s	not	surprising	that	existing	Parsonians	tend	to	take	a	different	approach.	

5.3.2 Interpretational Possibility 

In	(Fine	2006,	2005)	Kit	Fine	proposes	a	notion	of	interpretational	possibility	which	has	
been	taken	up	by	the	two	most	developed	versions	of	Parsonian	set	theory	in	the	current	
literature.	

Fine	introduces	the	notion	of	interpretational	possibility	by	a	kind	of	idealization	on	claims	
about	how	it	is	(physically	or	metaphysically)	possible	to	reinterpret	a	given	speaker.	He	
suggests	that	certain	acts	of	reinterpreting	a	speaker	(e.g.,	by	taking	their	quantifiers	to	
range	over	an	additional	layer	of	sets)	witness,	but	are	not	necessary	for,	the	
interpretational	possibility	of	there	being	more	sets.	For	example,	Fine	writes	

	

77	See	(Cole	2013b)	for	a	proposal	that	mathematical	objects	are	socially	constructed	in	the	
same	way	as	marriages	and	corporations.	But	note	that	Cole	doesn’t	doesn’t	take	
mathematical	objects	have	the	temporal	features	needed	to	drive	the	potentialist	story.	

78	Both	have	suggested	that	objects	which	are	contingently	socially	constructed	at	a	certain	
time	(e.g.,	human	rights	constructed	by	a	court)	might	nonetheless	be	necessary	and	exist	
eternally.	



[I]t	seems	clear	that	there	is	a	notion	of	[of	possibility]	such	that	the	possible	
existence	of	a	broader	interpretation	is	...	sufficient	to	show	that	[a]	given	
narrower	interpretation	is	not	absolutely	unrestricted.	For	suppose	someone	
proposes	an	interpretation	of	the	quantifier	and	I	then	attempt	to	do	a	‘Russell’	on	
him.	Everyone	can	agree	that	if	I	succeed	in	coming	up	with	a	broader	
interpretation,	then	this	shows	the	original	interpretation	not	to	have	been	
absolutely	unrestricted.	Suppose	now	that	no	one	in	fact	does	do	a	Russell	on	him.	
Does	that	mean	that	his	interpretation	was	unrestricted	after	all?	Clearly	not.	All	
that	matters	is	that	the	interpretation	should	be	possible.	But	the	relevant	notion	
of	possibility	is	then	the	one	we	were	after;	it	bears	directly	on	the	issue	of	
unrestricted	quantification,	without	regard	for	the	empirical	vicissitudes	of	actual	
interpretation.(Fine	2006)	

Fine	contrasts	the	notion	of	interpretational	possibility	with	‘circumstantial’	modalities	like	
physical	and	metaphysical	possibility.	Contingent	differences	to	what	the	world	are	actually	
like	are	supposed	to	make	no	difference	to	interpretational	possibility.	Fine	writes,	
“Circumstance	could	have	been	different;	Bush	might	never	have	been	President;	or	many	
unborn	children	might	have	been	born.	But	all	such	variation	in	the	circumstances	is	
irrelevant	to	what	is	or	is	not	[interpretationally]	possible.”(Fine	2006)	And	many	different	
things	are	interpretationally	possible	relative	to	the	actual	world	(as,	perhaps,	witnessed	
by	the	fact	that	we	could	interpret	someone	as	speaking	with	implicit	quantifier	
restrictions	and	talking	about	more	or	fewer	of	the	objects	we	are	currently	quantifying	
over).	Interpretational	possibilities	are	supposed	to	be	(as	Fine	puts	it)	a	kind	of,	
“possibilities	for	the	actual	world,”	rather	than	“possible	alternatives	to	the	actual	world.”	

Accordingly,	there	is	no	conflict	between	saying	it’s	metaphysically	necessary	that	the	
hierarchy	of	sets	stops	at	a	certain	height	and	that	it’s	interpretationally	possible	for	it	to	
have	a	different	height.	And	Interpretationalist	Parsonians	see	no	tension	between	
understanding	possible	set	formation	in	terms	of	interpretational	possibility	and	accepting	
the	intuition	that	sets	exist	necessarily.	

Fine	ultimately	rejects	understanding	mathematics	in	terms	of	interpretational	possibility,	
but	(as	noted	above)	both	Linnebo	and	Studd	invoke	use	his	notion	of	interpretational	
possibility	to	develop	their	versions	of	Parsonian	set-theoretic	Potentialism.	

5.4 Linnebo and Studd 

5.4.1 Linnebo’s Interpretational Possibility 

In	(Linnebo	2018b)	Linnebo	develops	a	version	of	Parsonian	potentialist	set	theory	which	
invokes	the	above	notion	of	interpretational	possibility	and	connects	it	very	directly	to	
Frege’s	notion	of	abstraction	principles.	He	develops	a	version	of	Parsonian	Potentialism	
within	a	larger	account	of	how	we	can	shift	our	language	(to	conceptualize	the	actual	world	
in	terms	of	more	objects)	by	adopting	abstraction	principles.	He	suggests	that	some	objects	
are	‘thin’	(with	respect	to	some	other	objects),	in	the	sense	that	we	can	come	to	know	
things	about	the	former	thin	objects	by	introducing	abstraction	principles	that	specify	
identity	conditions	for	them	by	appeal	to	the	objects	they	are	thin	with	respect	to.	For	



example,	in	Frege’s	classic	case,	if	you	are	already	talking	about	lines,	you	can	start	talking	
in	terms	of	the	abstract	objects	we	call	‘directions,’	by	stipulating	that	two	lines	have	the	
same	direction	iff	they	are	parallel.	

Accordingly,	we	can	interpret	talk	of	‘forming’	new	objects	as	making	claims	about	how	one	
could	(re)conceptualize	the	world	as	containing	additional	objects.	Linnebo	writes	that	he	
will	take,	“modal	operators	□	and	◊	to	describe	how	the	interpretation	of	the	language	can	
be	shifted	—	and	the	domain	expanded	—	as	a	result	of	abstraction.”(Linnebo	2018b)	In	
particular,	◇𝜙	is	supposed	to	be	true	if	you	could	make	𝜙	true	via	some	well-ordered	
sequence	of	acts	of	reconceptualizing	the	world	via	adopting	abstraction	principles	
(whether	or	not	it	would	be	metaphysically	possible	for	anyone	to	make	such	a	sequence	of	
abstractions).	

Note	that	the	adoption	of	such	abstraction	principles	doesn’t	bring	anything	into	being	–	
whether	it	be	a	physical	object	or	an	abstract	object.	Rather	it	involves	“reconceptualizing”	
the	world.	Also	note	that	Linnebo	only	considers	reconceptualizations	which	recognize	
more	objects,	not	ones	which	remove	objects	we	currently	recognize.	Since	his	notion	of	
possibility	only	allows	the	world	to	grow,	it	doesn’t	satisfy	S5	(unlike	logical	possibility)79	
and	Linnebo	accepts	the	converse	Barcan	Marcus	formula	as	true	with	regard	to	
interpretational	possibility.	

Importantly,	Linnebo	appeals	to	a	notion	of	dynamic	abstraction,	which	lets	one	expand	
the	application	of	some	previously	understood	notion	by	adopting	an	abstraction	principle.	
One	can,	in	effect,	introduce	a	predicate	‘Old()’	that	applies	to	all	of	the	objects	one	is	
currently	thinking	in	terms	of	and	then	adopt	abstraction	principles	that	say	that	for	every	
plurality	of	old	sets	there’s	‘set’	collecting	exactly	these	objects.	We	might	think	of	the	
above	abstraction	principle	as	saying,	‘I’ll	continue	to	refer	to	all	these	old	objects	and	start	
accepting	certain	abstraction	sentences	implying	there	are	new	ones	which	relate	to	the	old	
objects	in	a	certain	way.’	This	has	the	important	effect	that	repeatedly	adopting	
(syntactically)	the	same	abstraction	principle	can	lead	you	to	talk	in	terms	of	longer	and	
longer	hierarchies	of	sets.	

Finally,	Linnebo	holds	you	can	only	start	thinking	in	terms	of	a	set	if	you	are	already	(or	
simultaneously	start)	thinking	in	terms	of	its	elements	(paradigmatically	a	set	is	introduced	
by	adopting	abstraction	principles	that	say	that	there’s	a	set	collecting	every	plurality	of	old	
sets).	This	gives	us	the	dependence	of	sets	on	their	elements	referenced	in	§5.2	above.	

Now,	like	Hellman,	Linnebo	shows	that	we	can	justify	the	use	of	the	ZFC	axioms	from	
certain	modal	assumptions	–	in	this	case,	assumptions	about	what’s	interpretationally	
possible.	However,	it	seems	to	me	that	some	of	the	assumptions	used	in	this	proof	raise	an	
important	question	about	how	Linnebo’s	notion	of	interpretational	possibility	is	to	be	
understood.	In	particular,	Linnebo	appeals	to	the	following	maximality	principle.	

	

79	Speaking	in	terms	of	Kripke	models,	when	it	comes	to	interpretational	possibility	only	
worlds	that	preserve	or	add	to	the	objects	existing	in	a	world	𝑤@	are	accessible	from	𝑤@.	



“Maximality:	At	every	stage,	all	the	entities	that	can	be	introduced	are	in	fact	
introduced.”	

But	this	principle	seems	very	implausible	on	the	intuitive	understanding	of	interpretational	
possibility	as	possibility	with	respect	to	how,	“the	interpretation	of	the	language	can	be	
shifted	—	and	the	domain	expanded	—	as	a	result	of	abstraction”	evoked	above.	For	surely,	
we	don’t	introduce	all	possible	abstraction	principles	at	once!	

Perhaps	one	can	solve	this	problem	by	simply	understanding	Linnebo’s	notion	of	
interpretational	possibility	more	narrowly	(as	concerning	how	the	world	could	be	
reconceptualized	at	some	stage	of	a	process	that	did	simultaneously	introduce	all	possible	
abstraction	principles	at	each	stage).	However,	such	ad	hoc	restriction	of	the	intuitive	
notion	of	‘what	can	be	got	to	by	introducing	abstraction	principles	above	can	make	the	
concept	of	interpretational	possibility	seem	significantly	less	principled	(and	hence	less	
attractive	as	a	choice	of	theoretical	primitive)	than	logical	possibility	

5.4.2 Studd on Interpretational Possibility 

In	(Studd	2019)	Studd	develops	the	notion	of	interpretational	possibility	in	a	way	that	(I’ll	
suggest)	raises	a	similar	concern	about	whether	interpretational	possibility	is	an	attractive	
choice	of	theoretical	primitive.	

Interestingly,	Studd	introduces	his	notion	of	interpretational	possibility	by	contrasting	it	
with	logical	possibility,	saying	that	interpretational	possibility	is	“	importantly	similar	and	
importantly	different	to	logical	necessity.	Like	logical	necessity,	it	concerns	possible	shifts	
in	interpretation	rather	than	circumstance.	But	unlike	logical	necessity,	the	shifts	in	
interpretation	that	are	admissible	are	more	closely	constrained:	not	every	logically-
possible	interpretation	need	be	counted	admissible.”	He	then	says	his	notion	of	
interpretational	possibility	is	very	similar	to	Linnebo’s.	However,	where	Linnebo	talks	
about	interpretational	possibilities	as	corresponding	to	ways	of	reconceptualizing	the	
world,	Studd	talks	about	‘admissible	interpretations’	for	a	certain	lexicon.	And	where	
Linnebo	talks	about	abstraction	principles,	Studd	talks	about	successful	attempts	to	
liberalize	our	language	by,	so	to	speak,	expanding	the	domain	of	quantification	and	adding	
some	of	these	new	objects	to	the	extension	of	certain	terms	like	‘set.’	

Studd	writes,	“The	truth	of	𝜙	depends	on	whether	the	proposition	that	would	be	expressed	
by	𝜙	under	other	admissible	interpretations	of	the	lexicon	is	true	(in	the	actual	world)”	and	
says	the	following	about	admissible	interpretations.	

Admissible	interpretations	result	from	shifts	of	interpretation	of	the	kind	that	a	
[quantifier]	relativist	may	bring	about	in	her	attempt	to	expand	the	universe.	Such	
interpretations	come	with	a	natural	ordering:	an	admissible	interpretation	j	is	
said	to	succeed	another	i	iff	j	results	from	one	or	more	relativist	attempts	to	
admissibly	liberalize	the	interpretation	i.	In	this	case	we	also	say	that	i	precedes	j.	

Studd	notes	that	his	concept	of	‘admissible	interpretation’	(and	hence	interpretational	
possibility)	differs	from	the	natural	language	notion	of	what	we	could	get	our	words	to	



mean80.	Instead	of	appealing	to	some	such	natural	language	notion,	he	uses	Kripke-like	
models	and	a	principle	that	these	models	must	satisfy	certain	monotonicity	and	stability	
requirements	to	(somewhat	metaphorically81)	convey	his	concept	of	admissible	
interpretations	and	liberalizations.	This	amounts	to	requiring	that	relevant	meaning	
change	events	have	at	least	the	following	features:	they	only	introduce	new	objects	to	the	
domain	of	the	quantifiers	and	the	extension	of	‘set’	and	‘element’	without	stopping	the	
quantifiers	from	ranging	over	anything	you	are	currently	quantifying	over	(Monotonicity)	
or	changing	how	‘set’	and	‘element’	apply	to	these	current	objects	(Stability).82	

	

80	He	writes,	“In	the	case	of	the	present	version	of	English,	for	instance,	there’s	nothing	to	
stop	us	from	attaching	new	meanings	to	terms	like	‘set’	and	‘element’	that	are	wholly	
unconnected	with	their	current	meanings.	The	new	interpretation	could	reinterpret	these	
terms	to	be	coextensive	with	‘sloth’	and	‘eats’	(as	the	latter	terms	are	presently	
interpreted).	The	resulting	interpretation	is	clearly	available	to	us	but	inadmissible	
because	it	fails	to	meet	the	Stability	constraint.	All	the	same,	since	this	sort	of	
reinterpretation	is	clearly	orthogonal	to	issues	concerning	absolute	generality,	nothing	is	
lost	by	taking	the	interpretational	modal	operators	to	only	generalize	over	admissible	
interpretations.’’	

81	There	couldn’t	actually	be	models	witnessing	all	interpretational	possibilities,	without	all	
the	problems	of	arbitrary	stopping	points	etc.	re-arising.	

82	More	specifically,	Studd	explains	his	notion	of	interpretational	possibility	metaphorically	
by	providing	something	like	a	Kripke	a	model	for	his	modal	notion	(with	objects	called	
indexes	corresponding	to	specific	interpretational	possibilities).	After	conjuring	the	image	
of	stages	in	a	growing	hierarchy	of	sets	with	indexes	corresponding	to	particular	stages	of	
growth,	Studd	writes,	

“Less	metaphorically,	we	can	helpfully	think	of	the	indices	[of	these	Kripke	
models]	as	admissible	interpretations	of	the	sort	that	the	modality	is	intended	to	
generalize	over,	with	Monotonicity	and	Stability	serving	to	constrain	the	sorts	of	
interpretation	the	modality	generalizes	about.”	

In	this	model	we	have	a	set	i	of	indexes	for	admissible	interpretations	𝑖(	𝑖&	etc.	for	“S”	and	
“E”	(for	‘set’	and	‘element	of’)	

a	model-theoretic	(or	MT-)	interpretation	of	the	non-modal	language	𝐿>A	is	a	set-
structure⟨𝑀, 𝑆, 𝐸⟩	that	supplies	a	non-empty	set	𝑀	as	the	universe	of	discourse,	
and	extensions	𝑆	and	𝐸	based	on	𝑀	for	the	language’s	two	non-logical	predicates,	
the	set	and	element–set	predicates	(𝛽	and	𝜖).	
...an	MT-hierarchy	is	an	indexed-set	of	triples	{⟨𝑀< , 𝑆< , 𝐸<⟩〉: 𝑖 ∈ 𝐼}	each	member	of	
which	is	either	an	MT-interpretation	or	the	empty	interpretation	(with	𝑀< 	non-
empty	for	some	𝑖 ∈ 𝐼),	and	which	meets	the	...	three	conditions	[serial	well	order,	
monotonicity,	and	stability	]	

	



However,	these	constraints	cannot	be	all	that’s	required	of	admissible	interpretations.	For	
example,	expansions	of	a	language	which	add	a	new	object	to	the	extension	of	‘set’	and	not	
the	extension	of	‘element’	despite	that	language	already	recognizing	an	empty	set	(so	the	
extensionality	axiom	is	violated),	are	presumably	not	admissible	interpretations.	And	later,	
when	justifying	mathematicians’	use	of	the	ZFC	axioms,	Studd	makes	a	plenitude	
assumption	that	amounts	to	saying	that	whenever	you	liberalize	the	meaning	of	set	to	‘add’	
one	set,	you	must	thereby	add	(at	least)	a	full	layer	of	new	sets.	

Overall	Studd	says	rather	little	about	how	he	understands	interpretational	possibility,	
beyond	the	points	summarized	above	and	some	further	principles	specific	to	set	theory.	It’s	
not	clear	to	me	that	any	single	unified	intuitive	notion	implies	all	the	constraints	on	
interpretational	possibility	Studd	asserts	(or	whether	Studd	even	claims	to	have	latched	on	
to	such	a	notion).	Thus,	I	think	Studd’s	notion	of	interpretational	possibility	can,	like	
Linnebo’s,	seems	unprincipled	and	ad	hoc	in	a	way	that	makes	it	unappealing	as	a	choice	
for	mathematical	foundations	(even	if	it’s	no	problem	for	the	project	of	defending	
quantifier	relativism	which	most	interests	Studd	in	(Studd	2019)).	

5.5 Which Framework to Use? 

With	this	picture	of	the	most	developed	versions	of	Parsonian	potentialist	set	theory	in	
mind,	I	will	now	attempt	to	motivate	my	choice	to	work	in	the	Putnamian	framework	
instead	(at	least	for	temporary	practical	purposes).	

In	this	section	I’ll	argue	that	Parsonians	face	some	extra	pressure	(beyond	the	general	
reasons	for	endorsing	a	notion	of	logical	possibility	discussed	in	Chapter	4.1)	to	accept	the	
basic	logical	machinery	needed	to	state	Putnamian	paraphrases	(and	perhaps	to	agree	with	
Putnamians	about	how	these	concepts	apply).	Then	I’ll	explain	(rather	abstractly)	why	
working	in	a	Putnamian	framework	will	be	convenient	for	my	justificatory	project.	

5.5.1 Acceptability of Logical Possibility to Parsonians 

First	note	that	Parsonians	Linnebo	and	Studd	do	seem	to	accept	the	meaningfulness	of	
logical	possibility	and	seemingly	agree	that	(at	least	some	versions	of)	Putnamian	
paraphrases	have	the	correct	truth-values.	As	we	saw	above,	Studd	introduces	his	notion	of	
interpretational	possibility	by	appeal	to	logical	possibility,	and	he	even	seems	to	(in	some	

	

Monotonicity.	“Whenever	i	and	j	are	indices	in	I	with	𝑖 <B 𝑗,𝑀< 	is	a	subuniverse	of	𝑀C 	(i.e.	
𝑀< ⊆ 𝑀C).”	

Studd	also	has	a	requirement	of	stability	which	requires	that	different	admissible	
interpretations	agree	on	the	application	of	element-of	on	sets	they	both	acknowledge.	

Stablity	“Whenever	i	and	j	are	indices	in	I,	the	extensions	𝑆< 	and	𝑆C 	and	the	extensions	𝐸< 	
and	𝐸C 	agree	on	their	common	domain	𝑀< ∩𝑀C”	.	



sense)	endorse	the	adequacy	of	Hellman’s	Putnamian	Potentialism83.	And	Linnebo’s	
criticisms	of	Hellman-style	Putnamian	Potentialism	in	his	head-to-head	comparison	of	
Putnamian	and	Parsonian	Potentialism	in	(Linnebo,	2018a)	are	strikingly	moderate	and	
don’t	center	on	raising	doubts	about	the	intelligibility	of	Hellman’s	proposal.84	

I	think	this	apparent	willingness	to	accept	the	meaningfulness	of	a	notion	of	logical	
possibility	(and	something	like	the	intuitions	about	it	the	Putnamian	potentialist	needs	to	
appeal	to)	is	no	accident,	but	rather	flows	from	something	basic	about	Putnamian	
paraphrases.	

For,	note	that	both	Studd	and	Linnebo	both	take	for	granted	the	notion	of	well-founded	
sequences	of	reconceptualization/liberalization	events	in	developing	their	concepts	of	

	

83	In	a	footnote	to	his	chapter	on	potentialist	set	theory,	Studd	writes	the	following	about	
Hellman’s	modal	structuralist	approach	(and	gives	no	later	criticism	of	that	view),	

“An	alternative	is	for	the	relativist	to	adopt	modal-structuralism	in	the	style	of	
Hellman	(1989).This	permits	her	to	interpret	□	simply	as	logical	necessity.	On	this	
view,	there	is	no	need	for	admissible	interpretations	to	satisfy	the	Stability	
constraint	on	the	interpretation	of	the	non-logical	vocabulary	set	out	below.	This	
is	because	modal	structuralism	takes	set-theoretic	statements	to	be	elliptical	for	
statements	in	a	higher-order	modal	language,	which	eliminates	occurrences	of	the	
set	and	element–set	predicate.	See	also	Hellman	...	who	applies	modal-
structuralism	to	offer	a	potentialist	Zermellian	response	to	the	set-theoretic	
paradoxes.”	

84	After	raising	the	metaphysical	shyness	and	compossibility	worry	we	discussed	in	
Chapter	3.3.3	,	Linnebo	notes:	

Let	me	be	very	clear	about	my	complaints	in	this	section.	I	am	not	asserting	that	
meta-	physically	shy	objects	are	in	fact	possible	or	that	there	might	not	be	some	
clever	way	to...circumvent	the	problems	generated	by	the	phenomenon	of	
incompossibles.	My	point	is	only	that	the	extra	freedom	of	Putnam’s	approach,	
which	initially	seemed	purely	advantageous,has	the	unintended	side	effect	of	
incurring	potentially	problematic	metaphysical	commitments,	which	are	avoided	
on	the	Parsons	approach.	

Linnebo’s	other	points	against	versions	of	the	Putnamian	approach	in	that	paper	merely	
involve	correctly	pointing	out	version	of	some	points	already	discussed	above:	that	it’s	
hard	to	make	sense	of	Putnam’s	dual	perspective	(mathematics	being	equally	well	
understandable	in	modal	and	ontological	terms),	and	that	Hellman’s	requirement	that	
initial	segments	be	models	of	ZFC2	seems	unmotivated	and	troublesome.	Finally,	I’ve	
argued	that	Linnebo’s	shyness-based	criticism	of	Putnam’s	account	can	be	avoided	by	
reformulating	Putnamian	proposals	using	the	conditional	logical	possibility	operator	as	per	
Chapter	3.	Some	nominalists	might	worry	about	implicit	commitment	to	abstract	objects	–	
but	Parsonian	potentialists	who	embrace	the	existence	(or	at	least	possibility)	of	sets	will	
not	have	that	doubt.	



interpretational	possibility	and	potentialist	set	theory.	And	arguably	any	modal	notion	that	
could	do	the	work	the	Parsonian	needs	must	appeal	to	a	very	idealized	notion	of	how	some	
objects	could	be	well	ordered	by	a	relation.	But	it’s	hard	to	see	how	one	could	understand	
the	relevant	modal	notion	of	a	possible	arbitrary	well-ordered	sequence	of	language	
changes,	without	a	background	notion	of	something	like	logical	possibility85.	

Pressure	for	the	Parsonian	to	accept	a	notion	of	how	it	would	be	possible	(in	some	sense	
that	isn’t	hostage	to	facts	about	metaphysical	possibility)	to	have	a	sequence	of	set-
formation	events	satisfying	the	well	ordering	axioms	is	clearest	if	we	understand	the	
Parsonian	to	allow	only	adding	a	single	layer	of	sets	at	each	stage.	But,	even	if	we	allow	
arbitrarily	many	sets	to	be	introduced	at	any	stage,	the	Parsonian	would	be	hard	pressed	to	
try	and	insist	that	it’s	enough	to	consider	only	well-ordered	sequence	of	
reconceptualization	events	of	some	limited	height86.	

Thus,	one	might	argue	that	the	Parsonian	already	needs	to	understand	all	the	notions	
needed	for	Putnamian	Potentialism.	Indeed,	one	might	argue	that	the	Parsonian	is	already	
appealing	to	a	Putnamian	potentialist	picture	of	the	ordinals	to	motivate	their	story.	For,	
the	Parsonian	must	already	take	there	to	be	a	fact	of	the	matter	about	what	well-ordered	
sequences	are	possible	in	some	sense	that’s	obviously	meant	to	be	free	of	any	purely	
physical	or	even	metaphysical	limitations.	If	they	are	going	to	accept	the	meaningfulness	of	
asking	if	there	is	a	well-ordered	sequence	with	a	certain	property,	it	would	be	unattractive	
to	suggest	that	such	talk	of	coherence	or	logical	possibility	is	only	meaningful	for	well-
orderings	and	nothing	else87.	

	

85	Interpretationalist	Parsonians	could,	of	course,	reply	that	they	use	the	notion	of	logical	
possibility	to	explain	interpretational	possibility	and	then	kick	away	the	ladder,	just	as	I’ve	
suggested	one	could	use	appeal	to	actualist	set	theory,	isomorphisms	between	possible	
worlds	or	Shapiro’s	structures	to	point	at	the	notion	of	conditional	logical	possibility,	
without	endorsing	any	of	these	views.	But	they	don’t	seem	inclined	to	do	this,	and	this	
move	is	somewhat	awkward	for	the	reasons	noted	below.	

86	For	example,	suppose	that	all	relevant	height	increases	could	be	performed	by	repeating	
a	single	set	generating	ceremony	< 𝛼	many	times.	In	actualist	terms	this	would	amount	to	
assuming	that	the	whole	hierarchy	has	cofinality	𝛼	(something	widely	regarded	as	
implausible	by	mathematicians).	For,	in	actualist	terms	it	would	imply	that	some	second-
order	function	𝑓	and	perhaps	even	some	first-order	definable	relation	𝜙	could	map	𝛼	to	all	
the	ordinals,	contrary	to	the	(the	spirit	of,	and	second-order	formulations	of)	axiom	of	
replacement!	And	a	similar	conclusion	follows	if	menu	of	different	abstraction	techniques	
one	can	in	principle	apply	is	small	relative	to	𝛼.	

87	Note	that	the	second-order/plural	quantification	vocabulary	typically	used	to	formulate	
the	claim	that	a	sequence	of	growth	events	is	well	ordered	also	lets	you	pin	down	intended	
models	of	the	iterative	hierarchy	up	to	width.	So	they	need	to	accept	not	just	the	logical	
possibility	of	first-order	facts	but	(something	like)	logical	possibility	claims	about	a	
	



Accordingly,	I	take	it	that	Parsonian	potentialists	generally	do	and	plausibly	should	accept	
the	meaningfulness	of	logical	possibility	(together	with	other	tools	needed	to	develop	
Putnamian	set	theory).	

5.5.2 Putnamian Potentialism and Logical Possibility 

This	is	a	happy	result,	because	it	means	that	if	we	succeed	in	justifying	the	Putnamian	
potentialist	version	of	the	axiom	of	Replacement	from	principles	that	seem	clearly	true,	
Parsonians	can	plausibly	use	this	result	to	(partially)	justify	their	version	of	the	axiom	of	
Replacement	by	inferring	it	from	the	Putnamian	version	of	Replacement.	

And	working	in	a	Putnamian	framework	(of	the	kind	advocated	in	previous	chapters)	—	at	
least	temporarily	in	the	sense	above	—	turns	out	to	be	quite	convenient.	For	my	proposed	
justification	of	the	axiom	of	Replacement	leverages	intuitions	about	the	logical	possibility	
of	structures	other	than	initial	segments	of	the	set-theoretic	hierarchy	in	a	way	that	seems	
difficult	if	not	impossible	to	reproduce	using	a	more	narrowly	tailored	notion	of	possibility	
like	that	advocated	by	Parsonians.	

Specifically,	we	will	often	justify	the	potentialist	translations	of	set-theoretic	claims	(claims	
about	how	iterative	hierarchies	can	be	extended	by	other	iterative	hierarchies)	by	first	
proving	things	about	how	any	such	hierarchy	could	be	extended	by	certain	larger	
structures	that	aren’t	iterative	hierarchies.	But	it’s	difficult	to	see	how	to	reconstruct	such	
reasoning	about	extensibility	working	purely	within	in	an	Interpretationalist	Parsonian	
framework,	where	growth	events	seemingly	only	add	objects	falling	under	some	currently	
understood	indefinitely	extensible	concept88).	

	

hierarchy	of	growth/reconceptualization	events	satisfying	the	non-first-order	least	
element	condition	of	well	foundedness.	

88	For	example,	the	Parsonian	might	try	to	mirror	the	reasoning	above	by	considering	the	
interpretational	possibility	of	a	hierarchy	of	sets	existing	alongside	other	(non-set)	objects.	
But	note,	it	seems	that	there	might	not	be	any	concepts	in	our	current	language	whose	rich	
meaning	(in	the	sense	specified	in	Chapter	5.6.2	below)	allows	them	to	form	the	kind	of	
structure	we	want	to	consider	our	iterative	hierarchy	embedded	in	for	the	kind	of	roof	
considered	above.	It	seems	implausible	that,	for	every	describable	way	it	would	be	logically	
possible	for	some	relations	𝑅(. . . 𝑅)	to	pick	out	a	larger	structure	it’s	useful	to	consider	a	
hierarchy	of	sets	being	embedded	within,	it’s	interpretationally	possible	for	some	relations	
𝑅′(. . . 𝑅′)	to	apply	in	exactly	that	way.	Recall	that	Studd	and	Linnebo	take	there	to	be	
various	important	facts	about	the	meaning	of	set	and	element,	which	ensure	that,	e.g.,	you	
can’t	think	in	terms	of	multiple	sets	that	have	exactly	the	same	elements.	And	presumably	
the	same	applies	to	other	current	English	language	concepts	as	well.	Perhaps	we	could	get	
around	this	problem	by	considering	intepretational	possibilities	corresponding	to	language	
changes	that	adding	new	atomic	predicates	and	relations	to	our	language.	

	



Negatively	however,	the	fact	that	Parsonians	seem	to	endorse	the	basic	machinery	needed	
for	Putnamian	set	theory	raises	an	ideological	Occam’s	razor	worry	for	the	Parsonian.	If	we	
already	need	to	accept	a	notion	of	logical	possibility	sufficient	to	formulate	potentialist	set	
theory,	and	use	reasoning	about	logical	possibility	as	a	first	step	in	justifying	certain	axioms	
of	potentialist	set	theory,	why	bother	cumbering	our	ideology	with	the	notion	of	
interpretational	possibility?	Why	not	just	use	the	same	notion	to	formulate	Potentialist	set	
theory?	I	will	consider	this	concern	as	part	of	the	question	of	which	view	to	ultimately	
prefer	in	the	next	section.	

5.6 Which Framework to (Ultimately) Choose? 

Now	let’s	turn	to	the	question	of	whether	Putnamian	or	Parsonian	Potentialism	is	
ultimately	to	be	preferred.	Admittedly,	this	question	is	a	little	ambiguous;	you	might	ask	
‘which	version	of	Potentialism	should	we	prefer	for	what	purposes?’	For	example,	we	might	
ask	(in	a	Sideran	pro-metaphysics	spirit),	which	formalization	of	set	theory	best	reveals	the	
facts	about	fundamental	ontology	and	ideology	that	ground	the	truth	of	set-theoretic	
claims.	Alternately	one	might	ask	which	theory	provides	the	best	Carnapian	explication	of	
potentialist	set	theory.	However,	my	remarks	below	will	motivate	favoring	Putnamian	
potentialist	set	theory	in	both	of	these	ways,	so	I	won’t	stress	the	distinction	here89.	

5.6.1 Ideological Parsimony and Conservatism 

One	different	motivation	for	favoring	Putnamian	set	theory	draws	on	considerations	of	
ideological	parsimony.	In	(§4.1)	and	(§4.5)	we	saw	some	reasons	to	think	that	even	
Parsonians	should	accept	the	Putnamians	notion	of	logical	possibility.	Accordingly,	as	
noted	above,	one	might	think	Putnamian	Potentialism	should	be	favored	on	grounds	of	
ideological	parsimony	(let	us	not	multiply	primitive	modal	notions	beyond	necessity)	and	
avoiding	revisionary	and	controversial	commitments	about	other	areas	of	philosophy	
where	possible.	If	Parsonians	must	accept	Putnamian	primitives	but	not	vice	versa	then	
parsimony	surely	favors	the	Putnamian	approach.	

	

But	this	approach	is	difficult	to	develop	in	Linnebo	or	Studd’s	system.	For	Studd’s	talk	
about	interpretational	possibility	reflects	admissible	interpretations	of	‘the’	lexicon	(rather	
than	considering	a	lexicon	that	could	be	arbitrarily	extended).	And,	while	Linnebo’s	system	
seems	to	be	more	open	to	introducing	new	concepts,	he	says	interpretational	possibilities	
correspond	to	we	could	start	talking	in	terms	of	by	adopting	abstraction	principles,	and	it’s	
not	clear	that	every	larger	structure	which	it	is	useful	to	reason	about	initial	segments	
being	embedded	in	(for	the	purposes	of	non-elementary	proofs	as	above)	can	be	
introduced	by	stipulations	which	take	the	form	of	abstraction	principles.	

89	Note	that	some	traditional	reasons	for	favoring	Platonistic	views	over	modal	
perspectives	on	mathematics	don’t	bear	on	our	choice	here.	Neither	Parsonian	nor	
Putnamian	potentialists	take	set	theorists’	apparent	quantification	at	face	value,	and	both	
introduce	new	modal	notions	go	beyond	FOL	in	analyzing	set-theoretic	claims.	



Admittedly	Parsonians	could	block	this	argument	if	they	could	show	that	Putnamians	also	
can’t	do	without	Parsonian	primitives.	Interpretationalist	Parsonians	might	argue	that	we	
independently	need	the	notion	of	interpretational	possibility	to	make	sense	of	neo-
Carnapian	language	change.	However,	in	Chapter	6,	I’ll	argue	that	this	is	not	the	case.	We	
can	develop	a	neo-Carnapian	philosophy	of	language	sufficient	to	do	the	(legitimate)	work	
of	neo-Carnapian	philosophy	of	language	equally	well	or	better	using	the	conditional	logical	
possibility	operator.	Notably,	I’ll	suggest	that	doing	this	legitimate	work	doesn’t	require	
stating	claims	about	the	possibility	or	impossibility	of	‘absolute	generality’/quantifying	
over	anything	in	some	non-trivial	sense	(the	main	thing,	outside	set	theory,	Linnebo	and	
Studd	use	the	interpretational	possibility	operator	to	do).	

In	addition	to	adding	a	new	modal	operator,	Interpretationalist	Parsonianism	also	requires	
us	to	make	some	prima	facie	unintuitive	changes	to	philosophy	of	language90.	Linnebo	
himself	says:	

Suppose	we	have	formulated	a	perfectly	precise	notion	of	a	star.	For	any	object	
whatsoever,	this	notion	enables	a	definitive	verdict	as	to	whether	or	not	the	
object	is	a	star.	When	this	precise	intension	is	applied	to	the	world,	reality	
answers	with	a	determinate	extension,	namely	the	plurality	of	objects	that	satisfy	
the	intension.	And	there	is	nothing	unusual	about	stars	in	this	regard.	In	most	
ordinary	empirical	cases,	a	precise	intension	determines	an	extension	when	applied	
to	the	world.	But	in	mathematical	cases,	and	other	cases	involving	abstraction,	this	
is	no	longer	so.	Here	a	precise	intension	often	fails	to	determine	an	extension.	

Thus,	overall,	one	might	argue	that	the	main	motivation	for	accepting	interpretational	
possibility	(and	the	claim	that	precise	intensions	don’t	determine	precise	extensions	
above)	is	to	account	for	set-theoretic	paradoxes	while	avoiding	arbitrariness	intuitions91.	
But,	if	a	Putnamian	approach	can	do	the	same	work	without	requiring	us	to	add	to	our	
fundamental	ideology	or	revise	general	philosophy	of	language,	considerations	of	
parsimony	favor	the	Putnamian	framework.	

	

90	Going	further,	Linnebo’s	embrace	of	something	like	Dummett’s	indefinite	extensability	in	
the	quote	above	may	raise	prima	facie	philosophical	puzzles,	which	could	easily	be	avoided	
by	favoring	Putnamian	potentialism.	For	it	seems	to	me	that	the	passage	above	suggests	the	
following	picture.	There	aren’t	just	different	equally	legitimate	ways	of	‘talking	in	terms	of	
more	sets’	(for	in	this	case	our	concept	of	a	hierarchy	would	merely	not	be	“precise”)	but	
rather	we	have	a	precise	concept	with	a	kind	of	inadequacy	or	internal	tension,	whereby	
every	language	including	the	concept	set	is	held	to	be	in	some	way	leaving	some	things	out	
so	that,	e.g.,	languages	that	talk	in	terms	of	more	sets	are	less	inadequate	than	languages	
that	talk	in	terms	of	fewer	sets.	But	such	ideas	about	reality	forever	transcending	language	
and	thought	can	seem	prima	facie	problematic	and,	and	hence	desirable	to	avoid	where	
possible.	

91	Certainly	the	case	of	set	theory	is	the	main	motivation	cited	for	Dummett’s	project	in	(M.	
Dummett	1993)	and	Studd’s	project	of	defending	quantifier	relativism	in	(Studd	2019).	



5.6.2 Unappealing Choice of Conceptual Primitives 

Another	argument	against	(Interpretationalist)	Parsonianism	questions	the	attractiveness	
of	interpretational	possibility	as	a	conceptual	primitive	(as	compared	to	logical	possibility).	
In	this	section	I’ll	note	some	ways	that	interpretational	possibility	can	seem	much	less	
principled	and	clearly/concretely	understood	than	the	notion	of	logical	possibility,	and	
hence	like	a	less	attractive	choice	of	a	conceptual	primitive	for	philosophical	analysis.	

In	§5.4.1	and	§5.4.2	we	already	saw	some	reasons	for	concern	that	Linnebo	and	Studd’s	
notions	of	interpretational	possibility	must	be	arbitrarily	restricted/non-joint-carving	in	
ways	that	makes	them	a	bad	choice	for	a	conceptual	primitive	(if	they	are	to	satisfy	the	
various	assumptions	Linnebo	and	Studd	use	to	vindicate	use	of	the	ZFC	axioms).	
Additionally,	Linnebo	himself	notes	a	way	that	interpretational	possibility	facts	reflect	
arbitrary	conventions	with	respect	to	‘Julius	Caesar	problems’	about	when	the	objects	
falling	under	the	concept	introduced	or	liberalized	by	adopting	some	abstraction	principle	
(e.g.,	the	number	1)	are	identical	to	objects	one	was	previously	talking	in	terms	of	(e.g.,	
Julius	Caesar)92.	

Interpretational	possibility	facts	also	reflect	seemingly	highly	indeterminate	and/or	
disputed	facts	about	what	I’ll	call	‘rich	meanings,’	in	a	way	that	can	make	the	
interpretational	possibility	operator	seem	like	an	unattractive	choice	of	primitive.	The	
Interpretationalist	Parsonian	needs	to	distinguish	between	acts	of	neo-Carnapian	language	
change	that	merely	change	application	of	the	word	‘set’	and	those	which	also	count	talking	
about	more	sets	vs.	beginning	to	use	the	word	‘set’	to	express	some	other	content.	For	
example,	they	can’t	allow	that	it’s	interpretationally	possible	that	‘there	are	two	sets	with	
exactly	the	same	elements,’	although	obviously	one	could	change	the	meanings	of	English	
words,	so	the	corresponding	sentence	expressed	a	truth.	And	presumably	the	current	

	

92	He	writes,	“	...when	we	develop	our	linguistic	practices,	we	have	some	degree	of	choice	
about	whether	or	not	to	allow	categories	to	overlap.	To	handle	mixed	identity	statements,	
we	often	need	conceptual	decisions,	not	just	factual	discoveries....	When	our	ancestors	first	
confronted	Caesar-style	questions	[i.e.,	questions	like	whether	Julius	Caesar	is	identical	to	
the	number	one],	they	had	a	choice	which	way	to	go;	and	this	choice	played	a	role	in	
shaping	the	concepts	that	they	thereby	forged.	Today	we	find	ourselves	in	a	different	
situation,	since	many	choices	are	already	implicit	in	the	linguistic	practices	that	we	have	
inherited.	Of	course,	insofar	as	we	are	willing	to	revise	these	practices,	we	still	have	the	
same	choice	as	our	ancestors	had.	But	we	face	an	important	additional	question	not	
encountered	by	our	pioneering	ancestors,	namely	what	conceptual	decisions	are	implicit	in	
our	inherited	linguistic	practices.	I	shall	argue	that	these	practices	have	by	and	large	
legislated	against	the	overlap	of	categories.	But	exceptions	are	certainly	possible	and	very	
likely	even	actual.”(Linnebo	2018b)	



meaning	of	the	word	‘set’	(perhaps	together	with	background	linguistic	conventions	and	
precedents)	is	what	does	this	work93.	

Accordingly,	Interpretationalist	Parsonians	seem	to	be	committed	to	our	words	like	set	
having	‘rich	meanings,’	which	specify	what’s	needed	to	preserve	the	meaning	of	a	word	(to	
continue	talking	about	sets)	under	some	neo-Carnapian	language	change	that	gets	us	to	
start	talking	in	terms	of	new	objects	(e.g.,	by	introducing	an	abstraction	principle).	

Now	I	admit	that	we	have	some	shared	and	correlated	intuitions	about	how	the	meaning	of	
the	terms	‘set’	and	‘element’	could	be	preserved	neo-Carnapian	language	change.	However,	
it	seems	to	me	that	such	agreement	is	limited	and	vexed	in	the	same	ways	as	agreement	on	
the	right	way	to	expand	the	meaning	of	your	terms	for	the	purposes	of	engaging	with	a	
metaphor.	

For	example,	I	take	it	that	most	people	might	agree	that	saying	the	leader	of	a	country	is	its	
‘head’	is	a	reasonable	way	to	preserve/honor	the	current/literal	meaning	of	the	term	‘head’	
in	a	metaphorical	context	which	invites	us	to	apply	human	anatomical	language	to	parts	or	
aspects	of	a	country.	But	this	limited	agreement	doesn’t	provide	(or	evidence)	shared	
understanding	of	a	sufficiently	precise	and	concretely	grasped	notion	of	metaphorical	truth	
(or	possibility)	to	make	the	latter	concept	an	attractive	choice	of	primitive	when	logically	
regimenting	mathematics.	

Our	intuitions	about	rich	meanings,	even	in	the	Interpretationalist’s	key	case	of	the	
concepts	set	and	element	can	seem	similarly	limited.	I	take	it	that	most	people	would	agree	
that	if	we	think	in	terms	of	more	sets,	it’s	natural	to	suppose	these	sets	would	still	have	to	
satisfy	extensionality.	But	suppose	I	am	currently	thinking	in	terms	of	certain	hierarchy	of	
sets	𝑉, .	If	I	were	to	adopt	an	abstraction	principle	which	adds	an	extra	layer	of	‘sets,’	would	
this	really	be	a	way	of	thinking	in	terms	of	more	sets	(on	my	current	meaning	of	the	term),	
as	the	Parsonian	account	needs?	It	seems	equally	or	more	natural	to	me	to	say	that,	after	
making	this	switch,	only	the	‘sets’	up	to	𝑉, 	are	sets	on	my	current	sense	of	the	term,	and	
when	expanding	my	quantifiers	in	the	way	suggested	I	have	instead	got	the	word	“set”	to	

	

93	An	analogous	argument	can	be	made	even	if	we	assume	that	interpretational	possibility	
must	satisfy	Studd’s	Maximality	and	Stability	assumptions.	For	(if	you	accept	the	neo-
Carnapian	view	at	all)	it’s	intuitively	possible	to	change	your	language/thought	so	as	to	add	
a	new	object	to	the	extension	of	‘set’	and	not	the	extension	of	‘element’	(so,	given	that	we’re	
already	talking	in	terms	of	empty	set,	the	extensionality	axiom	begins	to	express	a	
falsehood).	But	the	interpretationalist	can’t	allow	that	it’s	interpretationally	possible	for	
there	to	be	two	sets	with	exactly	the	same	elements	(If	the	interpretational	Parsonian	
allowed	this,	their	paraphrases	of	the	axiom	of	extensionality	coming	out	false).	Thus,	there	
must	be	some	reason	that	changing	your	language	use	in	the	way	indicated	above	only	says	
something	about	how	one	could	change	the	meaning	of	the	word	‘set’	and	not	about	what	
sets	it	would	be	interpretationally	possible	for	there	to	be.	And	presumably	the	current	
meaning	of	the	word	‘set’	is	what	does	this	work.	



express	a	new	concept	like	‘class.’	Note	that,	e.g.,	the	new	sets	thus	introduced	won’t	satisfy	
the	pairing	axiom.	

5.6.2.1 Object Identity under Neo-Carnapian Language Change 

A	similar	point	about	interpretational	possibility	facts	being	seemingly	controversial	
and/or	indeterminate	may	arise	in	connection	to	judgements	about	object	preservation	
under	neo-Carnapian	language	change.	Linnebo	and	Studd	can	seem	to	endorse	generally	
determinate	facts	about	when	different	sequences	of	abstraction	principles	wind	up	
introducing	the	same	object94	

Yet	it	can	seem	implausible	that	there	are,	in	general,	such	determinate	facts	about	when	
adopting	one	sequence	of	abstraction	principles	introduces	the	same	entity	you	could	have	
introduced	by	some	other	sequence	of	abstraction	principles.	

For	example,	are	the	objects	you	would	have	introduced	by	introducing	the	concept	of	
‘Turing	degrees’	by	abstraction	over	computations	formalized	using	Turing	machines	
literally	the	same	entities	as	those	introduced	via	abstraction	over	computations	formalized	
using	general	recursive	functions?	And	suppose	someone	introduces	a	concept	of	‘Turing	
degrees’	via	abstraction	principles	involving	an	unspecified	notion	of	one	set	of	numbers	
being	‘computable	from’	another	which	is	equally	anchored	to	both	definitions	of	
computability.	Is	this	a	way	of	introducing	literally	the	same	entities	you	could	have	
introduced	by	introducing	‘Turing	degrees’	in	one	of	the	two	ways	mentioned	above	(or	
merely	some	isomorphically	structured	mathematical	objects)?	

We	do,	sometimes,	say	that	people	whose	mathematical	definitions	differ	slightly	from	ours	
can	‘know	things	about’	structures	like	the	natural	numbers	or	Turing	degrees.	But	
arguably	what’s	required	for	such	claims	to	be	true	is	highly	indeterminate	and/or	context	
dependent.	For	example,	in	most	situations	it	seems	reasonable	to	describe	people	who	
know	that	some	claim	𝜙	holds	for	any	of	the	Turing-degree-like	mathematical	structures	
introduced	by	any	of	the	acts	of	abstraction	above	as	knowing	something	‘about	the	Turing	
degrees.’	However,	in	contexts	in	which	the	equivalence	of	Turing	machines	and	general	

	

94	For	example,	in	motivating	a	certain	convergence	assumption	about	interpretational	
possibility	Linnebo	writes:	

“This	principle	ensures	that,	whenever	we	have	a	choice	about	which	entities	to	
introduce,	the	order	in	which	we	choose	to	proceed	is	irrelevant.	Whichever	
entity	we	choose	to	introduce	first,	the	others	can	always	be	introduced	later.	
Unless	≤	was	convergent,	our	choice	about	whether	to	extend	the	ontology	of	𝑤@	
to	that	of	𝑤(	or	that	of	𝑤&	would	have	an	enduring	effect.”	

.	



recursive	functions	can’t	be	assumed	as	background	knowledge,	we	may	draw	finer	
distinctions95.	

And	note	that	many	philosophers	like	McGee(McGee	1997b)	find	it	positively	attractive	to	
say	that	reference	for	abstract	terms	like	natural	number	(a	paradigmatic	case	of	objects	
Linnebo	and	others	want	to	say	are	supposed	to	be	introduced	via	abstraction	principles)	is	
only	determinate	up	to	isomorphism.	Thus,	we	appear	to	have	another	dimension	along	
which	it	seems	that	facts	about	interpretational	possibility	must	be	controversial,	arbitrary	
and/or	indeterminate.	

5.6.2.2 Veil-lifting Picture 

Admittedly,	there	is	a	certain	picture	which	might	motivate	thinking	there	are	principled	
determinate	answers	to	the	questions	about	rich	meaning	and	the	identity	of	objects	
introduced	by	abstraction	principles	above.	However,	this	picture	has	other,	very	
unattractive	features.	I	will	conclude	this	subsection	by	discussing	it,	although	I	don’t	mean	
to	claim	Linnebo	or	Studd	would	endorse	it96.	My	point	is	only	that,	unless	we	take	
everyone	to	be	unveiling	portions	of	some	shared	total	world	(in	the	sense	sketched	
below),	it’s	unclear	what	would	explain	there	always	being	definite	facts	about	which	
Carnapian	language	changes	preserve	the	meaning	of	predicates	or	wind	up	introducing	
the	same	object.	

Veil	Lifting	Picture:	There’s	a	shared	total	world	containing	all	the	different	
kinds	of	objects	anyone	could	ever	talk	in	terms	of.	The	meaning	of	each	atomic	
predicate	or	relation	determines	its	extension	within	this	total	universe.	Acts	of	
neo-Carnapian	language	change	‘get	you	to	talk	in	terms	of	more’	objects	by	lifting	
parts	of	the	veil’	covering	a	plentiful	universe,	expanding	the	domain	of	objects	
your	quantifiers	ranger	over	to	include	more	things.	You	can’t	ever	reach	a	point	
at	which	you	couldn’t	expand	your	quantifiers	further.	But	this	is	just	because	(for	
some	reason)	no	series	of	linguistic	acts	could	lift	the	veil	completely,	so	that	your	
quantifiers	would	range	over	absolutely	all	objects	that	one	could,	in	principle,	
talk	in	terms	of.	

If	we	take	this	picture	of	neo-Carnapian	language	change	as	quantifier	restriction	lifting	
seriously,	we	automatically	get	the	required	rich	meanings	(determinate	facts	about	how	
each	property	we	currently	talk	in	terms	of	will	apply	under	quantifier	meaning	shift)	and	
determinate	facts	about	which	acts	of	re-conceptualization	by	adopting	abstraction	
principles	would	introduce	the	same	objects.	For	example,	there	will,	prima	facie,	be	

	

95	Also	it’s	appealing	to	say	that	a	pair	of	people	who	identify	the	numbers	with	different	𝜔-
sequences	of	sets	(a	la	Benaceraff’s	famous	paper(Benacerraf	1973))	both	still	‘know	things	
about	the	numbers.’	But	one	can’t	say	this	is	true	in	virtue	of	them	literally	talking	about	
the	same	objects/numbers,	since	the	number	3	can’t	be	identical	to	two	different	sets.	

96	Both	certainly	say	that	they	mean	interpretational	possibility	to	reflect	an	expansionary	
modality	rather	than	mere	removing	of	quantifier	restrictions	from	some	fixed	universe.	



determinate	facts	about	whether	people	who	‘push	back	the	veil’	by	introducing	‘Turing	
degrees’	via	abstraction	over	what	general	recursive	functions	are	unveiling	the	same	
objects.	

However,	endorsing	general	determinate	facts	of	this	kind	can	seem	unattractive	(as	noted	
above).	And	the	note	that	this	veil	lifting	picture	adds	a	presumption	of	determinacy	which	
goes	beyond	traditional	metaphors	for	neo-Carnapian	language	change,	on	which	‘different	
languages	carve	up	the	world	into	objects	in	different	ways’97	And	in	Chapter	7	I	will	
propose	a	more	concrete	approach	to	neo-Carnapian	language	change	which	also	avoids	
this	presumption	of	determinacy.	

One	might	even	fear	that	adopting	this	veil	lifting	undermine	the	motivations	for	
Potentialism	discussed	in	§1.2.	For	on	the	veil-lifting	picture	it	appears	there’s	some	shared	
ineffable	domain	of	all	objects	which	all	neo-Carnapian	language	shifts	correspond	to	
quantifying	over	portions	of;	we	just	can’t	succeed	in	forcing	our	quantifiers	to	be	
interpreted	as	ranging	over	all	this	structure.	But	the	intuition	driving	Potentialism	in	§1.2	
was	that	for	any	actual	plurality	of	objects	there	could	be	a	larger	one,	not	just	that	any	for	
plurality	of	objects	we	can	get	our	quantifiers	to	range	over	there	could	be	a	larger	one.	So,	I	
think	it’s	desirable	to	avoid	the	above	veil	lifting	picture	if	we	can.	

So,	to	summarize,	facts	about	interpretational	possibility	can	seem	unprincipled	(not	joint	
carving),	non-fundamental,	disputed,	and/or	frequently	indeterminate	in	ways	that	make	
interpretational	possibility	an	unattractive	primitive	for	mathematical	or	philosophical	
analysis.	

5.6.3 Double Duty 

5.6.3.1 The Problem 

Finally,	a	third	challenge	for	Parsonians	concerns	the	double	duty	set	talk	is	supposed	to	
play	in	Parsonian	theories.	

Recall	that	the	Putnamian	potentialist	never	employs	a	predicate	‘set’	in	her	logical	
regimentations	of	set-theoretic	talk.	Thus,	she	could	deny	that	there	is	a	property	of	being	a	
set.	Or	if	she	does	accept	such	a	notion,	she	can	say	that	it	has	an	empty	extension,	for	the	
same	reason	‘phlogiston’	does	(sets	are	objects	hypothesized	by	the	wrong	account	of	what	
set	theory	teaches	us	about).	

	

97	If	I	carve	up	some	dough	one	way,	but	I	could	have	carved	it	up	another	way,	we	don’t	
seem	forced	to	accept	determinate	de	re	facts	about	whether	a	certain	cookie	brought	into	
being	by	one	carving	could	instead	have	been	brought	into	being	by	another	carving	and	
backing	sequence.	A	metaphysician	like	Kripke	might	choose	to	directly	endorse	such	facts.	
But	they	might	equally	well	analyze	such	facts	away	in	terms	of	claims	about	contextually	
relevant	counterparts,	like	Lewis.	Or	they	might	choose	to	reject	such	questions	as	
meaningless	(as	Quine	does	in	rejecting	quantifying	in).	



In	contrast,	the	Parsonian	takes	ordinary	mathematical	usage	to	have	given	‘set’	a	definite	
meaning	—	enough	that	there	are	definite	(non-trivial)	facts	about	how	tall	a	hierarchy	of	
sets	actually	exists/mathematicians	are	currently	thinking	in	terms	of.	But	it	can	seem	
puzzling	how	mathematicians’	set-theoretic	talk	can	do	this	while	simultaneously	being	
best	understood	in	a	potentialist	fashion.	How	can	such	talk	determine	what	height	
actualist	hierarchy	of	sets	they	are	thinking	in	terms	of	(in	any	principled	fashion)?	

For	Interpretationalist	Parsonians,	the	challenge	looks	like	this.	In	what	sense	can	someone	
said	to	be	‘thinking	in	terms	of’	any	hierarchy	of	actualist	sets	with	height	𝛼,	if	their	set	talk	
should	always	be	interpreted	potentialistically?	How	many	sets	are	Linnebo	and	Studd	
currently	thinking	in	terms	of?	And	what	principled	grounds	are	there	for	the	answer	to	
this	question?	

To	me	it	seems	like	the	obvious	thing	to	say	is	that	we	(potentialist	philosophers	and	
mathematicians	speaking	in	normal	contexts	where	they	should	be	understood	
potentialistically)	aren’t	currently	thinking	in	terms	of	any	sets	–	that	the	interpretational	
possibility	of	some	sets	existing	reflects	what’s	possible	via	a	quite	different	linguistic	
practice	where	someone	would	take	the	sets	to	stop	at	a	definite	point.	But	Linnebo	and	
Studd	don’t	seem	to	say	this.	

To	press	this	worry	(and	further	clarify	Studd’s	notion	of	interpretational	possibility),	I	will	
now	discuss	Studd’s	story	about	our	set-theoretic	practice	might	unknowingly	get	our	
quantifiers	to	range	over	more	and	more	sets.	It	seems	to	me	that	if	this	story	worked	it	
might	attractively	answer	the	challenge	above	:	providing	a	principled	account	of	how	
many	sets	mathematicians	are	currently	thinking	in	terms	of.	However,	I	will	argue	that	it	
does	not	work,	so	the	double	duty	problem	remains.	

5.6.3.2 Studd on Expansion and Actual Set Theory 

In	Chapter	8	of	(Studd	2019)	Studd	sketches	a	story	about	how	people	with	a	set-theoretic	
practice	like	ours	could	unknowingly	change	their	quantifier	meanings	and	come	to	talk	in	
terms	of	a	progressively	larger	actualist	hierarchy	of	sets.	

Studd	first	considers	a	situation	where	people	knowingly	start	talking	and	thinking	in	terms	
of	extra	sets.	Imagine	that	some	people	start	out	speaking	a	language	Q.	Then	they	decide	to	
split	off	from	the	main	body	of	Q	speakers	and	develop	a	new	language	E,	which	‘talks	in	
terms	of’	extra	sets.	

To	do	this	they	adopt	certain	principles,	most	importantly	the	inference	schemas	below	for	
reasoning	from	claims	in	the	old	language	Q	(indicated	below	by	putting	‘Q:’	in	front	of	
them)	to	claims	in	the	new	language	E	(indicated	below	by	putting	‘E:’	in	front	of	them),	
and	vice	versa.	.	

(𝑈D −·)	

𝑄: 𝑡ℎ𝑖𝑛𝑔𝑠(𝑣𝑣) ⇒ 𝐸: 𝑡ℎ𝑖𝑛𝑔(𝑣𝑣)	

𝑄: 𝑡ℎ𝑖𝑛𝑔𝑠(𝑣𝑣), 𝑄: 𝑣 ≺ 𝑣𝑣 ⇒ 𝐸: 𝑣 ∈ 𝑣𝑣	



𝑄: 𝑡ℎ𝑖𝑛𝑔𝑠(𝑣𝑣), 𝐸: 𝑣 ∈ 𝑣𝑣 ⇒ 𝑄: 𝑣 ≺ 𝑣𝑣	

Intuitively	these	schemas	embody	the	idea	that	each	plurality	𝑣𝑣	of	objects	quantified	over	
in	the	old	language	Q	is	supposed	to	form	a	set	in	the	new	language98.	Much	might	be	said	
about	such	exotic	principles.	Note,	for	example,	that	𝑣𝑣	is	a	plural	variable.	So,	we	aren’t	
reasoning	from	sentences	in	one	language	we	speak	to	another,	but	supposing	that	we	can	
(so	to	speak)	reach	out	and	catch	the	reference	of	a	free	variable	in	some	formula	in	one	
language,	by	a	formula	in	another	language.	But	I	take	the	general	picture	of	accepting	such	
inferences	forcing	a	charitable	interpreter	to	interpret	the	quantifiers	in	your	new	language	
E	as	ranging	over	strictly	more	objects	than	they	did	in	your	original	Q	to	be	clear.	And	I	
won’t	object	to	any	of	these	details	here.	My	objections	concern	the	next	part	of	the	story.	

With	this	background	in	place,	Studd	then	considers	how	we	can	charitably	interpret	
speakers	who	accept	something	like	the	inference	rules	above	but	have	subtly	incoherent	
beliefs99:	

𝑡ℎ𝑖𝑛𝑔𝑠(𝑣𝑣) ⇒ 𝑡ℎ𝑖𝑛𝑔(𝑣𝑣)	

𝑡ℎ𝑖𝑛𝑔𝑠(𝑣𝑣), 𝑣 ≺ 𝑣𝑣 ⇒ 𝑣 ∈ 𝑣𝑣	

𝑡ℎ𝑖𝑛𝑔𝑠(𝑣𝑣), 𝑣 ∈ 𝑣𝑣 ⇒ 𝑣 ≺ 𝑣𝑣	

The	above	inference	principles	let	you	infer	that,	for	any	plurality	of	things	𝑣𝑣,	there’s	a	set	
𝑣𝑣	whose	elements	are	exactly	the	objects	𝑣	in	this	plurality	𝑣𝑣	(written	𝑣 ≺ 𝑣𝑣).	Thus,	
accepting	it	(together	with	normal	plural	comprehension	principles	saying	that	for	any	𝜙	
there’s	a	plurality	𝑣𝑣	of	the	objects	such	that	𝜙𝑣	)	lets	you	derive	the	existence	of	the	
Russell	set	and	hence	contradiction.	

Studd	argues	that	these	speakers	could	undergo	a	kind	of	unwitting	quantifier	meaning	
change,	for	the	following	reason.	In	general,	a	charitable	interpreter	can	try	to	
accommodate	a	speaker’s	reasoning	by	changing	the	domain	of	objects	they	take	the	
speaker	to	quantify	over100	and	the	language	they	take	them	to	be	speaking.	In	this	case,	
Studd	suggests,	charitable	interpretation	might	take	the	speaker	to	be	going	through	
something	analogous	to	the	language	switch	from	Q	to	E	envisaged	above.	And	if	meaning	
reflects	charitable	interpretation,	then	we	can	have	a	kind	of	unwitting	quantifier	meaning	
expansion	in	this	way.	

This	is,	I	take	it,	Studd’s	proposal	for	how	it	could	be	true	that	(unbeknownst	to	us)	our	
current	quantifiers	range	over	some	steadily	growing	range	of	sets.	He	puts	it	forwards	as	

	

98	See	page	235	

99	See	pg	239	

100	Studd	gives	this	example,	“I	utter	‘52%	of	people	voted	for	Brexit’	and	we	immediately	
limit	the	domain	to	exclude	those	who	didn’t	turn	out	or	were	ineligible	to	vote’’	



the	“basis	for	an	idealized	account	of	universe	expansion	applicable	to	the	ordinary	English	
speaker.”	I	have	the	following	concerns.	

First,	surely	we	don’t	actually,	after	the	discovery	of	Russell’s	paradox,	have	the	disposition	
to	infer	that	arbitrary	pluralities	form	a	set.	

Second,	and	perhaps	most	importantly	as	regards	answering	the	double	duty	problem,	
Studd’s	story	doesn’t	suggest	any	principled	answer	to	when	and	how	quickly	speakers	are	
supposed	to	go	through	language	change	events	he	proposes.	How	often	would	the	
charitable	interpreter	say	that	someone	with	the	inference	dispositions	above	has	switched	
languages	(every	5	minutes?	every	10	minutes?).	If	I	lie	around,	having	the	inconsistent	
inference	dispositions	Studd	mentions	and	not	thinking	about	set	theory	for	an	hour,	how	
many	times	should	the	charitable	interpreter	take	my	language	to	have	changed	during	
that	time?	Insofar	as	standing	dispositions	to	make	inferences	(or	regard	failure	to	make	
inferences	as	irrational)	drive	the	above	charitable	interpretation,	it	is	hard	to	see	how	one	
could	give	any	non-arbitrary	answer	to	the	above	question.	

Third,	it’s	not	clear	whether	the	balance	of	charitable	interpretation	favors	Studd’s	strategy,	
once	we	fill	in	relevant	speakers’	other	inference	dispositions	in	a	realistic	way.	For	one	
thing,	people	are	disposed	to	interpret	things	they	wrote	yesterday	homophonically	and	
assume	that	the	truth	value	of	sentences	depending	on	the	height	of	the	sets	doesn’t	change	
from	day	to	date.	But	Studd’s	favored	charitable	interpretation	would	make	this	trans-
language	inference	schema	fail.	

For	another	thing,	it	seems	to	me	there’s	a	dilemma	about	what	different	stages	of	growth	
in	the	hierarchy	of	sets	are	supposed	to	look	like.	If	the	hierarchy	of	sets	grows	one	layer	at	
a	time,	then	it	looks	like	reinterpreting	someone	as	talking	about	a	larger	hierarchy	will	
sometimes	be	very	uncharitable.	For	example,	doesn’t	going	from	interpreting	someone	as	
talking	about	𝑉*	to	𝑉*+(	make	various	things	they	believe	like	the	pairing	axiom	come	out	
wrong?	

But	if	we	avoid	this	problem	by	saying	that	each	reinterpretation	of	set-theoretic	talk	must	
interpret	people	as	quantifying	over	a	domain	of	objects	satisfying	something	like	𝑍𝐹𝐶&,	we	
will	‘ascend	in	big	leaps’	like	Hellman	rather	than	in	single	steps	as	Linnebo	and	I	prefer,	
and	face	the	inconveniences	discussed	in	Chapter	3.2.1.	

Also,	at	the	risk	of	sounding	crude,	why	isn’t	Putnamian	Potentialism	(which,	as	we	saw,	
Studd	acknowledges	the	acceptability	of)	a	more	charitable	interpretation	than	any	of	
these?	Why	isn’t	the	Parsonian	interpretation	itself	a	better	interpretation	of	the	speakers	
accepting	incoherent	inference	procedures	Studd	imagines?	

So,	overall,	I	don’t	how	to	get	any	clear	attractive	answer	to	the	question	‘how	many	
actualist	sets	am	I	currently	thinking	in	terms	of?’	from	Studd’s	account.	

5.7 Conclusion 

In	this	chapter	I’ve	discussed	the	differences	between	Putnamian	and	Parsonian	
approaches	to	Potentialism	and	reviewed	some	major	forms	of	Parsonian	Potentialism.	



I’ve	then	tried	to	justify	my	use	of	a	Putnamian	framework	to	Parsonian	readers	who	may	
find	it	unfamiliar.	I’ve	argued	that	Parsonians	can	and	should	accept	the	meaningfulness	of	
basic	concepts	like	logical	possibility	and	can	likely	use	my	Putnamian	version	of	
Replacement	to	further	justify	their	version	of	Replacement	(at	least	to	some	extent).	I’ve	
also	(loosely)	indicated	the	reasons	why	working	in	the	Putnamian	system	will	be	
practically	useful.	

More	tentatively,	I’ve	argued	that	we	should	favor	Putnamian	over	Parsonian	approaches	
to	potentialist	set	theory	on	approximately	the	following	grounds.	

First,	Putnamian	Potentialism	can	be	developed	using	a	joint	carving	notion	of	logical	
possibility	which	everyone	has	reason	to	accept	(and	Putnamians	have	extra	reason	to	
accept).	Thus	(Interpretationalist)	Parsonian	set	theory	can	seem	unparsimonious	and	
needlessly	revisionary,	insofar	as	it	requires	adding	an	interpretational	possibility	operator	
to	our	ideology	and	make	certain	otherwise	unneeded	revisions	to	our	philosophy	of	
language	(denying	that	‘precise	intensions	always	determine	precise	extensions’).	

Second,	the	notion	of	interpretational	possibility	can	seem	like	an	unattractive	choice	of	
theoretical	primitive.	For	facts	about	interpretational	possibility	generally	would	seem	to	
be	frequently	indeterminate,	highly	disputed	and/or	unprincipled	facts.	And	Linnebo	and	
Studd’s	particular	versions	of	this	concept	can	seem	ad	hoc	restricted	to	allow	assumptions	
needed	to	justify	set	theory.	Thus,	one	might	favor	Parsonian	Potentialism	on	grounds	of	
conceptual	parsimony.	There	is	also	a	worry	that	the	Putnamian	potentialist	needs	to	—	in	
effect	—	invoke	a	Putnamian	approach	to	the	ordinals	(a	notion	of	arbitrary	sequences	
reconceptualization	events	satisfying	the	axioms	for	being	a	well	ordering),	in	which	case	
adding	a	philosophically	different	Parsonian	approach	to	the	sets	seems	particularly	
unmotivated.	

Third	Parsonians	faced	a	‘double	duty’	problem	which	Parsonian	views	avoid.	For	example,	
Interpretationalist	Parsonians	face	awkwardness	about	how	to	answer	the	question	‘how	
many	sets	are	you	currently	thinking	in	terms	of?’	that	is	not	answered	by	Studd’s	picture	
of	unintentional	language	change.	

In	closing	I	will	mention	three,	weaker,	motivations	for	favoring	the	Putnamian	approach	.	

First,	Putnamian	paraphrases	promise	to	make	the	intuitively	close	relationship	between	
math	and	logic	explicit	(specifically	the	notion	of	logical	possibility	interdefinable	with	
entailment).	

Second,	the	practical	convenience	of	working	in	a	Putnamian	framework	(and	cashing	out	
set	theory	in	terms	of	logical	possibility)	discussed	in	section	5.5.2,	might	be	taken	as	
evidence	for	the	philosophical	correctness	of	this	approach.	Going	Putnamian	promises	to	
let	us	rationally	reconstruct	the	justification	for	our	set-theoretic	beliefs	from	premises	that	
seem	clearly	true	more	directly,	using	fewer	primitives.	

Third,	(although	I	personally	think	we	should	accept	a	broadly	neo-Carnapian	philosophy	
of	language),	it’s	worth	noting	that	Putnamian	potentialist	set	theory	doesn’t	require	us	to	
accept	this	controversial	philosophical	thesis	while	(Interpretationalist)	Parsonianism	



does101.	Thus,	philosophers	who	reject	such	neo-Carnapian	philosophy	of	language	will	
certainly	favor	the	Putnamian	approach	over	the	Interpretationalist	Parsonian	one.	And	
perhaps	the	same	goes	for	philosophers	who	would	prefer	to	leave	few	‘hostages	to	
fortune’	and	avoiding	entangling	the	philosophy	of	set	theory	with	unrelated	philosophical	
controversies.	

Part II  
In	Part	I	we	discussed	some	existing	potentialist	and	actualist	approaches	to	the	
foundations	of	set	theory	and	noted	some	problems	for	them.	

In	Part	II	of	this	book,	I	will	develop	my	particular	version	of	(Putnamian)	Potentialist	set	
theory	using	conditional	logical	possibility	and	argue	that	it	lets	us	avoid	many	of	the	
problems	discussed	above.	As	we	have	seen,	potentialist	paraphrases	of	set	theory	make	
claims	about	how	it	would	be	(in	some	sense)	possible	to	extend	an	initial	segment	of	the	
hierarchy	of	sets.	

First	I	will	flesh	out	the	informal	summary	given	in	Chapter	4	of	how	conditional	logical	
possibility	(and	first-order	logic)	lets	us	formulate	a	version	of	Putnam’s	potentialist	set	
theory	which	differs	from,	and	simplifies,	Hellman’s	formulation.	Then	I’ll	provide	a	set	of	
axioms	for	conditional	logical	possibility,	arguing	for	the	truth	of	these	axioms	and	showing	
they	justify	mathematician’s	use	of	the	ZFC	axioms.	

Chapter 6 Purified Potentialist Set Theory: An Informal Sketch 

In	this	chapter	I	will	informally	present	my	preferred	version	of	potentialist	set	theory	
(using	the	notion	of	conditional	logical	possibility)	and	clarify	some	philosophical	issues	
about	it.	

I	will	employ	a	version	of	Putnam’s	approach,	but	appeal	to	logical	possibility	specifically	
(much	as	Hellman	does)	rather	than	metaphysical	possibility.	So,	when	I	say	that	it	would	
be	possible	to	have	an	initial	segment	𝑉,	I	will	mean	(something	like)	that	it	would	be	
logically	possible	for	the	objects	satisfy	‘is	a	penciled	point,’	‘is	connected	by	an	arrow’	to	
form	an	intended-width	initial	segment	of	sets	when	considered	under	these	relations102.	

	

101	The	interpretational	Parsonian	can’t	mean	interpretional	possibility	in	the	familiar	
Tarskian	sense	where	all	interpretations	choose	their	domains	from	among	some	fixed	
universe	of	objects,	otherwise	we	will	have	a	maximum	size	which	all	interpretations	of	the	
sets	have	to	be	found	within.	On	such	a	view	actualists	apparent	commitment	to	an	
arbitrary	stopping	points,	which	potentialism	promised	to	let	us	avoid,	seems	to	get	
dragged	back	in.	

102	So,	for	example,	although	I	may	casually	talk	about	the	possible	existence	of	initial	
segment	structures	𝑉< ,	I	don’t	mean	to	assert	that	there	are	(or	could	be)	special	objects	
called	structures,	as	e.g.,	Shapiro	does.	Or	at	least,	I	don’t	want	to	say	that	we	need	such	
	



By	using	non-mathematical	relations,	we	avoid	having	to	presume	there	is	an	antecedently	
meaningful	notion	of	set	or	other	mathematical	relation.	

I’ll	now	give	the	details	of	this	proposal.	

6.1 Two Sorted Initial Segment Structures 

I	will	only	require	my	iterative	hierarchies	to	satisfy	IHW,	not	𝑍𝐹𝐶&	as	Hellman	does,	for	
the	reasons	discussed	in	§3.2.	Doing	this	makes	it	convenient	to	admit	the	levels	in	our	
hierarchies	of	sets	as	primitive	objects	in	their	own	right	rather	than	rely	on	the	(non-
obvious)	fact	that	Von	Neumann	ordinals	can	serve	that	function	inside	the	sets.	So,	my	
iterative	hierarchies	will	have	two	kinds	of	(first-order)	objects	playing	two	different	roles:	
those	of	sets	and	ordinal	levels.	With	sets	being	related	to	one	another	by	elementhood,	
ordinal	levels	being	related	to	one	another	by	less	than,	and	every	set	being	‘available	at’	
some	ordinal	level.	To	reiterate,	on	my	current	way	of	talking	the	ordinals	are	not	
themselves	sets103.	

Thus,	I	will	employ	five	relations	(any	relations	of	the	right	arity	will	do)	to	characterize	the	
notion	of	initial	segment:	two	one	place	relations	set( )	and	ord( )	identifying	the	
objects	playing	the	role	of	the	sets	and	ordinals,	and	three	two	place	relations	playing	the	
roles	of	∈,	<	(ordinal	ordering)	and	@	(‘is	available	at,’	where	a	set	𝑥	is	available	at	an	
ordinal	𝑠	if	it	has	been	constructed	at	or	before	stage	𝑠).	

So,	for	example,	we	might	use	the	following	first-order	properties	and	relations:	...	is	a	
penciled	point,	...is	a	penciled	star,	...is	connected	to...	by	a	dotted/dashed/solid	arrow.	

I	will	define	a	formula	𝒱(set,ord, <, ∈,@)	which	asserts	the	relations	set,ord, <, ∈,@	apply	
to	a	objects	in	such	a	way	as	to	satisfy	our	conception	IHW	(described	above	in	definition	
Definition	1.1)	of	an	initial	segment	of	sets.	See	Definition	A.2	for	a	fully	formal	definition.	
For	brevity	I	will	often	simply	call	these	initial	segments.	

6.2 Structure Preserving Not Object Preserving Extensibility  

I	will	use	the	notion	of	conditional	logical	possibility	to	talk	about	how	one	hierarchy	of	sets	
like	structure	could	extend	another.	

	

objects	to	understand	set	theory.	All	talk	about	’the	possibility	of	a	structure	existing’,	in	the	
potentialist	paraphrase	strategy	above	is	merely	shorthand	for	claims	about	the	possibility	
of	there	being	objects	which	instantiate	specific	non-mathematical	first-order	predicates	
and	relations	in	a	certain	way.	

103	Of	course,	should	one	desire,	one	can	prove	that	my	ordinals	can	be	uniquely	identified	
with	the	sets	forming	the	Von	Neumann	ordinals	in	my	system.	



I	will	define	a	formula	𝑉- ≥ 𝑉	which	says	that	one	initial	segment	extends	another,	where	𝑉	
abbreviates	a	list	of	relations	set,ord, <, ∈,@	and	𝑉-	abbreviates	set-, ord-, <-, ∈- @.104	

Now	we	can	say	that	it’s	logically	possible	for	an	initial	segment	𝑉	to	extended	by	an	initial	
segment	𝑉-	by	simple	holding	fixed	(the	relations	in)	𝑉.	I	adopt	the	following	abbreviation	
for	this	frequently	used	expression.	

◊ (E 𝑉′ ≥ 𝑉) ↔
def
	 ◊ (set,ord,∈,G,@ 𝑉′ ≥ 𝑉)		

This	might	be	read	as	saying105	that	it’s	logically	possible	(holding	fixed	the	structure	of	𝑉)	
for	another	initial	segment	𝑉-	to	extend	𝑉.	

6.3 Assignment Functions and Hierarchies 

To	completely	eliminate	quantifying	in,	I	won’t	just	think	about	how	initial	segments	can	be	
extended,	but	rather	how	initial	segments	augmented	with	a	’function’	representing	an	
assignment	of	variables	to	sets	can	be	extended.	Thus,	rather	than	talking	about	what’s	
possible	given	an	initial	segment	𝑉	and	the	object	bound	to	the	variable	𝑥	as	Hellman	
would,	I	talk	about	what’s	possible	given	an	initial	segment	𝑉	and	an	assignment	function	𝜌,	
where	𝜌(⌜𝑥⌝)	is	meant	to	capture	the	assignment	of	the	variable	‘𝑥.’	

In	particular,	I’ll	associate	each	initial	segment	𝑉	with	a	copy	of	the	natural	numbers	ℕ	
(shared	between	all	initial	segments106)	and	an	assignment	function	𝜌	assigning	numbers	
to	sets	in	that	initial	segment.	Call	the	resulting	structure	an	interpreted	initial	segment	
(see	Definition	A.5	for	a	formal	definition).	And	let	𝒱 ⃗ ;𝑉 ⃗ D	abbreviates	the	conjunction	of	the	
requirement	that	𝑉	is	initial	segment,	ℕ	is	a	copy	of	the	natural	numbers	and	𝜌	is	a	function	
from	ℕ	to	the	sets	in	𝑉.	I	adopt	the	convention	of	using	variables	such	as	𝑉 ⃗ , 𝑉 ⃗ -	to	abbreviate	
corresponding	lists	of	relations	𝑉,ℕ, 𝜌	and	𝑉-, ℕ, 𝜌-.	

So,	recall	that	to	give	a	Hellman	style	potentialist	translation	of	a	sentence	like	
(∀𝑥)(∃𝑦)𝜙(𝑥, 𝑦)	where	𝜙	is	quantifier	free	we	want	to	say	something	like	this.	

It’s	logically	necessary	that	however	one	chooses	a	set	𝑥	from	an	initial	segment	
𝑉,	it’s	logically	possible	to	extend	this	𝑉	with	an	initial	segment	𝑉-	containing	a	set	
𝑦	making	𝜙(𝑥, 𝑦)	true.	

	

104	So	𝑉′ ≥ 𝑉	says	that	the	objects	satisfying	set′,ord′, < ′, ∈ ′@	form	an	intial	segment	
extending	the	initial	segment	formed	by	the	objects	satisfying	set,ord, <, ∈,@	.	

105	In	even	more	detail,	it	might	be	read	as	saying:	It’s	logically	possible	(given	the	structure	
of	the	pencil	points	and	arrows	etc.)	the	pen	points	and	arrows	etc.	form	an	initial	segment	
extending	an	initial	segment	structure	formed	by	the	pencil	points	and	arrows.	

106	That	is	held	fixed	by	our	conditional	logical	possibility	operators	when	we	talk	about	
possible	extensions.	



We	can	capture	the	same	content	as	the	above	sentence	as	follows107.	

□[𝒱 ⃗ ;𝑉 ⃗ D → ◊ [EII⃗ 𝑉 ⃗ ′ ≥
K
𝑉 ⃗ ∧ 𝜙(𝜌(⌜𝑥⌝), 𝜌′(⌜𝑦⌝))][∈/∈ ′]]	

Here	⌜𝑥⌝, ⌜𝑦⌝	are	objects	in	ℕ
108	coding	the	variables	‘𝑥’	and	‘𝑦.’	And	𝑉-    ⃗ 	extends	another	

ensemble	𝑉 ⃗ 	except	on	‘𝑦’	(written	𝑉 ⃗ -L$EII⃗ )	says	that	the	initial	segment	𝑉-	extends	𝑉,	we	hold	
ℕ,	𝑆	fixed,	and	the	assignment	function	𝜌-	maps	ℕ	to	the	sets	in	𝑉-	such	that	𝜌(𝑛) = 𝜌-(𝑛)	
for	all	numbers	𝑛	except	⌜𝑦⌝.	

Ignoring	the	details	for	the	moment,	the	key	insight	here	is	that	the	initial	logical	necessity	
operator	lets	𝜌	range	over	all	possible	relations,	so	the	consequent	must	hold	given	any	
possible	set	(position)	in	𝑉	chosen	by	𝜌(⌜𝑥⌝).	

So,	the	claim	above	says	(in	effect)	any	way	that	𝜌(⌜𝑥⌝)	could	choose	an	‘𝑥’	in	an	initial	
segment	𝑉,	it	would	be	logically	possible	freezing	this	choice,	to	have	an	extending	
interpreted	initial	segment	𝑉 ⃗ -	with	a	𝜌-	assigning	‘𝑦’	(and	keeping	the	existing	assignment	
of	‘𝑥’)	so	that	𝜙(𝑥, 𝑦)	holds	between	the	objects	assigned	to	‘𝑥’	and	‘𝑦’	respectively.	

6.4 The final product 

My	strategy	will	be	to	translate	the	set-theoretic	sentence	(∃𝑥)(∀𝑦)[𝑥 = 𝑦 ∨ ¬𝑦 ∈ 𝑥]	with	a	
potentialist	claim	about	what	is	conditionally	logically	possible,	given	the	structural	facts	
about	how	some	relations	set(, ∈( …𝜌(	apply	as	follows.	

With	the	definitions	above	in	place	we	can	give	a	translation	of	(∃𝑥)(∀𝑦)[𝑥 = 𝑦 ∨ ¬𝑦 ∈ 𝑥]	
as	follows	

◊ (𝒱 ⃗ ;𝑉 ⃗(D ∧ □ [EII⃗" 𝑉&   ⃗ ≥K 𝑉(   ⃗ →

𝜌&(⌜𝑥⌝) = 𝜌&(⌜𝑦⌝) ∨ ¬𝜌&(⌜𝑦⌝) ∈& 𝜌&(⌜𝑥⌝)])
	

However,	I’ll	make	one	final	tweak	to	the	strategy	illustrated	above,	to	allow	us	to	treat	
quantifiers	in	a	uniform	fashion.	In	the	above	examples	the	first	quantifier	had	to	be	treated	
in	a	special	manner	as	(the	relations	abbreviated	by)	𝑉 ⃗(	were	not	required	to	extend	any	𝑉 ⃗@.	
To	this	end,	our	translations	will	introduce	a	𝑉 ⃗ @	and	insist	that	𝑉 ⃗(	extend	𝑉 ⃗ @.	Thus,	for	
example,	my	official	translation	of	(∃𝑥)(∀𝑦)[𝑥 = 𝑦 ∨ ¬𝑦 ∈ 𝑥]	is	actually:	

□(𝒱 ⃗ ;𝑉 ⃗@D → ◊ (EII⃗% 𝑉 ⃗( ≥/ 𝑉 ⃗ @ ∧ □ [EII⃗" 𝑉 ⃗ & ≥K 𝑉 ⃗( →

𝜌&(⌜𝑥⌝) = 𝜌&(⌜𝑦⌝) ∨ ¬𝜌&(⌜𝑦⌝) ∈& 𝜌&(⌜𝑥⌝)])
	

	

107	Note,	here	I	use	functional	notation	for	𝜌	i.e.,	I	write	𝜌(𝑥) = 𝑦	rather	than	𝜌(𝑥, 𝑦)	

108	⌜𝑥⌝	is	represented	as	𝑆(𝑆(𝑆(…𝑆(0)))	for	some	number	of	successor	operators	and	0	s	
the	unique	element	of	ℕ	that	isn’t	a	successor	and	𝑆	is	a	relation	that	we	write	functionally.	



6.4.1 Recursive Definition of Potentialist Paraphrases 

I	will	now	describe	recursive	principles	which	let	us	translate	every	sentence	in	the	first-
order	language	of	set	theory	into	a	claim	about	logically	possible	extensibility.	

First,	we	define	a	partial	paraphrase	function	𝑡).	Intuitively,	𝑡)(𝜙)	transforms	a	set-
theoretic	formula	𝜙	into	a	potentialist	claim	about	the	possible	extensibility	of	the	
structure	𝑉),	where	free	variables	are	filled	in	by	the	assignment	function	𝜌)	(coded	by	our	
assignment	relation	𝑅)).	Informally,	the	idea	here	is	that	𝑡M(𝜙)	says	that	it	would	be	
possible	to	extend	the	𝑉 ⃗ M	structure	in	a	way	that	makes	the	potentialist	translation	of	𝜙	true	
relative	to	𝑉 ⃗M	(i.e.,	relative	to	the	assignment	of	variables	made	by	𝜌M	to	sets	in	𝑉M.	So,	for	
instance,	𝑡M((∃𝑥)[𝑥 ∈ 𝑦 → 𝑧 ∉ 𝑥]))	will	be	the	sentence	

◊ £𝑉N   ⃗ ≥x 𝑉M   ⃗ ∧ 𝜌N(⌜𝑥⌝) ∈ 𝜌N(⌜𝑦⌝) → 𝜌N(⌜𝑧⌝) ∉ 𝜌N(⌜𝑥⌝)¤E&IIII⃗ 	

Formally,	the	paraphrase	function	𝑡)	is	defined	as	follows.	

Definition	6.1	(Potentialist	Translation).		For	any	number	𝑛	and	set-theoretic	formula	𝜙	

• 𝑡)(𝑥< ∈ 𝑥C) = 𝜌)(⌜𝑥<⌝) ∈) 𝜌)(⌜𝑥C⌝))	

• 𝑡)(𝑥< = 𝑥C) = 𝜌)(⌜𝑥<⌝) = 𝜌(⌜𝑥C⌝))	

• 𝑡)(¬𝜙) = ¬𝑡)(𝜙)	

• 𝑡)(𝜙 ∨ 𝜓) = 𝑡)(𝜙) ∨ 𝑡)(𝜓)	

• 𝑡)(𝜙 ∧ 𝜓) = 𝑡)(𝜙) ∧ 𝑡)(𝜓)	

• 𝑡);(∀𝑥)𝜙(𝑥)D = □ ¥𝑉 ⃗)+( ≥x 𝑉 ⃗) → 𝑡)+((𝜙)¦E# .	

• 𝑡);(∃𝑥)𝜙(𝑥)D	is	the	claim	that	◊ ¥𝑉 ⃗)+( ≥x 𝑉 ⃗) ∧ 𝑡)+((𝜙)¦E# 	

The	translation	of	a	set-theoretic	sentence	𝜙	is	𝑡(𝜙) = [𝒱(𝑉@) → 𝑡@(𝜙))]	

In	the	above	definition	recall	that	□EII⃗# 	(◊EII⃗# )	abbreviates	a	claim	about	what	is	logically	
necessary/possible	holding	fixed	the	facts	about	set), ∈), ord), @), ≤), ℕ, 𝑆, 𝜌)	

In	what	follows,	I	will,	consistent	with	our	general	policy	for	functions,	write	𝜙;𝜌)(⌜𝑥<⌝)D	
to	abbreviate	claims	of	the	form	(∃𝑘)𝜌)(𝐢, 𝑘) ∧ 𝜙(𝑘).	Moreover,	since	I	will	always	
subscript	all	the	relations	𝜌), ℕ, 𝑆	whenever	I	subscript	𝜌)	I	will	assume	that	any	 	or	◊	
subscripting	𝜌)	actually	subscripts	𝜌), ℕ, 𝑆.	

6.4.2 Equivalence of Approaches 

It’s	useful	to	observe	that	my	choice	to	add	a	base	initial	segment	𝑉 ⃗ @	into	my	translations	is	
purely	a	matter	of	convenience	as	the	two	translation	schemas	turn	out	to	be	logically	
equivalent	in	my	system.	



So,	for	example,	the	straightforward	paraphrase	for	∃𝑥𝜙(𝑥)	would	be	

◊ ��𝒱;𝑉 ⃗(D ∧ 𝑡(;𝜙(𝑥)D��	

and	this	is	(in	the	formal	system	I	propose)	logically	equivalent	to	my	official	paraphrase	
for	∃𝑥𝜙(𝑥)	

;𝒱(𝑉@) → ◊ ¥𝑉 ⃗( ≥ 𝑉 ⃗ @ ∧ 𝑡((𝜙)¦E% D	

See	lemmas	Lemma		L.6	and	Lemma	L.7	in	section	L	of	the	online	appendix	for	a	proof	of	
this	equivalence.	

6.5 Atomic Predicate Use Reducing Trick 

One	final	question	which	naturally	arises	is	whether	this	style	of	potentialist	paraphrase	
requires	appeal	to	infinitely	many	atomic	predicates.	As	stated	so	far,	my	strategy	would	
require	access	to	unboundedly	many	atomic	relations	if	we	want	to	be	able	to	translate	set-
theoretic	sentences	with	arbitrarily	deep	nested	quantifiers.	For	instance,	the	potentialist	
translation	of	∀𝑥∃𝑦∀𝑧𝜙(𝑥, 𝑦, 𝑧)	would	seemingly	require	three	distinct	tuples	of	relations	
𝑉 ⃗ , 𝑉 ⃗ -, 𝑉 ⃗ ..	

However,	a	careful	examination	of	our	translations	shows	that	we	only	preserve	the	
relations	from	the	prior	logical	possibility	context.	Thus,	if	desired,	in	the	above	potentialist	
paraphrases	we	can	replace	𝑉)	with	𝑉)mod&	(where	𝑉(	is	just	𝑉-,	𝑉&	is	𝑉.	etc..)	without	
affecting	the	truth	value	of	the	translation.	This	allows	us	to	translate	sentences	with	
arbitrarily	many	quantifier	alternations	using	a	fixed	finite	number	of	atomic	relations.	

Here’s	what	I	mean.	We	translate	a	sentence	with	three	quantifiers	∀𝑥∃𝑦∀𝑧𝜙(𝑥, 𝑦, 𝑧)	as	
follows:	

□(𝒱 ⃗ (𝑉) → ◊ [EII⃗ 𝑉 ⃗ ′ ≥
K
𝑉 ⃗ ∧ □ (E'IIII⃗ 𝑉 ⃗ ″ ≥

O
𝑉 ⃗ ′ → 𝜙(𝑥, 𝑦, 𝑧))]	

But	note	that	logical	possibility	treats	all	relations	of	the	same	arity	the	same.	And	
conditional	logical	possibility	treats	all	relations	(that	aren’t	being	held	fixed)	of	the	same	
arity	the	same.	So,	this	assertion		

□ (E'IIII⃗ 𝑉 ⃗ ″ ≥
O
𝑉 ⃗ ′ → 𝜙(𝑥, 𝑦, 𝑧))	

is	true	if	and	only	if:	

□ (E'IIII⃗ 𝑉 ⃗ ≥
O
𝑉 ⃗ ′ → 𝜙(𝑥, 𝑦, 𝑧))	

That	is,	replacing	𝑉.	with	𝑉	has	no	effect.	So	we	can	formalize	the	same	claim	as	follows.	

□(𝒱 ⃗ (𝑉) → ◊ [EII⃗ 𝑉 ⃗ ′ ≥
K
𝑉 ⃗ ∧ □ (E'IIII⃗ 𝑉 ⃗ ≥

O
𝑉 ⃗ ′ → 𝜙(𝑥, 𝑦, 𝑧))]	



For	readability	I’ll	write	as	if	I	have	access	to	an	unbounded	number	of	distinct	relations	of	
each	arity.	But	keep	in	mind	that	the	argument	above	demonstrates	we	can	limit	ourselves	
to	only	16	distinct	atomic	relations.	

Chapter 7 Content Restriction 

Now	let’s	turn	to	the	question	of	how	to	reason	about	logical	possibility.	Before	I	can	
present	my	formal	system	for	reasoning	about	logical	possibility,	I	must	first	introduce	a	
key	concept:	content	restriction.	

To	crudely	motivate	idea	of	content	restriction,	recall	that	the	language	of	logical	possibility	
ℒ◊	doesn’t	allow	quantification	into	the	logical	possibility	operator	◇.	Doing	this	will	be	
convenient	for	providing	a	formal	system	whose	inference	rules’	correctness	is	easy	to	
recognize	(without	soundness	proofs	that	would	be	question	begging	our	current	context).	
For	it	(in	effect)	cleaves	good	reasoning	about	logical	possibility	into	two	parts.	

• In	one	part	we	use	standard	first-order	logic	to	reason	about	a	given	logically	possible	
scenario/what	an	arbitrary	logically	possible	scenario	must	be	like.	

• In	another	part	we	use	special	modal-structural	principles	to	establish	which	
scenarios	are	logically	possible,	and	transfer	facts	about	one	scenario	to	another.	

To	state	intuitive	principles	of	the	latter	kind,	I’ll	specify	a	class	of	sentences	whose	
syntactic	form	ensures	that	they	only	talk	about	the	structure	of	objects	related	by	certain	
relations–	and	hence	must	remain	true	in	all	logically	possible	scenarios	which	hold	that	
structure	fixed.	I	will	say	that	such	sentences	are	content	restricted	to	the	relevant	
relations	𝑅(…𝑅).	

7.1 A motivating example 

To	make	the	above	point	more	concretely,	consider	purely	number	theoretic	statements,	
i.e.,	statements	whose	syntactic	form	makes	it	clear	that	they	only	make	a	claim	about	the	
structure	of	the	natural	numbers,	rather	than	a	claim	whose	truth	value	might	reflect	the	
behavior	of	some	larger	universe	of	objects.	Intuitively,	the	truth	value	of	such	statements	
is	completely	determined	by	the	structure	of	the	natural	numbers.	That	is,	their	truth	
values	are	completely	determined	by	structural	facts	about	how	the	relations	ℕ, 𝑆, +	and	×	
(𝑆	for	‘successor’)	apply	(call	this	the	⟨ℕ, 𝑆, +,×⟩	structure)	and	don’t	depend	on	what	other	
objects	may	or	may	not	exist.	

A	key	strategy	for	finding	suitably	obvious	modal	structural	principles	will	be	to	latch	on	to	
certain	sentences	whose	syntax	ensures	that	they	only	talk	about	a	given	structure,	and	
hence	can	be	assumed	to	preserve	their	truth	value	in	every	logically	possible	scenario	
where	this	structure	is	preserved.	As	noted	above,	I	will	say	that	such	sentences	are	
content	restricted	to	(the	relations	forming)	the	relevant	structure.	

So,	for	example,	consider	the	claim	that	there	are	infinitely	many	twin	primes.	We	know	
that	if	the	current	state	of	the	world	makes	this	statement	true,	then	facts	about	the	natural	
number	structure	alone	suffice	to	do	this.	Because	it	only	quantifies	over	the	natural	
numbers,	and	only	concerns	itself	with	how	the	relations	successor,	plus	and	times	apply	to	



the	natural	numbers,	this	sentences’	truth-value	can’t	be	changed	by	adding	or	subtracting	
objects	from	the	universe	outside	the	extension	of	ℕ	or	by	tinkering	with	the	extension	of	
properties	and	relations	other	than	𝑆,+	and	×	(like	‘is	democratically	governed’	or	‘is	a	
spaceship’).	

Accordingly,	we	expect	that	the	truth-value	of	any	purely	number-theoretic	statement	
cannot	be	changed	by	the	application	of	any	conditional	logical	possibility	operator	which	
holds	fixed	the	natural	number	structure	(i.e.,	the	facts	about	how	⟨ℕ, 𝑆, +,×⟩	apply).	For,	
intuitively,	modifying	what	other	objects	exist	outside	the	structure	of	the	natural	numbers	
which	this	statement	quantifies	over	(and/or	changing	the	extension	of	other	relations	
which	it	doesn’t	employ)	can’t	affect	its	truth-value.	

This	idea	(that	truth	value	of	all	purely	number	theoretic	claims	must	be	the	same	in	all	
logically	possible	worlds	which	preserve	the	structure	of	the	natural	numbers)	fits	well	
with	common	intuitions	about	the	significance	of	non-elementary	proofs.	

Thinking	about	how	the	natural	numbers	would	relate	to	other	larger	mathematical	
structures,	like	the	complex	numbers,	can	be	epistemically	helpful	in	discovering	the	
answer	to	some	purely	number	theoretic	statements.	Proofs	of	this	kind	are	called	non-
elementary	proofs.	But	we	don’t	think	about	the	existence	of	the	complex	numbers	as	
helping	make	these	number-theoretic	statements	true	or	false.	Rather	we	think	that,	if	true,	
the	relevant	number-theoretic	statements	must	have	been	true	all	along,	just	because	of	
what	the	natural	numbers	are	like.	Considering	how	the	natural	numbers	are	(or	could	be)	
related	to	the	complex	number	just	helps	us	see	this	fact.	

Accordingly,	it	doesn’t	matter	to	our	acceptance	of	a	non-elementary	proof	whether	we	
think	the	complex	numbers	actually	exist,	or	merely	that	it	would	be	logically	coherent	for	
(an	instance	of)	the	actual	natural	number	structure	to	exist	inside	(an	instance	of)	the	
complex	numbers.	Showing	the	twin	prime	conjecture	is	true	and	merely	showing	that	it	
would	have	to	be	true	in	the	relevant	logically	coherent	scenario	both	suffice	to	establish	its	
truth	in	the	actual	world.	

7.2 Generalizing this idea 

Generalizing	the	case	above,	we	want	to	develop	the	idea	that	the	syntactic	form	of	certain	
sentences	ensures	they	only	talk	about	a	certain	structure	(e.g.,	the	natural	number	
structure)	–	and	hence	must	remain	true	in	all	logically	possible	scenarios	which	hold	that	
structure	fixed.	

So	consider	what	sentences	we’d	say	obviously	‘only	talk	about’	the	natural	number	
structure.	The	syntax	of	a	sentence	𝜙	ensures	that	it	only	talks	about	the	natural	numbers	if	
(not	to	say	only	if!)	it	has	the	following	pair	of	features:	

• All	quantifiers	in	𝜙	are	restricted	to	the	objects	satisfying	ℕ.	Thus,	it	only	contains	
universal	quantifiers	as	part	of	expressions	of	the	form	∀𝑥(ℕ(𝑥) → 𝜓)	and	existential	
quantifiers	as	part	of	expressions	of	the	form	∃𝑥(ℕ(𝑥) ∧ 𝜓)	

• 𝜙	is	a	sentence	in	the	language	of	number	theory,	so	it	only	contains	relations	on	this	
list:	ℕ, 𝑆, +,×	



If	you	accept	the	intuitions	I’ve	tried	to	pump	above,	you’ll	expect	that	𝜙	cannot	change	
truth	value	in	any	conditionally	logically	possible	scenarios	which	hold	the	facts	about	the	
natural	numbers	fixed.	Accordingly,	𝜙	is	actually	true	iff	it	is	conditionally	logically	possible	
–	holding	fixed	the	natural	number	structure-	that	𝜙	be	true.	

𝜙 ↔ ◊ 𝜙ℕ,> 	

I	will	generalize	this	idea	by	considering	other	lists	of	relations	𝑅(𝐼𝑅)	(rather	than	just	
ℕ, 𝑆).	I	will	define	a	syntactic	property	of	sentences	which	intuitively	ensures	that	a	
sentence	is	completely	about	(structural	facts	concerning)	how	some	list	of	relations	𝑅(𝐼𝑅)	
apply,	so	that	its	truth	value	(intuitively)	must	remain	fixed	in	all	conditionally	logically	
possible	scenarios	which	hold	these	relations	fixed.	I	will	call	this	property	explicit	
content	restriction.	Accordingly,	when	a	sentence	𝜙	is	content	restricted	to	some	list	of	
relations	𝑅(𝐼𝑅),	it	is	intuitively	clear	that	𝜙 ↔ ◊ 𝜙4"B4# 	

However,	one	little	wrinkle	arises	in	performing	this	generalization.	In	the	case	of	the	
natural	numbers,	we	thought	of	the	structure	of	the	natural	numbers	under	the	relations	
𝑆,+,×.	And	we	said	that	purely	number	theoretic	statements	had	their	quantifiers	
restricted	to	objects	in	the	extension	of	ℕ.	But	now	we	want	to	generalize	this	idea	of	only	
talking	about	the	structure	determined	by	how	some	arbitrary	list	of	relations	𝑅(𝐼𝑅)	apply.	
And	this	list	of	relations	doesn’t	have	one	particular	property	distinguished	as	representing	
the	domain.	

So	what	exactly	should	it	mean	to	talk	about	‘the	𝑅(𝐼𝑅)	structure?’	Specifically,	what	
domain	of	objects	should	we	consider	the	behavior	of,	under	the	relations	𝑅(𝐼𝑅)?	I	will	
handle	this	problem	by	(in	effect)	considering	the	domain	of	objects	which	any	one	of	the	
relations	𝑅(𝐼𝑅)	apply	to,	under	the	relations	𝑅(𝐼𝑅).	So,	for	example,	if	our	list	of	relations	
𝑅(𝐼𝑅)	is	cat(),loves()	then	an	object	is	in	𝐸𝑥𝑡(𝑅1𝐼𝑅𝑛)	iff	it	is	either	a	cat	or	a	lover	or	a	
beloved.	

And	we	will	consider	the	structure	of	objects	determined	by	the	relations	𝑅(, 𝐼, 𝑅)	
(analogous	to	the	natural	number	structure,	in	the	original	case)	to	be	the	structure	formed	
by	considering	the	objects	that	at	least	one	of	𝑅(, 𝐼, 𝑅)	applies	to,	under	the	relations	
𝑅(, 𝐼, 𝑅)	(e.g.,	the	objects	that	either	‘cat’	or	‘loves’	applies	to,	under	the	relations	cat()	and	
loves()).	With	just	a	little	abuse	of	notation,	I	will	call	this	domain	of	objects	associated	with	
the	𝑅(, 𝐼𝑅)	structure	the	extension	of	the	list	of	relations	𝑅(𝐼𝑅𝑛,	and	give	the	formal	
definition	below.	

Definition	7.1	(Definition	of	Ext).		Let	Ext(𝑅(, …𝑅))(𝑦)	abbreviate	the	formula	

« (
(P<P)
(PCPQ(

∃𝑥()… , (∃𝑥C?(), (∃𝑥C+(), … , (∃𝑥Q()𝑅<(𝑥(, … , 𝑥C?(, 𝑦, 𝑥C+(, … , 𝑥Q()	

where	𝑙< 	is	the	arity	of	𝑅< 	and	⋁ 𝜙<,C(P<P)
(PCPQ(

	indicates	the	disjunction	𝜙<,C 	over	all	indicated	

values	for	𝑖	and	𝑗.	Thus,	Ext(𝑅(, …𝑅))(𝑦)	is	the	formula	asserting	that	some	tuple	𝑣	including	
𝑦	satisfies	some	𝑅<(�⃗�).	



So	I	will	take	the	𝑅(𝐼𝑅)	structure	to	be	the	structure	of	objects	in	Ext(𝑅(, …𝑅))	under	the	
relations	𝑅(𝐼𝑅).	And	I	will	define	a	syntactic	property	of	explicit	content	restriction,	such	
that	the	fact	that	a	sentence	𝜙	is	explicitly	content	restricted	to	some	relations	𝑅(𝐼. 𝑅)	
intuitively	insures	that	𝜙	‘only	talks	about’	the	𝑅(𝐼. 𝑅)	structure	(in	the	sense	defined	
above),	so	that	its	truth-value	will	be	preserved	in	all	conditionally	logically	possible	
scenarios	which	hold	this	structure	fixed.	

7.3 Formal Definition 

So	explicitly	content	restricted	sentences	are	supposed	have	a	syntactic	structure	which	
ensures	that	their	truth-value	is	completely	determined	by	the	ℒ	structure	(for	ℒ	a	certain	
list	of	relations),	with	the	result	that	𝜙 ↔ ◊ 𝜙ℒ .	

To	motivate	my	definition,	consider	two	examples.	

The	truth	value	of	the	sentence	‘Every	lover	is	loved	by	someone’	∀𝑥;∃𝑦Loves(𝑥, 𝑦) →
∃𝑧Loves(𝑧, 𝑥)D	is	completely	determined	by	facts	about	the	Loves()	structure	in	the	sense	
defined	above.	This	sentence	only	makes	a	claim	about	the	structure	of	objects	which	are	
either	lovers	or	beloveds,	under	the	relation	Loves.	

We	can	see	this	by	noting	that	it	is	logically	equivalent	to	a	sentence	with	quantifiers	
explicitly	restricted	to	objects	in	Ext(Loves)	and	the	considerations	above	apply.	Thus:	

;∀𝑥 ∣∣ Ext(Loves)(𝑥) D¥; ∃𝑦 ∣∣ Ext(Loves)(𝑦) DLoves(𝑥, 𝑦)
→ ;∃𝑧 ∣∣ Ext(Loves)(𝑧) DLoves(𝑧, 𝑥)¦	

And	we	clearly	cannot	change	the	truth-value	of	the	resulting	sentence	by	

• adding	or	subtracting	objects	which	loves()	doesn’t	apply	to	from	the	universe	

• changing	the	extension	of	predicates	and	relations	other	than	loves()	

So	the	truth	value	of	this	sentence	must	be	preserved	in	all	scenarios	which	hold	the	loves()	
structure	fixed.	Thus,	we	intuitively	have	

∀𝑥;∃𝑦Loves(𝑥, 𝑦) → ∃𝑧Loves(𝑧, 𝑥)D ↔ ◊ ∀Loves 𝑥;∃𝑦Loves(𝑥, 𝑦) → ∃𝑧Loves(𝑧, 𝑥)D
↔ □ ∀Loves 𝑥;∃𝑦Loves(𝑥, 𝑦) → ∃𝑧Loves(𝑧, 𝑥)D	

In	contrast,	the	truth	value	of	the	sentence	‘Everything	loves	something,’	i.e.,	
(∀𝑥)(∃𝑦);Loves(𝑥, 𝑦)D,	is	not	completely	determined	by	the	Loves()	structure.	For	the	
existence	of	objects	outside	of	this	structure	can	make	a	difference	to	its	truth	value.	
Specifically,	it	is	logically	possible	that	this	sentence	be	true.	But,	given	any	world	where	
this	sentence	is	true,	we	can	imagine	a	logically	possible	scenario	which	holds	fixed	the	
structural	facts	about	how	loves()	applies	at	this	world,	but	makes	this	sentence	false	by	
containing	an	additional	object	which	loves	does	not	apply	to.	Thus,	the	truth-value	of	this	
sentence	is	not	completely	determined	by	the	world’s	Loves	structure.	We	might	have	
(∀𝑥)(∃𝑦);Loves(𝑥, 𝑦)D	but	◊ ¬S78,%TU;1 (∀𝑥)(∃𝑦);Loves(𝑥, 𝑦)D	



Roughly	speaking,	I	will	say	that	a	sentence	𝜙	is	explicitly	content	restricted	to	a	finite	set	
(note	the	notions	of	sets	aren’t	presumed	in	the	object	language	merely	used	to	in	the	
meta-language	and	can	be	easily	be	eliminated109)	of	relations	ℒ	iff	only	the	relations	from	
ℒ	are	used	in	𝜙	and	every	quantifier	is	restricted	to	range	over	elements	that	belong	to	
some	tuple	in	the	extension	of	a	relation	in	ℒ110.	The	definition	below	expresses	this	idea.	

Note	that	I	will	frequently	drop	the	braces	and	union	symbols	when	talking	about	sets	of	
relations.	For	instance,	I	will	abbreviate	the	claim	that	𝜓	is	content	restricted	to	ℒ ∪ 𝑅 ∪ ℒ-	
simply	as	𝜓	is	content	restricted	to	ℒ, 𝑅, ℒ-	and	write	ℒ = 𝑅(, … , 𝑅)	rather	than	ℒ =
𝑅(, … , 𝑅).	

Definition	7.2	(Content	Restriction).		A	sentence	𝜙	is	explicitly	content-restricted	to	a	list	
ℒ	if	it	is	a	member	of	the	smallest	set	𝑆	satisfying:	

1. ⊥	is	in	𝑆	

2. If	𝑣< , 𝑣C 	are	variables	the	formula	𝑣< = 𝑣C 	is	in	𝑆	

3. If	�⃗�	is	a	tuple	of	variables	and	𝑅< ∈ ℒ	then	𝑅<(�⃗�)	is	in	𝑆	

4. If	𝜓 ∈ 𝑆	and	𝜌 ∈ 𝑆	then	¬𝜓,	𝜓 ∨ 𝜌,	𝜓 ∧ 𝜌	and	𝜓 → 𝜌	are	all	in	𝑆	

5. If	𝜓 ∈ 𝑆	and	ℒ	is	non-empty,	then	∃𝑦(𝑦 ∈ Ext(ℒ) ∧ 𝜓)	is	in	𝑆	

6. If	𝜓 ∈ 𝑆	and	ℒ	is	non-empty,	then	∀𝑦(𝑦 ∈ Ext(ℒ) → 𝜓)	is	in	𝑆	(note	this	case	is	added	
only	for	illustrative	purposes	as	technically	∀	is	merely	an	abbreviation	for	¬∃¬).	

7. If	𝜙 = ◊ 𝜓ℒ' 	,	where	𝜓	is	a	sentence	and	ℒ- ⊆ ℒ	then	𝜙 ∈ 𝑆.	Note	that	𝜓	need	not	be	in	
𝑆	

Clauses	2-6	above	express	the	basic	idea	from	above:	if	a	sentence	employs	only	quantifiers	
which	are	restricted	to	Ext(ℒ)	and	relations	in	ℒ,	then	it	makes	a	claim	which	is	purely	
about	the	ℒ	structure,	and	its	truth	value	must	be	completely	determined	by	this	structure.	

Clauses	1	and	7	liberalize	this	definition	slightly,	by	allowing	two	other	basic	ingredients	to	
figure	in	sentences	which	are	content	restricted	to	ℒ.	

Clause	1	allows	sentences	which	are	content	restricted	to	ℒ	to	employ	the	logically	false	
proposition	⊥.	This	is	motivated	by	noting	that	because	there	is	no	way	to	change	⊥’s	truth	

	

109	Sets	merely	serve	as	a	convenient	way	to	talk	about	syntactic	properties	of	formulas	in	
the	language	of	logical	possibility.	Since	we	only	make	use	of	finite	sets	there	is	no	need	for	
a	set-theoretic	meta-language	(we	could	directly	give	a	computable	enumeration	of	allowed	
inferences).	

110	The	intuitive	conception	outlined	above	only	makes	sense	for	sentences,	but	it	will	
define	a	notion	of	content	restricted	for	formulas	as	well	so	we	can	keep	track	of	whether	
the	sentences	built	from	them	are	content	restricted.	



value	at	all,	there	is	no	way	to	change	it	while	holding	fixed	the	facts	about	the	ℒ	structure.	
So	⊥	is	intuitively	content	restricted	to	any	list	of	relations	ℒ	.	

Clause	7	allows	sentences	which	are	content	restricted	to	ℒ	to	employ	claims	about	
conditional	logically	possible	given	the	facts	about	the	ℒ	structure	(or	some	part	of	it).	
Recall	that	◊ 𝜓ℒ' 	says	that	it’s	logically	possible	for	𝜓	to	be	true,	while	holding	fixed	the	
structural	facts	about	how	the	relations	in	ℒ-	apply.	Accordingly,	only	structural	facts	about	
the	relations	in	ℒ-	should	be	able	to	make	a	difference	to	its	truth	value	(remember	that	we	
don’t	allow	quantifying	into	the	◇,	so	𝜓	cannot	contain	any	free	variables).	So,	when	ℒ-	is	a	
subset	of	ℒ,	we	can’t	change	the	truth	value	of	this	sentence	without	changing	how	some	
relation	in	ℒ	applies.	

To	see	how	this	definition	applies,	let’s	consider	some	examples.	Let	ℒ = 𝑅, 𝑄	where	𝑅	is	a	
two-place	relation	and	𝑄	is	a	one	place	relation.	Then	

• (∀𝑥)(∀𝑦)(𝑥 = 𝑦)	is	not	content-restricted	to	ℒ.	

• (∃𝑥);𝑄(𝑥) ∧ 𝐾(𝑥)D	is	not	content-restricted	to	ℒ.	

• (∀𝑥)¥𝑥 ∈ Ext(𝑅) → (∀𝑦);𝑦 ∈ Ext(𝑅) → [𝑅(𝑥, 𝑦) → 𝑄(𝑦)]¦D111	(which	is	first-order	
logically	equivalent	to	(∀𝑥)(∀𝑦)[𝑅(𝑥, 𝑦) → 𝑄(𝑦)])	is	content-restricted	to	ℒ.	

• ◊ [4 (∀𝑥)(𝑅(𝑥, 𝑥) ∧ (∃𝑦)𝑆(𝑥, 𝑦))]	is	content	restricted	to	ℒ	

Also	note	the	following	consequences	of	the	definition	above:	

• If	ℒ	is	a	sublist	of	ℒ-,	then	all	formulae	𝜙	which	are	content	restricted	to	ℒ	are	also	
content	restricted	to	ℒ-.	

• A	sentence	is	content	restricted	to	the	empty	list	ℰ	iff	it	is	a	truth	functional	
combination	of	unsubscripted	 	sentences,	◊	sentences	and	⊥.	

As	you	may	have	noticed,	explicitly	content-restricted	sentences	are	generally	long	and	
unwieldy.	This	can	be	annoying	when	writing	up	proofs	whose	inference	steps	can	only	
(strictly	speaking)	be	applied	to	sentences	which	are	content-restricted	to	some	list	ℒ.	To	
avoid	this	annoyance,	I	make	the	following	definition.	

Definition	7.3.		A	formula	𝜙	is	implicitly	content-restricted	to	ℒ	if	there	is	a	sentence	𝜓	
explicitly	content	restricted	to	ℒ	and	𝜙 ↔ 𝜓	can	be	derived	(using	no	assumptions)	using	only	
the	first-order	inference	rules,	i.e.,	the	principles	already	noted	above.	

I	will	then	frequently	use	the	shorthand	of	applying	rules	which	(strictly	speaking)	can	only	
be	applied	to	content-restricted	sentences	to	implicitly	content	restricted	sentences	—	
taking	the	work	of	using	first-order	logic	to	deduce	the	explicitly	content-restricted	form	of	

	

111	i.e.	(∀𝑥)[(∃𝑘)(𝑅(𝑥, 𝑘) ∨ 𝑅(𝑘, 𝑥)) → (∀𝑦)[(∃𝑘′)(𝑅(𝑦, 𝑘′) ∨ 𝑅(𝑘′, 𝑦)) → (𝑅(𝑥, 𝑦) → 𝑄(𝑥))]]	



a	sentence	before	applying	the	relevant	rule	(and	then	transforming	it	back	after	applying	
the	rule)	for	granted.	

7.4 Content Restriction and Potentialist Paraphrases 

With	this	definition	of	content	restriction	in	hand,	we	see	that	our	definitions	of	potentialist	
translations	for	set-theoretic	sentences	and	formulas	are	often	content	restricted	in	useful	
ways.	

Lemma	7.1.		If	𝜙, 𝜃(, … , 𝜃)	are	formula	in	the	language	of	set	theory,	then	

1. 𝑡)(𝜙)	is	always	content-restricted	to	𝑉), 𝑅), ℕ, 𝜌)	

2. If	𝜙	is	a	sentence,	then	𝑡(𝜙)	is	content	restricted	to	the	empty	list.	

3. For	all	𝑖, 𝑗	if	𝒱 ⃗ (𝑉<), 𝑡<(𝜃(), … , 𝑡<(𝜃)) ⊢◊ 𝑡<(𝜙)	then	𝒱 ⃗ ;𝑉CD, 𝑡C(𝜃(), … , 𝑡C(𝜃)) ⊢◇ 𝑡C(𝜙)	

Proof.	Claims	1	and	2	follow	immediately	from	the	definition	of	content	restriction	and	our	
potentialist	paraphrases	(repeated	below).	Claim	3	follows	by	a	tedious,	but	simple,	
induction	on	proof	length,	where	we	transform	the	𝑡< 	version	of	a	proof	to	the	𝑡C 	version	by	
replacing	every	instance	of	a	relation	in	𝑉<+: , 𝜌<+: 	with	the	corresponding	relation	
𝑉C+: , 𝜌C+: 	and	noting	that	the	result	is	still	a	proof.	!	

7.5 Isomorphism 

There	is	one	further	definition	that	is	important	to	present	before	we	offer	axioms	for	
reasoning	about	conditional	logical	possibility	and	that	is	isomorphism	between	structures.	
Informally	speaking,	we	can	define	the	claim	that	two	structures	𝑅(, … , 𝑅)	and	𝑅(- , … , 𝑅)- 	are	
isomorphic	modally,	as	saying	that	it’s	possible	for	a	relation	𝑓	to	map	the	objects	in	(the	
extension	of)	one	structure	to	those	in	(the	extension	of)	the	other	structure.	More	
formally,	we	give	the	following	definition	(here,	as	we	do	elsewhere,	we	use	talk	of	
functions	as	shorthand	for	the	corresponding	relations,	see	section	A.1	in	the	appendix).	

Definition	7.4	(Isomorphism).		A	relation	𝑓	is	an	isomorphism	of	⟨𝑅(, …𝑅V⟩	with	the	
⟨𝑅(- , …𝑅V- ⟩	(henceforth	written	⟨𝑅(, …𝑅V⟩ ≅W ⟨𝑅(- , …𝑅V- ⟩)	if:	

• 𝑓	is	a	bijection	of	Ext(𝑅(, …𝑅V)	with	Ext(𝑅(, …𝑅V)	(note	that	the	domain	of	𝑓	may	be	
larger	than	Ext(𝑅(, …𝑅V)	so	long	as	it	behaves	appropriately	on	Ext(𝑅(, …𝑅V)).	

• 𝑓	respects	the	relations	𝑅< , 𝑅′< ,	i.e.,	(∀𝑥()… (∀𝑥V)[𝑅<(𝑥(…𝑥))) ↔ 𝑅<′(𝑓(𝑥()…𝑓(𝑥)))],	

Chapter 8 Inference Rules 

In	this	chapter,	I’ll	present	a	formal	system	for	reasoning	about	logical	possibility	whose	
principles	seem	clearly	true,	and	whose	inference	methods	seem	clearly	truth	preserving.	I	
will	define	the	consequence	relation	⊢	by	listing	closure	conditions	in	this	chapter	and	the	
next	and	will	take	⊢	to	be	closed	under	first-order	consequence,	e.g.,	as	defined	in	(Stewart	
Shapiro	and	Kouri	Kissel	2018).	



The	following	additional	axioms	govern	reasoning	with	 	and	◊	in	my	formal	system.	

Note	that,	I	will	generally,	but	not	exclusively,	adopt	the	convention	that	when	used	as	
meta-variables	the	capital	Greek	letters	𝛷,𝛹, 𝛩, 𝛯, 𝛶	are	restricted	to	sentences	while	the	
lower-case	Greek	letters	𝜙,𝜓, 𝜃, 𝜉, 𝜐	may	be	formulas	or	sentences.	I	will	also	I	follow	the	
convention,	standard	in	philosophical	presentations	of	modal	logic,	of	calling	modal	
inference	rules	axioms,	and	presenting	them	in	this	form,	even	when	presented	in	the	form	
of	inference	rules,	i.e.,	closure	conditions	for	⊢,	rather	than	sentences	that	can	be	inferred	
at	any	point.	

8.1 ◊ Introduction and Elimination 

Axiom	8.1	(◊	Introduction).		𝛩 → ◊ 𝛩ℒ 	

This	rule	captures	the	idea	that	what	is	actual	must	also	be	logically	possible	and,	indeed,	
logically	possible	holding	any	structural	facts	about	the	actual	world	you	like	fixed.	

This	rule	corresponds	to	rule	T	(sometimes	written	equivalently	as	𝐴 → 𝐴)	in	the	familiar	
modal	system	S5	(Garson	2016).	

Examples:	

• “There	are	two	cats”	→	It	is	logically	possible,	given	what	cats	there	are,	that	there	are	
two	cats”.	

• “There	are	two	cats”	→	It	is	logically	possible,	given	what	dogs	there	are,	that	there	are	
two	cats.”	

Axiom	8.2	(◊	Elimination).		If	𝛩	is	content-restricted	to	a	list	of	relations	ℒ,	then	◊ 𝛩% → 𝛩	

This	rule	expresses	the	idea	that	when	𝜃	is	content-restricted	to	ℒ,	the	truth	value	of	𝜃	is	
totally	determined	by	the	facts	about	ℒ.	

For	instance:	

• “It	is	logically	possible,	given	what	cats	there	are,	that	there	are	two	cats”	⇒	“There	are	
two	cats”	

• But	not:	“It	is	logically	possible,	given	what	dogs	there	are,	that	there	are	two	cats”	⇒	
“There	are	two	cats”	

Note	that	the	second	inference	is	not	permitted	by	my	rule	because	𝜃	(“there	are	two	cats”)	
is	not	content-restricted	to	the	list	𝑑𝑜𝑔(⋅)	

The	next	basic	axiom	expresses	the	intuition	that	if	𝛩	is	content	restricted	to	ℒ	then	holding	
fixed	relations	not	in	ℒ	doesn’t	affect	the	logical	possibility	of	𝛩.	

8.2 ◊ Ignoring 

Axiom	8.3	(◊	Ignoring).		Suppose	𝛩	is	content-restricted	to	ℒ = 𝑅(, …𝑅)	and	𝑆(…𝑆V	are	
relations	not	among	𝑅(, …𝑅).	Then	◊ 𝛩ℒ' → � 𝛩ℒ',>"…>) .	



Remember	that	when	a	formula	is	content-restricted	to	ℒ,	its	truth	depends	only	on	facts	
about	ℒ.	This	axiom	reflects	this	intuition	by	allowing	one	to	ignore	irrelevant	facts.	

We	will	see	that	the	converse	inference,	from	◊ 𝛩ℒ,>"…>) 	to	� 𝛩ℒ 	is	also	provable	from	the	
basic	axioms	and	inference	rules	in	this	chapter	(in	Lemma	4.1)	.	

Examples:	

• It	is	possible,	given	what	cats	there	are112,	that	every	cat	admires	a	distinct	dog	→	It	is	
possible	given	what	cats	and	dolphins	there	are,	that	every	cat	admires	a	different	dog.	

• But	not:	It	is	possible,	given	what	cats	there	are,	that	there	are	exactly	3	objects	→	it	is	
possible,	given	what	cats	and	dolphins	there	are,	that	there	are	exactly	3	objects.	

	 The	latter	conditional	cannot	generally	be	assumed,	because	the	claim	that	there	are	
exactly	3	objects	is	not	content	restricted	to	any	list	of	relations.	

• And	NOT:	It	is	possible,	given	what	cats	there	are,	that	every	cat	admires	a	distinct	dog	
→	It	is	possible,	given	what	cats	and	dogs	there	are,	that	every	cat	admires	a	distinct	
dog.	

	 Here	“every	cat	admires	a	distinct	dog”	is	content	restricted	to	{cat,	dog,	admires},	but	
for	this	inference	to	be	permitted	“every	cat	admires	a	distinct	dog”	would	have	to	be	
content	restricted	to	a	list	that	didn’t	include	the	relation	dog().	For	facts	about	how	
dog()	applies	can	make	a	difference	to	the	truth	value	of,	“Every	cat	admires	a	distinct	
dog,”	hence	requiring	that	we	hold	fixed	facts	about	what	dogs	there	are	could	make	a	
difference	to	the	satisfiability	of	the	above	claim.	

8.3 Simple Comprehension 

Axiom	8.4	(Simple	Comprehension).		Suppose	𝑅 ∉ ℒ	and	𝑅	doesn’t	appear	in	𝜙	or	𝛹.	Then	
𝛹 → ◊ (𝛹 ∧ (∀𝑧)[𝑅(𝑧) ↔ 𝜙(𝑧)])ℒ 	

This	axiom	schema	captures	the	idea	that	any	way	a	formula	applies	to	objects	is	a	logically	
possible	way	for	a	relation	to	apply	to	those	objects.	The	inclusion	of	𝛹	under	the	◊ℒ 	
reflects	the	intuition	that	the	relation	could	apply	in	the	way	𝜙	does	without	altering	how	
any	other	relations	apply	or	changing	which	objects	exist113.	

Example:	“If	there	is	something	which	everyone	loves,	it	is	logically	possible	(given	the	
facts	about	love)	that	there	is	something	which	everyone	loves	and	happy()	applies	to	
exactly	those	individuals	which	love	themselves.”	

	

112	Here,	and	in	the	future,	I	mean	this	as	shorthand	for	given	the	structural	facts	about	the	
objects	falling	under	the	relation	in	question.	

113	Technically,	without	changing	the	structure	of	the	objects	which	are	taken	to	exist	at	
that	‘world.’	



8.4 Relabeling 

Axiom	8.5	(Relabeling).		If	𝑅(…𝑅)	are	distinct	relations	that	don’t	occur	in	ℒ,	and	𝑅′(…𝑅′)	
is	a	disjoint	list	of	relations	such	that	each	𝑅′< 	has	the	same	arity	as	the	corresponding	𝑅< 	and	
none	of	the	𝑅′< 	occur	in	ℒ	or	𝛩	,	then	

◊ 𝛩ℒ ↔ � 𝛩ℒ [𝑅(/𝑅(- …𝑅)/𝑅′)].	

Here	𝛩[𝑅(/𝑅(- …𝑅)/𝑅′)]	denotes	the	simultaneous	substitution	of	𝑅′(	for	𝑅(,	𝑅′&	for	𝑅&	and	
so	on.	Note	that	when	we	give	a	list	of	relations	𝑅(…𝑅)	we	usually	assume	they	are	distinct	
relations	(no	𝑅< 	is	actually	the	same	relation	as	𝑅C 	for	𝑗 ≠ 𝑖)	but	we	state	it	explicitly	here	
for	clarity.	

This	axiom	schema	expresses	the	idea	that	when	evaluating	claims	about	logical	possibility	
only	the	arity	of	a	relation	matters.	Thus,	replacing	some	𝑅 ∉ ℒ	with	an	unused	relation	
𝑅- ∉ ℒ	of	the	same	arity	cannot	change	the	truth	value	of	◊ 𝜃ℒ .	

Example:	By	substituting	`sleeps’	with	`chews’,	we	see	“It	is	logically	possible,	given	the	
facts	about	dogs	and	blankets,	that	every	dog	sleeps	on	a	different	blanket”	if	and	only	if	“It	
is	logically	possible,	given	the	facts	about	dogs	and	blankets,	that	every	dog	chews	on	a	
different	blanket.”	

Note	that,	as	□ℒ 	is	just	¬◊ ¬ℒ 	it	is	trivial	to	show	that	relabeling	applies	to	 	claims	as	well	
as	◇	claims.	We	formalize	this	observation	in	the	following	lemma.	

Lemma	8.1	(Box	Relabeling).		If	𝑅(…𝑅)	are	distinct	relations	that	don’t	occur	in	ℒ,	and	
𝑅′(…𝑅′)	are	distinct	relations	not	equal	to	any	𝑅< 	with	the	same	arities	as	𝑅(…𝑅)	that	don’t	
occur	in	ℒ	and	aren’t	mentioned	in	𝜃,	then	□ 𝜃ℒ ↔ □ 𝜃ℒ [𝑅(/𝑅(- …𝑅)/𝑅′)].	

8.5 Importing 

Axiom	8.6	(Importing).		If	𝛩	is	content	restricted	to	ℒ	then	[𝛩 ∧ ◊ 𝛷ℒ ] → � (ℒ 𝛷 ∧ 𝛩)	

This	rule	captures	the	idea	that	any	true	sentence	𝛩	which	only	talks	about	how	some	
relations	ℒ	apply,	must	remain	true	in	any	logically	possible	context	that	holds	the	ℒ	facts	
fixed.	

8.6 Logical Closure 

Axiom	8.7	(Logical	Closure).		If	𝛩 ⊢ 𝛷	then	◊ 𝛩ℒ → � 𝛷ℒ 	

This	rule	captures	the	idea	that	logical	inference	is	universally	valid.	Thus,	if	we	can	deduce	
𝛷	from	𝛩	then	a	‘scenario’	in	which	𝛩	is	true	must	also	be	one	in	which	𝛷	is	true.	Note	that	
when	ℒ	is	empty,	this	rule	performs	the	work	of	both	the	necessitation	and	distribution	
rules	commonly	used	of	in	systems	like	S5.	

8.7 Cutback 

Axiom	8.8	(Cutback).		If	For	any	list	of	relations	ℒ = 𝑅(, … , 𝑅V ,	¥(∃𝑥)𝑃(𝑥) ∧

;∀𝑥 ∣ Ext(ℒ)(𝑥)D𝑃(𝑥)¦ → ◊ (ℒ,X ∀𝑥)𝑃(𝑥)	



This	axiom	schema	expresses	the	idea	that	if	a	predicate	𝑃	applies	to	all	the	objects	which	
relations	in	ℒ	apply	to	(and	𝑃	applies	to	at	least	one	thing),	then	it	is	logically	possible	to	
have	a	cut	back	universe	which	preserves	how	𝑃	and	relations	in	ℒ	apply	and	contains	no	
objects	outside	the	extension	of	𝑃.	

8.8 Modal Comprehension 

Our	next	axiom	schema,	Modal	Comprehension,	expresses	a	somewhat	similar	idea	to	the	
Simple	Comprehension	Axiom	(Axiom	8.4)	above.	Modal	Comprehension	expands	on	the	
idea	behind	Simple	Comprehension	by	ensuring	the	logical	possibility	of	a	relation	which	
applies	to	exactly	those	objects	picked	out	by	some	modal	sentence.	Informally,	the	idea	is	
that	Modal	Comprehension	lets	us	make	inferences	like	the	following	

SIBLINGS:	Holding	fixed	the	facts	about	the	relations	Married(𝑥, 𝑦)	and	
Sibling(𝑥, 𝑦),	it	is	logically	possible	to	have	a	relation	𝑅(𝑥)	that	applies	to	exactly	
those	married	individuals	𝑥	with	more	siblings	than	their	spouse.	

Note	that	having	more	siblings	than	one’s	spouse	has	to	be	cashed	out	in	terms	of	the	
logical	possibility	of	a	surjective	but	not	injective	map	from	their	siblings	to	those	of	their	
spouse.	On	first	glance,	it	would	appear	this	would	require	passing	𝑥	(the	individual	for	
whom	we	wish	to	compare	their	siblings	to	those	of	their	spouse)	into	the	logical	
possibility	operator	evaluating	the	possibility	of	such	a	pairing.	However,	our	language	of	
logical	possibility	does	not	allow	this	kind	of	quantifying	in.	

Instead,	we	do	this	by	using	a	special,	otherwise-unused,	𝑛-place	relation	𝑄	to	label	and	
preserve	a	choice	for	an	𝑛-tuple	of	objects	in	Ext(ℒ).	We	say	that	it	is	possible	(fixing	the	ℒ	
facts)	for	𝑅	to	apply	in	such	a	way	that,	necessarily	(fixing	the	ℒ, 𝑅	facts),	𝑅	only	relates	
objects	in	Ext(ℒ)	and	however	𝑄	chooses	a	unique	𝑛-tuple	of	objects	in	Ext(ℒ)	for	
consideration,	𝑅	applies	to	this	𝑛-tuple	iff	a	certain	modal	claim	𝜙	describing	the	behavior	
of	ℒ	and	𝑄	is	true.	In	this	case,	the	relevant	ℒ	is	Married,Sibling,	and	the	modal	sentence	𝜙	
is	◊Married,	Sibling,Z 	(∃𝑥)[𝑄(𝑥) ∧ (∃𝑦)Married(𝑥, 𝑦)	and	𝑍(⋅,⋅)	is	a	surjective	but	not	injective	
map	from	the	siblings	of	𝑥	to	those	of	𝑦.	

We	can	thus	express	informal	claims	like	SIBLINGS	with	a	sentence	of	the	following	form:	

◊ □ (Married,Sibling,𝒬,4Married,Sibling,Z ∃! 𝑥 ∣ 𝑄(𝑥)) →
(∃𝑥)(𝑄(𝑥) ∧ [𝑅(𝑥) ↔ 𝑥 ∈ Ext(ℒ) ∧ 𝜙)]

	

Since	it	is	possible	for	𝑄	to	apply	to	any	single	object	𝑥,	the	necessity	operator	above	
ensures	that	𝑅	applies	to	exactly	those	𝑥	which	have	more	siblings	than	their	spouse.	Or,	to	
put	the	point	differently,	if	there	was	some	𝑥	in	the	extension	of	one	of	Married,Sibling, 𝑄	
where	𝑅(𝑥) ↔ 𝜙	then,	intuitively,	it	would	be	possible	for	𝑄	to	apply	to	such	an	𝑥	
contradicting	the	assumption.	With	this	motivation	in	place,	I	can	now	state	the	Modal	
Comprehension	Schema	as	follows.	

Axiom	8.9	(Modal	Comprehension).		If	

𝑅	does	not	occur	in	ℒ,𝛹	or	𝜙	



𝑄	does	not	occur	in	ℒ	or	𝛹	

𝜙	is	content	restricted	to	ℒ, 𝑄	

then	𝛹 → ◊ (ℒ 𝛹 ∧ □ [ℒ,4 ;∃! �⃗� ∣ 𝑄(�⃗�)D → ;∃�⃗� ∣ 𝑄(�⃗�)D[𝑅(�⃗�) ↔ Ext(ℒ)(�⃗�) ∧ 𝜙(�⃗�)]])	

where	;∃! �⃗� ∣ 𝑄(�⃗�)D	means	there	is	a	unique	tuple	�⃗�	satisfying	𝑄.	Note	that	we	take	

; ∃! 𝑥 ∣∣ 𝑄(�⃗�) D[𝜑(�⃗�)]	to	mean	that	𝑄	applies	to	a	unique	𝑛-tuple	of	objects	𝑥	and	those	objects	
satisfy	(not	necessarily	uniquely)	𝜑(�⃗�).	

8.9 Possible Infinity 

Next,	I	propose	the	following	axiom,	asserting	that	it	would	be	logically	possible	for	there	to	
be	infinitely	many	objects.	

Axiom	8.10	(Infinity).		◊ 𝛹	where	𝛹	is	the	conjunction	of	the	following	claims?	

1. 	The	successor	of	an	object	is	unique	(∀𝑥)(∀𝑦)(∀𝑦-)[𝑆(𝑥, 𝑦) ∧ 𝑆(𝑥, 𝑦-) → 𝑦 = 𝑦-]	

2. Successor	is	one-to-one	(∀𝑥)(∀𝑦)(∀𝑥-)(𝑆(𝑥, 𝑦) ∧ 𝑆(𝑥-, 𝑦) → 𝑥 = 𝑥-)	

3. There	is	a	unique	object	that	has	a	successor	and	isn’t	the	successor	of	anything	
(∃! 𝑥L∃𝑦)𝑆(𝑥, 𝑦) ∧ (∀𝑦)¬𝑆(𝑦, 𝑥))	

4. Everything	that	is	a	successor	has	a	successor	(∀𝑥)[(∃𝑦)𝑆(𝑦, 𝑥) → (∃𝑧)𝑆(𝑥, 𝑧)]	

5. Successor	is	anti-reflexive:	(∀𝑥)(∀𝑦)[𝑆(𝑥, 𝑦) → ¬𝑆(𝑦, 𝑥)]	

Note	that	by	clause	1	the	relation	𝑆	is	a	function.	

8.10 Possible Powerset 

Axiom	8.11	(Possible	Powerset).		If	𝐹, 𝐶	are	distinct	predicates,	∈S 	a	two-place	relation,	
then	◊ 𝒞# (𝐶, ∈S , 𝐹).	

Here	𝒞(𝐶, ∈S , 𝐹)	is	the	conjunction	of	the	following	claims:	

• (∀𝑥)¬;𝐶(𝑥) ∧ 𝐹(𝑥)D,	i.e.,	the	objects	satisfying	𝐹	and	𝐶	are	disjoint.	

• (∀𝑥)(∀𝑦);𝑥 ∈S 𝑦 → 𝐹(𝑥) ∧ 𝐶(𝑦)D.	

• □ (S,∈*,# ∃𝑥)[𝐶(𝑥) ∧ (∀𝑦)((𝐹(𝑦) ∧ 𝐾(𝑦)) ↔ 𝑦 ∈S 𝑥)],	i.e.,	it’s	necessary	that	however	
some	predicate	𝐾	applies	to	some	objects	satisfying	𝐹,	there	exists	a	corresponding	
class	𝐶	whose	elements	are	exactly	the	objects	which	𝐹	applies	to.	

• (∀𝑦)(∀𝑦′)(𝐶(𝑦) ∧ 𝐶(𝑦′) ∧ ¬𝑦 = 𝑦′ → (∃𝑥)¬(𝑥 ∈S 𝑦 ↔ 𝑥 ∈S 𝑦′),	i.e.,	classes	are	
extensional	(no	two	members	of	𝐶	contain,	in	the	sense	of	∈S ,	the	same	elements).	

Intuitively,	this	axiom	schema	says	that	it	is	always	possible	to	add	a	layer	of	classes	to	the	
objects	satisfying	some	predicate	F.	Note	that	𝒞(𝐶, ∈S , 𝐹)	is	content	restricted	to	𝐶, ∈S , 𝐹.	



8.11  Choice 

Axiom	8.12	(Choice).		For	all	𝑛 ≥ 0,𝑚 > 0	if	𝐼	is	an	𝑛-ary	relation	(where	a	0-ary	relation	is	
assumed	to	be	¬⊥)	and	𝑅, 𝑅¼	are	𝑛 +𝑚-ary	relations	with	𝑅¼	not	appearing	in	𝛷	or	ℒ	(nor	
equal	to	𝐼, 𝑅)	then	

𝛷 ∧ (∀�⃗�)[𝐼(�⃗�) → (∃�⃗�)𝑅(�⃗�, �⃗�)] →

◊ 𝛷ℒ,B,4 ∧ ½(∀�⃗�)(∀�⃗�) �𝑅¼(�⃗�, �⃗�) → 𝑅(𝑥, �⃗�)� ∧ (∀�⃗�)¥𝐼(�⃗�) → (∃! �⃗�)𝑅¼(�⃗�, �⃗�)¦¾
	

This	axiom	schema	captures	the	same	intuition	as	the	axiom	of	choice	in	set	theory.	It	says	
that	if	every	𝑥	satisfying	𝐼	is	related	to	some	𝑦	by	𝑅,	then	(fixing	𝐼, 𝑅)	another	relation	𝑅¼ 	can	
behave	like	a	choice	function	selecting	a	unique	such	𝑦	for	each	𝑥.	

Note	that	in	the	case	where	𝑛 = 0	(when	𝐼	becomes	just	a	necessary	truth)	the	axiom	
asserts	the	possibility	of	an	𝑅¼	which	applies	to	a	unique	𝑚-tuple	in	the	extension	of	𝑅114.	
The	utility	of	this	special	case	is	demonstrated	in	the	following	lemma115.	

Proposition	8.1	(Simplified	Choice).		Suppose	𝑅¼ ∉ ℒ, 𝑅 ∈ ℒ	(and	𝑅¼ 	is	not	the	same	relation	
as	𝑅).	(∃�⃗�);𝑅(𝑥)D ∧ 𝛷 → ◊ ;𝛷 ∧ (∃�⃗�)¥𝑅¼(�⃗�) ∧ 𝑅¼(𝑥) ∧ (∀�⃗�)(𝑃(�⃗�) → �⃗� = �⃗�)¦Dℒ 	

Proof.	This	follows	directly	from	our	Choice	Axiom	(Axiom	3.12)	by	letting	𝑛 = 0	as	we	
regard	the	0-ary	relation	𝐼	appearing	in	our	Choice	Axiom	(Axiom	3.12)	as	¬⊥.	■	

8.12  Possible Amalgamation 

My	final	and	least	obvious	(but	I	hope,	on	reflection	still	very	plausible	seeming)	principle	
says	that	(when	certain	special	conditions	are	satisfied)	we	can	have	disjoint	structures	
simultaneously	witnessing	the	conditional	logical	possibility	of	extending	some	core	
structure	in	different	ways.	

Speaking	informally	and	using	quantifying	in,	we	might	say	this	axiom	captures	the	
intuition	that	if	the	most	general	laws	of	logic	permit	a	certain	scenario	𝜙(𝑥)	for	each	𝑥	in	
some	logically	possible	𝐼	then	they	don’t	forbid	the	‘disjoint	union’	of	these	scenarios.	

Crudely	speaking,	this	axiom	takes	us	from	the	logical	possibility	(given	some	starting	
structure	ℒ),	of	satisfying	a	certain	formula	𝜙(𝑥)	for	any	single	𝑥	in	a	base	collection	of	
objects	(those	satisfying	some	𝐼	in	ℒ),	to	the	logical	possibility	of	an	expanded	universe	
where	for	every	object	𝑥	satisfying	𝐼,	there	is	a	corresponding	structure	(indexed	to	this	
object	𝑥)	within	which	a	version	of	𝜙(𝑥)	is	true.	

	

114	Thanks	to	Peter	Gerdes	for	pointing	out	that	I	didn’t	need	to	state	this	as	a	separate	
axiom.	

115	Note	that	in	actualist	set	theory	this	fact	is	guaranteed	by	applying	comprehension	with	
parameters	but	our	version	of	comprehension	doesn’t	allow	this.	



For	example,	if	we	take	𝐼	to	be	the	predicate	person(⋅)	and	the	ℒ	to	be	the	list	
person(⋅),childOf(𝑥, 𝑦)	Possible	Amalgamation	licenses	claims	like:	

If,	for	any	choice	of	a	person,	there	could	be	(holding	fixed	the	facts	about	people	
and	parentage)	as	many	ghosts	as	that	person	has	children,	then	(holding	fixed	
the	facts	about	people	and	parentage)	it	could	be	that,	for	every	person	𝑥,	there	
are	as	many	ghosts-haunting-𝑥	(disjoint	from	everyone	else’s	ghosts)	as	𝑥	has	
children.	

While	this	principle	in	some	sense	serves	the	same	purpose	as	the	set	theorist’s	axiom	of	
Replacement	it	differs	in	a	critical	way	from	actualist	Axiom	of	Replacement.	Actualist	
Replacement	acts	as	a	closure	condition	on	a	single	structure	(the	hierarchy	of	sets)	and	it’s	
this	aspect	which	makes	its	consistency	non-obvious.	However,	the	Amalgamation	axiom	
merely	asserts	the	possibility	of	a	scenario	in	which	this	disjoint	union	is	realized.	This	
possibility	is	obviously	logically	possible	in	a	way	that	assuming	the	existence	of	a	single	
structure	closed	under	Replacement	is	not116.	

As	before	(with	modal	comprehension	Axiom	3.9),	articulating	this	principle	can	seem	to	
require	quantifying	in	to	the	◊	of	logical	possibility.	However,	we	can	use	the	same	trick	
(involving	an	otherwise	unused	predicate	𝑄)	to	get	around	it,	as	we	did	when	formulating	
modal	comprehension	above.	

Axiom	8.13	(Amalgamation).		If	

• ℒ	is	a	list	of	relations	which	contains	the	predicate	𝐼	but	not	𝑄	or	𝑅(𝐼𝑅)	

• 𝛷	is	content-restricted	ℒ, 𝑄, 𝑅(…𝑅).	(where	𝑃,	𝑅(…𝑅)	and	ℒ	share	no	relations)	

• 𝑅(¿…𝑅)¿ 	are	otherwise	unused	relations,	such	that	if	𝑅< 	is	an	𝑛-place	relation	then	𝑅¼< 	is	an	
𝑛 + 1	place	relation.	

Let	𝛹(𝑥)	be	the	formula	

À (
(P<P)

∀�⃗�)(𝑅<(𝑣) ↔ 𝑅\Á (�⃗�, 𝑥))	

asserting	that	𝑅¼< 	with	𝑥	inserted	into	the	last	place	behaves	exactly	the	same	as	𝑅< .	Let	𝜋(𝑥, 𝑦)	
be	the	formula	

⋁ ((P<P)
(PCPQ(

∃𝑧()… , (∃𝑧C?(), (∃𝑧C+(), … , (∃𝑧Q()𝑅¼<(𝑧(, … , 𝑧C?(, 𝑥, 𝑧C+(, … , 𝑧Q( , 𝑦)	which	asserts	that	𝑥	

appears	in	some	tuple	ending	with	𝑦	satisfying	some	𝑅¼< 	

	

116	While	earlier	potentialist	approaches,	e.g.,	Hellman	(Geoffrey	Hellman	1994a),	did	try	to	
justify	their	uses	of	Replacement	I	believe	this	axiom	is	more	clearly	guaranteed	not	to	
contravene	the	most	general	laws	of	logic.	



then	
□ℒ ¥; ∃! 𝑥 ∣∣ 𝑄(𝑥) D;𝐼(𝑥)D → ◊ 𝛷ℒ,Z ¦ →

◊ℒ [(∀𝑥)(∀𝑦)(∀𝑦-)[(¬𝑦 = 𝑦′ ∧ 𝜋(𝑥, 𝑦) ∧ 𝜋(𝑥, 𝑦′) → 𝑥 ∈ Ext(ℒ)] ∧
□ ¥(∃! 𝑥);𝑄(𝑥)D;𝑄(𝑥) ∧ 𝐼(𝑥) ∧ 𝛹(𝑥)D → 𝛷¦ℒ,4"]…4#] ¦

	

Remember	that	; ∃! 𝑥 ∣∣ 𝑄(𝑥) D;𝐼(𝑥)D	indicates	that	there	is	a	unique	𝑥	such	that	𝑄	and	that	
this	𝑥	also	satisfies	𝐼.	

To	see	how	this	captures	the	intuition	from	the	start	of	the	section,	note	that	(informally)	
the	antecedent	merely	asserts	that	for	each	𝑥	satisfying	𝐼	(with	the	value	of	𝑥	conveyed	by	
𝑄)	it	is	logically	possible	that	𝛷(𝑥).	The	consequent,	in	turn,	asserts	that	it’s	logically	
possible	to	have	a	single	logically	possible	structure	which	can	be	broken	up	into	disjoint	
’domains’	𝑀/	for	each	𝑥	satisfying	𝐼	such	that	𝑀/ ⊨ 𝛷.	Note	that	𝑀/	here	is	just	a	way	of	
talking	about	the	objects	satisfying	𝑅¼<(⋅, … ,⋅, 𝑥)	and	we	capture	talk	of	modelling	by	
considering	the	logically	possible	scenario	in	which	𝑅<(𝑦(, … , 𝑦))	holds	iff	𝑅¼<(𝑦(, … , 𝑦), 𝑥).	In	
other	words,	this	complex	sentences	merely	expresses	the	relatively	straightforward	
intuition	that	if	we	can	index	logically	possible	scenarios	by	𝐼	then	it’s	logically	possible	to	
have	a	disjoint	union	of	scenarios	witnessing	all	the	logical	possibility	facts	indexed	by	𝐼.	

Chapter 9 Defense of ZFC 

Recall	from	chapter	6.4,	that	we	have	recursive	principles	which	let	us	translate	every	
sentence	in	the	first-order	language	of	set	theory	into	a	claim	about	logically	possible	
extensibility.	

In	appendix	C	I	prove	the	following	result,	which	establishes	that	my	potentialist	
translations	preserve	first-order	derivability.	Let	⊢# 𝑂𝐿	denote	first-order	consequence).	

Theorem	9.1	(Logical	Closure	of	Translation).		Suppose	𝛷,𝛹	are	sentences	in	the	language	
of	set	theory	and	𝛷 ⊢#$% 𝛹	then	𝑡(𝛷) ⊢ 𝑡(𝛹)	

To	justify	mathematicians’	use	of	the	ZFC	axioms	it	remains	to	show	that	our	potentialist	
translations	of	the	ZFC	axioms	of	set	theory	can	be	proved	using	the	inference	rules	for	
logical	possibility	above117.	Since	we	just	showed	that	every	first-order	logical	proof	in	the	
language	of	set	theory	can	be	reconstructed	as	a	proof	of	the	set-theoretic	translations	of	
the	relevant	claims	in	my	language,	this	suffices	to	justify	normal	mathematical	practice.	

9.1 Bounded Quantification 

First,	we	have	some	axioms	(Foundation,	Extensionality,	Choice,	Comprehension	and	
Union)	whose	potentialist	translations	follow	fairly	immediately	from	the	following	lemma	
about	set-theoretic	statements	with	bounded	quantifiers.	While	statements	with	
unbounded	quantifiers	must	be	translated	in	terms	of	modal	quantification	over	possible	

	

117	I’m	deeply	indebted	to	Peter	Gerdes	for	his	help	with	the	appendixes	(below	and	online)	
referenced.	Without	his	help	in	simplifying	proofs	and	spotting	gaps	and	errors,	this	project	
would	not	have	been	possible	



initial	segments,	subformulas	𝜙	containing	only	bounded	quantifiers	(See	definition	
Definition	L.1	in	section	L.3	of	the	online	appendix	for	a	formal	definition)	can	be	unpacked	
in	a	way	that	eliminates	further	appeals	to	modal	quantification,	i.e.,	if	𝜙	is	bounded	then	
𝑡)(𝜙)	will	be	equivalent	to	a	claim	about	𝐼𝑠𝐼𝑉𝑉)	that	doesn’t	involve	any	conditional	logical	
possibility	operators.	

Intuitively,	the	idea	is	that	if	𝑥	is	a	set	in	some	initial	segment	𝑉	then,	since	no	initial	
segment	𝑉-	can	add	any	sets	below	𝑥,	asking	what	sets	elements	are	of	𝑥	in	𝑉	(i.e.,	relative	
to	the	membership	relation	∈	given	by	𝑉)	is	the	same	as	asking	about	sets	that	could	be	
elements	in	𝑥	in	some	possible	extension	𝑉-	of	𝑉.	As	a	result,	if	𝜙	is	a	set-theoretic	formula	
with	only	bounded	quantifiers	then	𝑡)(𝜙)	is	equivalent	to	formula	constructed	by	changing	
the	relation	∈	in	𝜙	to	∈)	(replacing	free	variables	with	their	interpretation	as	we	would	do	
if	translating	a	quantifier	free	formula).	More	formally	we	can	say	the	following.	

Lemma	9.1	(Bounded	Quantifiers	Lemma).		Suppose	𝜙(𝑥@, … 𝑥))	is	a	bounded	formula	in	the	
language	of	set	theory	with	only	𝑥(, … 𝑥)	free.	If	(𝑉), 𝜌))	is	an	interpreted	initial	segment	
(Definition	11.4)	then	𝜙E#;𝜌)(⌜𝑥@⌝),… , 𝜌)(⌜𝑥)⌝)D ↔ 𝑡)(𝜙)	where	𝜙E# 	is	the	result	of	
replacing	all	occurrences	of	∈	with	∈)	

See	section	L	of	the	online	appendix	for	a	proof	of	this	lemma.	

Note	that	in	what	follows	I	only	sketch	the	proofs	of	these	claims.	Full	detailed	proofs	of	
these	claims	are	proved	in	section	M	of	the	online	appendix.	In	particular,	I’ll	gloss	over	the	
details	of	the	assignment	functions	and	moving	in	and	out	of	◊	contexts	to	give	the	reader	a	
sense	of	the	core	ideas	used	in	each	proof	and	refer	the	reader	to	the	appendix	for	full	
proofs.	

9.1.1 Foundation 

Proposition	9.1	(Potentialist	Foundation).		𝑡 �(∀𝑥)¥(∃𝑎)(𝑎 ∈ 𝑥) → (∃𝑦);𝑦 ∈ 𝑥 ∧

¬(∃𝑧)(𝑧 ∈ 𝑦 ∧ 𝑧 ∈ 𝑥)D¦�	

As	𝑥	is	the	only	unbounded	variable	appearing	in	Foundation	(in	light	of	the	Bounded	
Quantifiers	Lemma	5.1),	we	can	think	of	the	potentialist	translation	of	Foundation	as	
simply	asserting	that	it’s	necessary	that	in	any	initial	segment	𝑉	no	set	𝑥	in	𝑉	contains	an	
infinite	∈	descending	chain118.	This	claim	is	formalized	in	the	following	lemma.	

Lemma	9.2.		If	𝑉	is	an	initial	segment	and	𝑥	is	a	non-empty	set	in	𝑉,	then	there	is	some	𝑦 ∈ 𝑥	
such	that	( ∀𝑧 ∣ 𝑧 ∈ 𝑥 )(𝑧 ∉ 𝑦).	

Intuitively,	this	claim	follows	from	the	fact	that	we	defined	an	initial	segment	so	that	the	
ordinals	are	well-ordered	and	in	turn	∈	must	be	a	well-founded	relation	(𝑥	must	contain	

	

118	That	is,	it’s	logically	impossible,	holding	𝑉	fixed	that	there	is	a	set	𝑥	in	𝑉	such	that	there	
is	no	𝑦 ∈ 𝑥	such	that	𝑦	has	no	elements	in	𝑥.	



some	𝑦	that	was	built	at	the	least	ordinal	level	and	thus	𝑦	can’t	contain	any	other	member	𝑧	
of	𝑥).		

9.1.2 Extensionality 

Proposition	9.2	(Extensionality).		𝑡;(∀𝑥)(∀𝑦)([(∀𝑧 ∈ 𝑥)(𝑧 ∈ 𝑦) ∧ (∀𝑧 ∈ 𝑦)(𝑧 ∈ 𝑥)] → 𝑥 =
𝑦)D	

Again,	this	claim	essentially	asserts	the	(obvious)	fact	that	extensionality	holds	in	any	
logically	possible	initial	segment.		

9.1.3 Union 

Proposition	9.3	(Potentialist	Union).		⊢ 𝑡;∀𝑧 ∃𝑎 (∀𝑦 ∈ 𝑧)(∀𝑥 ∈ 𝑦)(𝑥 ∈ 𝑎)D	

Informally,	this	requires	that	for	every	logically	possible	initial	segment	𝑉	and	set	𝑧	in	𝑉	
that	there	is	a	logically	possible	extension	𝑉-	of	𝑉	containing	⋃𝑧.	To	prove	this,	it	is	enough	
to	note	that	⋃𝑧	is	contained	in	𝑉.	This	follows	by	considering	part	7	of	the	definition	of	
Initial	Segment	and	noting	that	all	sets	appearing	in	⋃𝑧	occur	at	earlier	ordinals	than	𝑧	
does	and	hence	⋃𝑧	must	occur	in	any	initial	segment	that	contains	𝑧.		

9.2 Comprehension 

Proposition	9.4	(Comprehension).		If	𝜙(𝑥,𝑤(, … , 𝑤))	is	a	formula	in	the	language	of	ZFC	
with	free	variables	𝑥, 𝑤(, … , 𝑤).	Then	

𝑡(∀𝑧∀𝑤(∀𝑤&…∀𝑤)∃𝑦∀𝑥[𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜃)])	

In	essence,	this	claim	says	the	following119.	Suppose	if	𝑉 ⃗ 	is	an	interpreted	initial	segment	
and	𝑧, 𝑤(, …𝑤)	are	sets	in	𝑉	and	𝜓	is	a	first-order	formula	in	the	language	of	set	theory.	
Then	we	can	(◊EII⃗ )	have	an	initial	segment	𝑉

-    ⃗ ≥K 𝑉 ⃗ 	with	containing	a	set	𝑦	whose	elements	
are	exactly	those	𝑥 ∈ 𝑧	that	𝜃(𝑥, 𝑤(, … , 𝑤))	is	potentialistically	true	of.	

By	,	it	is	enough	to	show	that	it’s	logically	possible	for	some	relation	𝑅	to	apply	to	just	those	
𝑥 ∈ 𝑧	that	make	the	potentialistic	translation	of	𝜓(𝑥,𝑤(, … , 𝑤))	true	and	thereby	show	that	
there	is	such	a	set	𝑦	in	the	initial	segment	𝑉.	This	claim	follows	by	application	of	Modal	
Comprehension	(	Axiom	3.9)	to	the	potentialist	translation	of	𝜓(𝑥,𝑤(, … , 𝑤)).	

9.3 Moving to an Extension 

Now	let’s	turn	to	the	axioms	of	Pairing	and	Powerset.	Unlike	the	previous	axioms	verifying	
the	truth	of	Pairing	and	Powerset	requires	showing	the	logical	possibility	of	a	non-trivial	

	

119	That	is	glossing	over	the	fact	that	claims	about	the	existence	of	sets	in	an	initial	segment	
are	actually	claims	about	the	logical	possibility	of	an	interpreted	initial	segment	where	the	
interpratation	picks	out	those	sets.	



extensions	of	a	given	initial	segment,	i.e.,	pairs	and	powersets	of	sets	in	an	initial	segment	𝑉	
don’t	necessarily	exist	in	𝑉.	

We	will	vindicate	the	potentialist	use	of	these	axioms	by	showing	that	given	a	logically	
possible	initial	segment	(and	an	assignment	satisfying	the	preconditions	for	the	potentialist	
translation	of	these	axioms),	there	is	a	logically	possible	extension	(as	guaranteed	by	the	
Proper	Extension	Lemma	in	section	K	of	the	online	appendix)	witnesses	the	truth	of	the	of	
these	claims.	Intuitively,	this	duplicates	the	actualist	set-theoretic	intuition	that,	given	
parameters	from	𝑉, ,	the	truth	of	the	Pairing	and	Powerset	Axioms	is	guaranteed	by	the	
existence	of	an	extending	𝑉,+(.	

9.3.1 Pairing 

Proposition	9.5	(Potentialist	Pairing).		⊢ 𝑡;∀𝑥∀𝑦∃𝑧(𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑧)D	

Informally,	this	requires	that	for	any	logically	possible	initial	segment	𝑉	and	sets	𝑥, 𝑦	in	𝑉	
there	is	some	logically	possible	extension	𝑉-	containing	a	set	𝑧	which	has	both	𝑥	and	𝑦	as	
members.	

Since	it	is	logically	possible	to	extend	any	initial	segment	to	a	strictly	larger	one	(as	proved	
in	Lemma	K.4	of	the	online	appendix),	we	are	guaranteed	the	logical	possibility	of	a	non-
trivial	extension	𝑉-	for	any	𝑉.	We	can	then	use	Simple	Comprehension	(Axiom	8.4)	to	
demonstrate	the	logical	possibility120	of	a	predicate	applying	just	to	𝑥	and	𝑦.	By	the	
assumption	that	𝑉-	properly	extends	𝑉	we	know	that	𝑉-	contains	an	ordinal	larger	than	any	
in	𝑉	and	thus	by	part	5	of	the	definition	of	an	initial	segment	(	Definition	A.2)	there	is	a	set	
𝑧	in	𝑉-	containing	𝑥	and	𝑦.	

9.3.2 Powerset 

Proposition	9.6	(Potentialist	Powerset).		𝑡(∀𝑥∃𝑦∀𝑧[(∀𝑤)(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦])	

We	prove	this	claim	in	exactly	the	same	manner	as	we	did	Potentialist	Pairing	
(Proposition	9.5).	The	only	difference	is	that	instead	of	applying	Simple	Comprehension	
(Axiom	8.4)	to	yield	a	predicate	applying	to	some	pair	of	sets,	instead	we	use	it	to	show	the	
logical	possibility	of	a	predicate	applying	to	all	the	sets	that	are	members	of	𝑥.	

9.3.3 Choice 

Proposition	9.7	(Potentialist	Choice).	

	

120	In	the	actual	proof,	as	we	can’t	quantify	in,	we	must	instead	assume	that	the	claim	fails	
and	use	Simple	Comprehension	(axiom	Axiom	3.4)	and	Simplified	Choice	(proposition	
Proposition	3.1)	to	infer	the	existence	of	𝑄	which	applies	uniquely	to	a	pair	𝑥, 𝑦	witnessing	
the	failure	and	then	use	𝑄	with	Simple	Comprehension	(Axiom	3.4)	to	build	the	predicate.	



		
𝑡(∀𝑥[∅ ∉ 𝑥 → ∃𝑓𝜙(𝑓, 𝑥)])
		where	
𝜙(𝑓, 𝑥) ↔ ∀𝑎 ∈ 𝑥 (𝑓(𝑎) ∈ 𝑎)

	

Note	that	a	choice	function	in	the	sense	relevant	to	set	theory	is	defined	in	terms	of	a	set	of	
ordered	pairs.	In	this	proof	we	rely	on	a	lemma	(Lemma	M.6),	proved	by	iterating	the	
reasoning	we	used	to	establish	pairing,	that	given	any	function	(in	the	sense	of	a	relation)	
taking	sets	in	𝑉	to	sets	in	𝑉	it’s	logically	possible	to	extend	𝑉	to	a	𝑉-	in	which	this	function	is	
realized	by	a	set	of	ordered	pairs.	

With	this	lemma	in	mind,	I	embark	on	the	proof.	To	prove	this	claim,	it	is	enough	to	show	
that	if	𝑉	is	an	initial	segment	and	𝑥	is	a	set	in	𝑉	with	∅ ∉ 𝑥	then	it’s	logically	possible	to	
extend	𝑉	to	some	initial	segment	𝑉-	containing	a	choice	function	𝑓	for	𝑥.	Intuitively,	this	is	
sufficient	by	considering	the	way	translation	works	for	existential	statements.	

We	now	establish	the	logical	possibility	(holding	𝑉	fixed)	of	a	relation	𝑅¼	coding	a	choice	
function	for	𝑥.	Unsurprisingly,	we	build	𝑅¼ 	by	applying	Choice	(Axiom	8.12).	We	first	build	a	
relation	𝑅,	defined	using	Simple	Comprehension	(axiom	Axiom	8.4),	such	that	𝑅(𝑎, 𝑏)	holds	
just	if	𝑏 ∈ 𝑎 ∈ 𝑥.	We	also	build	a	predicate	𝐼	(also	defined	using	Simple	Comprehension)	
that	applies	just	to	elements	of	𝑥.	We	can	then	deduce	the	existence	of	a	choice	function	(in	
the	sense	of	a	relation)	𝑅¼	via	Choice	(Axiom	8.12).	𝑅¼ 	has	the	property	that	it	associates	each	
𝑎 ∈ 𝑥	to	a	unique	𝑏 ∈ 𝑎.	The	desired	conclusion	follows	using	the	lemma	mentioned	above	
to	deduce	the	existence	of	a	𝑉-	extending	𝑉	containing	a	set	of	ordered	pairs	coding	this	
choice	function.	

9.4 Amalgamation Axioms 

The	final	two	ZFC	axiom	schema	we	need	to	vindicate	(Infinity	and	Replacement)	require	
using	Amalgamation	(Axiom	8.13)	axiom.	

Recall	from	Chapter	8,	that	the	Amalgamation	Axiom	asserts	a	kind	of	simultaneous	
possibility	intuition.	It	says	that	we	can,	so	to	speak,	take	the	disjoint	union	of	any	indexed	
collection	of	logically	possible	scenarios	(when	the	possible	scenarios	are	characterized	so	
as	to	satisfy	certain	intuitive	non-interference	conditions).	

The	key	to	justifying	both	Replacement	and	Infinity	will	be	to	combine	Amalgamation	with	
a	little	trick	about	equivalence	classes	which	I’ll	now	sketch	(see	the	online	appendix	for	
detail)	to	justify	the	following	extensibility	principle.	

Suppose	there	is	some	logically	possible	initial	segment	𝑉/	for	each121	𝑥	satisfying	some	
predicate	𝐼.	Then	we	can	have	a	single	initial	segment	𝑉 	which	extends	an	isomorphic	copy	
of	each	𝑉/ .	Moreover,	if	each	𝑉/	extends	some	initial	segment	𝑉?	then	we	can	have	𝑉	extend	
that	same	𝑉?	.	

	

121	Of	course,	formally,	we	can’t	quantify	in	so	we	express	the	possibility	of	𝑉/	by	talking	
about	what’s	logically	necessary	if	some	predicate	𝑄	applies	to	a	unique	𝑥	satisfying	𝐼.	



First	we	deploy	Amalgamation	(	Axiom	8.13)	to	infer	the	logical	possibility	of	the	‘disjoint	
union’	of	initial	segments	𝑉/	extending	𝑉@.	Then	we	construct	the	initial	segment	𝑉	using	
Possible	Powerset	(Axiom	8.11).	We	take	the	elements	of	𝑉	to	be	the	equivalence	classes	of	
elements	of	the	disjoint	initial	segments	𝑉/	under	the	equivalence	relation	induced	by	
possible	isomorphism	of	initial	segments.	Specifically,	we’ll	consider	𝑧	and	𝑦	are	equivalent	
if	they	represent	the	same	set	in	different	initial	segments	𝑉/	and	𝑉/'122.	When	the	ordinals	
of	each	𝑉/	are	drawn	from	the	same	well-ordering	(or	they	all	extend	some	common	initial	
segment)	we	can	replace	the	equivalence	classes	with	these	common	elements.	

9.4.1 Replacement 

The	axiom	schema	of	Replacement	asserts	that	the	image	of	a	set	under	any	definable	
function	will	also	fall	inside	a	set.	

Proposition	9.8	(Potentialist	Replacement).		Let	𝜃	be	any	formula	in	the	language	of	ZFC	
whose	free	variables	are	𝑥, 𝑦, 𝐴, 𝑤(, … , 𝑤),	so	that,	in	particular,	B	is	not	free	in	𝜃.	Then	

𝑡;∀𝑎∀𝑤(∀𝑤&…∀𝑤)¥∀𝑥(𝑥 ∈ 𝑎 → ∃! 𝑦 𝜃) → ∃𝑏∀𝑥;𝑥 ∈ 𝑎 → ∃𝑦(𝑦 ∈ 𝑏 ∧ 𝜃)D¦D	

Speaking	loosely	(in	terms	of	quantifying	in),	we	want	to	show	that	following.	Given	an	
initial	segment	𝑉	and	a	set	𝑎	in	𝑉,	if	for	every	𝑥 ∈ 𝑎	it’s	logically	possible	that	there	is	some	
initial	segment	𝑉/	extending	𝑉	and	a	set	𝑦/	in	𝑉/	making	the	potentialist	translation	of	
𝜃(𝑥, 𝑦/)	true	then	it’s	logically	possible	to	have	a	single	set	𝑏	in	some	𝑉 +(	extending	𝑉	that	
containing	all	those	witnesses.	To	construct	𝑉 +(	we	must	first	establish	the	logical	
possibility	of	an	initial	segment	𝑉 	containing	sets	𝑦/	for	each	𝑥 ∈ 𝑎	and	then	show	it	is	
logically	possible	to	extend	it	by	one	layer	to	collect	those	sets	together	in	a	single	set	𝑏.	

Now	the	truth	of	the	potentialist	translation	of	a	set-theoretic	sentence	is	‘absolute,’	unlike	
the	notion	of	truth	in	a	model.	That	is,	(as	shown	in	section	L.2	of	the	online	appendix)	if	
𝑉 ⃗ < ≤/ 𝑉 ⃗C 	and	they	agree	on	the	assignments	of	𝑥	and	𝑦/	then	the	truth-values	of	𝑡<;𝜃(𝑥, 𝑦/)D	
and	𝑡C;𝜃(𝑥, 𝑦/)D	are	the	same.	

So	it	is	enough	to	ensure	that	some	initial	segment	𝑉 	extending	𝑉	has	the	property	that	for	
each	𝑥 ∈ 𝑎,	𝑉 	extends	some	𝑉/Á ≅ 𝑉/	where	𝑉/	makes	the	potentialist	translation	of	𝜃(𝑥, 𝑦/)	
true	for	some	set	𝑦/	in	𝑉/ .	To	establish	the	possibility	of	this	𝑉 ,	we	invoke	the	key	
reasoning	above,	to	go	from	the	logical	possibility	of	the	initial	segments	𝑉/	to	the	logical	
possibility	of	a	𝑉 	extending	isomorphic	images	of	them.	

9.4.2 Infinity 

Proposition	9.9	(Potentialist	Infinity).		𝑡;(∃𝑥)[∅ ∈ 𝑥 ∧ (∀𝑦 ∈ 𝑥)(𝑆(𝑦) ∈ 𝑥)]D	

	

122	Note	that	this	is	true	exactly	when	it	would	be	logically	possible	for	a	relation	R	to	
isomorphically	map	an	initial	segment	of	𝑉/	to	an	initial	segment	of	𝑉/-	taking	x	to	y.	See	
Theorem	K.1	for	details	on	this	part	of	the	argument)	



where	𝑆(𝑦)	is	𝑦 ∪ 𝑦	

Verifying	this	claim	requires	showing	that	it’s	logically	possible	to	have	some	initial	
segment	𝑉*+(	containing	a	set	𝑥	that	is	closed	under	successor.	The	notation	here	is	
suggestive,	in	that	it	will	be	enough	to	argue	that	it’s	logically	possible	to	have	an	initial	
segment	that	corresponds	to	𝑉*+(	in	the	normal	actualist	hierarchy.	This	initial	segment	
contains	a	set	𝑥	whose	members	are	all	sets	in	𝑉* .	It	is	easy	to	see	that	𝑥	will	be	successor	
closed.	The	difficulties	are	two-fold.	First,	we	must	establish	the	existence	of	an	infinite	
well-ordering	(particularly	one	without	a	maximal	element).	Then	we	must	argue	that	one	
could	flesh	out	that	well-ordering	to	an	initial	segment.	

The	first	claim	is	proved	in	the	Infinite	Well-Ordering	Theorem	(	Theorem	J.1)	located	in		
Theorem	J.1	of	the	online	appendix.	The	idea	behind	the	proof	is	as	follows.	We	start	with	
the	successor	function	𝑆	from	Infinity	(Axiom	8.10)	and	use	it	to	build	our	infinite	well-
order	𝜔,<* .	Intuitively,	𝜔	is	just	the	smallest	successor	closed	collection	from	dom	𝑆	and	
<*	is	the	order	induced	by	𝑆.	To	overcome	the	difficulty	of	defining	<*	from	𝑆	without	
quantifying	in,	we	invoke	Possible	Powerset	(	Axiom	8.11)	so	we	can	quantify	over	(objects	
coding	)	classes	of	elements	in	dom	𝑆.	Since	𝜔	is	the	smallest	successor	closed	collection	we	
may,	using	Simple	Comprehension	(Axiom	8.4)	define	<*	by	𝑥 <* 𝑦	just	if	there	is	a	
successor	closed	class	containing	𝑦	but	not	𝑥.	The	reader	should	consult	section	19	of	the	
online	appendix	for	the	lengthy	process	of	verifying	each	element	of	the	definition	of	a	well-
order	is	verified	and	that	the	resulting	well-order	has	no	maximal	element	as	well	(as	well	
as	possessing	several	other	desirable	properties).	

Having	demonstrated	the	logical	possibility	of	an	infinite	well-order,	we	argue	for	the	
logical	possibility	of	an	initial	segment	whose	ordinals	have	height	𝜔 + 1	(it	is	logically	
possible	to	add	a	single	element	to	the	well-order	𝜔	above	all	the	prior	elements).	This	part	
of	the	proof	is	formalized	in	the	Fleshing	Out	Theorem	(Theorem	K.2	in	section	K.6	of	the	
online	appendix)	but	boils	down	to	arguing	that,	for	any	ordinal	𝑜	in	a	given	well-order	
𝑊,<,	it’s	logically	possible	to	have	an	initial	segment	𝑉T	whose	ordinals	include	𝑊 ↾PT , <.	

This	is	established	by	supposing	the	claim	fails	and	considering	the	least	ordinal	𝑜	for	
which	it	fails.	If	that	ordinal	is	a	successor	ordinal	(the	case	where	𝑜 = 0	is	trivial)	we	use	
the	Possible	Powerset	axiom	(	Axiom	8.11)	to	construct	𝑉T	from	𝑉T?(.	The	difficult	case	
occurs	when	𝑜	isn’t	a	successor	(i.e.,	is	a	limit).	In	this	case	we	leverage	the	logical	
possibility	of	𝑉_	for	every	𝑢 < 𝑜	via	the	reasoning	above	to	construct	𝑉T .	This	establishes	the	
possibility	of	𝑉*+(	which,	as	discussed	above,	contains	the	desired	successor	closed	set.	

Note	that	this	informal	sketch	describes	multiple	appendixes	full	of	formal	work	and	we	
invite	the	reader	to	consult	Infinite	Well-Ordering	Theorem	(	Theorem	J.1))	located	in	
section	J	of	the	online	appendix	for	a	full	proof.	

Part III  
In	this	last	third	of	the	book,	I	will	discuss	how	the	potentialist	set	theory	I	have	advocated	
in	parts	I	and	II	above	can	be	attractively	developed	into	a	larger	philosophy	of	
mathematics.	



 Chapter 10 Platonism or Nominalism? 

I	have	argued	that	Burali-Forti	concerns	and	anti-arbitrariness	worries	discussed	in	
Chapter	2	motivate	Potentialism,	and	thus	nominalism,	about	set	theory	(if	not	other	areas	
of	mathematics)	in	a	way	that	should	be	of	interest	to	philosophers	of	many	different	
stripes.	But	what	we	should	say	about	other	types	of	mathematical	objects?	It	seems	
unattractive	to	suggest	that	talk	of,	say,	the	real	numbers	should	be	understood	in	a	
completely	radically	different	way	from	talk	of	sets.	Mathematics	appears	to	have	a	
somewhat	unified	subject	matter.	However,	I’ll	suggest	this	doesn’t	mean	that	accepting	
Potentialism	about	set	theory	forces	one	to	take	a	similarly	nominalist	position	about	other	
talk	of	mathematical	objects?	

In	this	chapter	I’ll	discuss	two	ways	the	Potentialism	about	set	theory	advocated	in	parts	I	
and	II	of	this	book	can	be	developed	into	a	larger	nominalist	philosophy	of	mathematics	
that	satisfies	intuitions	about	the	unity	of	mathematics.	But	I’ll	also	note	a	more	
ontologically	realist	way	this	theory	could	be	extended:	the	neo-Carnapian	proposal	
mentioned	above.	

10.1  Ontologically Anti-Realist Options 

So,	let’s	begin	by	noting	two	obvious	nominalist	options	for	developing	the	potentialist	set	
theory	above	into	a	larger	philosophy	of	mathematics.	Importantly	the	proposals	below	
don’t	just	take	other	branches	of	mathematics	to	resemble	potentialist	set	theory	in	
avoiding	commitment	to	mathematical	objects.	Rather,	they	honor	intuitions	about	the	
unity	of	mathematics	more	fully,	by	suggesting	that	all	areas	of	pure	mathematics	can	be	
seen	as	the	investigation	of	(what’s	allowed	by)	the	laws	of	logical	possibility.	In	particular,	
potentialists	hold	that	all	pure	mathematical	claims	can	be	written	as	pure	statements	of	
logical	possibility,	i.e.,	𝜙	or	◊ 𝜙	claims,	where	𝜙	is	a	statement	in	the	language	of	
conditional	logical	possibility	(note	that	claims	of	this	form	don’t	hold	anything	fixed	(and	
thereby	ignore	all	contingent	facts	about	the	actual	world).	

10.1.1  Set-theoretic Reduction 

First,	we	could	understand	mathematical	statements	outside	set	theory	by	combining	
Potentialism	about	set	theory	with	set-theoretic	foundationalism.	Bourbaki	etc.	have	
shown	that	we	can	systematically	identify	mathematical	objects	of	various	kinds	with	sets.	
So,	one	approach	to	apparent	talk	of	pure	mathematical	objects	that	aren’t	sets	(e.g.,	
apparent	quantification	over	natural	numbers)	is	simply	to	reduce	these	claims	to	set-
theoretic	statements	in	the	usual	way,	and	then	apply	the	potentialist	translation	strategy	
I’ve	advocated	in	this	book.	

Call	this	approach	Reduction	to	Potentialist	Set	theory.	This	approach	might	seem	to	face	a	
problem	regarding	handling	second-order	quantification	over	mathematical	structures	like	
the	natural	numbers.	For,	remember	that	my	potentialist	paraphrase	strategy	only	applies	
to	first-order	sentences.	However,	one	can	cash	such	second	(and	higher)	quantification	
out	in	terms	of	quantification	over	layers	of	sets	over	whatever	sets	are	identified	with	the	
mathematical	structure	in	question,	so	this	is	not	really	a	problem.	



As	my	version	of	Potentialism	doesn’t	commit	one	to	the	existence	of	any	mathematical	
objects,	neither	does	this	approach.	For	it	ultimately	cashes	out	apparent	existence	claims	
about	the	natural	numbers	(and	other	mathematical	structures)	in	modal	terms	which	
don’t	commit	one	to	the	existence	of	corresponding	objects.	

This	approach	is	convenient	for	illuminating	connections	between	different	areas	of	
mathematics.	But	it	requires	us	to	pick	some	way	of	identifying	talk	of	various	
mathematical	structures	with	set-theoretic	talk,	which	can	seem	to	introduce	something	
arbitrary	and	inessential,	as	Benacerraf	famously	pointed	out(Benacerraf	1965).	

10.1.2 Modal If-Thenism 

A	different	nominalist	approach	to	mathematics	beyond	set	theory	is	Modal	If-Thenism	
along	the	lines	of	Hellman’s	view	in	(Geoffrey	Hellman	1994a).	The	key	idea	is	to	interpret	
utterances	which	seem	to	quantify	over	mathematical	objects	as	really	making	claims	about	
what	it’s	logically	necessary	that	any	objects	satisfying	certain	axioms	(articulating	our	
conception	of	relevant	pure	mathematical	structures	must	be	like.	Specifically,	a	pure	
mathematical	statement	𝛷	which	appears	to	quantify	over	objects	forming	some	pure	
mathematical	structure	S	(other	than	the	hierarchy	of	sets)	will	be	logically	formalized	as	
asserting	the	conjunction	of	the	following	claims.	It’s	logically	possible	for	there	to	be	some	
objects	with	and	relations	instantiating	the	relevant	structure	S.	And	it’s	logically	necessary	
that	if	there	are	some	objects	with	this	structure	then	the	version	of	𝛷	which	talks	about	
these	objects	is	true.	

Here	is	a	more	detailed	example.	Consider	an	arbitrary	statement	𝛷	in	the	language	of	
arithmetic,	e.g.,	the	claim	that	there	are	infinitely	many	twin	primes.	The	modal	if-thenist	
might	take	the	true	logical	form	of	this	statement	to	be	the	following	conjunction	of	claims.	

• It’s	logically	possible	for	there	to	be	objects	which	have	the	intended	structure	of	the	
natural	numbers	under	successor,	plus	and	times	(when	considered	under	some	
relations	ℕ, 𝑆, +,×	).	

◊ 𝑃𝐴◇(ℕ, 𝑆, +,×)	

	 Here	𝑃𝐴◊	denotes	the	categorical	description	of	the	natural	numbers	in	the	language	of	
conditional	logical	possibility	ℒ	provided	in	section	J.3	of	the	online	appendix.123	

• It’s	logically	necessary	that	if	there	are	objects	with	this	intended	structure,	then	they	
must	also	make	𝛷	true	(i.e.,	the	version	of	𝛷	which	is	modified	to	talk	about	the	
relevant	relations	ℕ, 𝑆, +,×	is	true).	

[𝑃𝐴◊(ℕ, 𝑆, +,×) → 𝛷]	

	

123	More	specifically,	I	am	using	𝑃𝐴◊(ℕ, 𝑆, +,×)	to	mean	the	conjunction	of	𝑃𝐴◊(ℕ, 𝑆, +,×)	as	
defined	in	J.3	of	the	online	appendix	and	with	claims	that	the	relations	+,×,	which	will	be	
playing	the	role	of	plus	and	times,	satisfy	the	usual	axioms	e.g.	∀𝑥∀𝑦𝑥 + 𝑆(𝑦) = 𝑆(𝑥 + 𝑦)	



Note	that	here	(in	line	with	the	Putnamian	approach	to	Potentialism	discussed	in	chapter	
2)	the	mathematical-looking	relation	names	ℕ, 𝑆, +,×	I	am	using	are	merely	a	mnemonic	
device,	and	we	can	deploy	this	paraphrase	strategy	using	any	non-mathematical	relations	
with	the	right	arity.	

Also	note	that	the	level	of	truth	value	realism	delivered	by	this	approach	depends	on	
whether	we	have	a	categorical	conception	of	all	pure	mathematical	structures	talked	about	
in	the	sentence	to	be	paraphrased.	If	we	do	have	such	a	categorical	conception	(and	this	
conception	is	stateable	in	second-order	logic,	and	thus	in	the	language	of	conditional	logical	
possibility)	we	will	get	definite	bivalent	truth	conditions.	If	not,	we	may	not.	

This	difference	tracks	a	widely	accepted	division	between	(what	are	sometimes	called)	
algebraic	and	non-algebraic	theories	within	mathematics.	As	Stanford	Encyclopedia	puts	it,	
“Roughly,	non-algebraic	theories	are	theories	which	appear	at	first	sight	to	be	about	a	
unique	model:	the	intended	model	of	the	theory.	We	have	seen	examples	of	such	theories:	
arithmetic,	mathematical	analysis…	Algebraic	theories,	in	contrast,	do	not	carry	a	prima	
facie	claim	to	be	about	a	unique	[structure].	Examples	are	group	theory,	topology,	graph	
theory...”	(Horsten	2019)	

In	what	follows	I	will	focus	on	non-algebraic	structures,	because	they	are	generally	
considered	to	be	the	most	philosophically	problematic(M.	Potter	2007)	portion	of	
mathematics.	But	see	(Geoffrey	Hellman	1996)	for	some	appealing	thoughts	about	how	to	
treat	algebraic	theories	in	terms	of	a	logical	possibility	operator.	It	might	be	interesting	to	
try	to	develop	a	foundation	for	category	theory	using	the	conditional	logical	possibility	
operator	I’ve	advocated	here.		

10.2 Ontologically Realist Options 

In	addition	to	the	above	nominalist	approaches	to	expanding	Potentialism	about	set	theory	
to	a	general	philosophy	of	mathematics	(in	a	unified	way),	we	can	also	take	an	ontologically	
realist	neo-Carnapian	approach.	I	will	develop	such	an	approach	in	chapter	6,	but	let	me	
briefly	foreshadow	its	main	outlines	and	(claimed)	advantages	here.	

On	the	view	I	will	advocate,	mathematicians’	acceptance	of	axioms	entailing	existence	
assertions	about	complex	numbers	can	change	the	meaning	of	their	quantifiers,	so	as	to	
make	a	sentence	like,	“there	is	a	number	which	is	the	square	root	of	−1”	go	from	
expressing	a	falsehood	to	expressing	a	truth.	And,	more	generally,	mathematicians	can	
reliably	form	true	beliefs	by	introducing	any	logically	coherent	axioms	they	like.	So,	we	say	
that	mathematical	objects	literally	exist.	However	mathematical	knowledge	is	closely	
connected	to	knowledge	of	logical	possibility,	in	that	our	access	to	facts	about	pure	
mathematical	objects	is	unmysterious	given	knowledge	of	logical	possibility.	And	talk	of	
mathematical	objects	can	be	seen	as	having	the	‘core	job’	of	enabling	study	of	logical	
possibility	facts,	in	much	the	way	we	might	say	talk	of	cities	and	countries	has	the	core	job	
of	helping	us	understand	facts	about	people’s	political	interactions.	

The	above	features	help	this	neo-Carnapian	realism	about	mathematical	objects	satisfy	the	
unity	of	mathematics	intuition	evoked	at	the	beginning	of	this	chapter,	and	let	this	view	
duplicate	the	benefits	of	nominalism	with	regard	to	access	worries.	



However,	I	will	suggest	that	accepting	the	existence	of	mathematical	objects	outside	set	
theory	has	some	advantages.	In	particular,	I’ll	argue	that	it	helps	avoid	(certain	forms	of)	
classic	indispensability	arguments	against	mathematical	nominalism.	It	also	helps	honor	
Benacerraf’s	idea	that	we	should	treat	notions	that	function	similarly	(‘there	is	a	number	
between	5	and	10’	and	‘there	is	a	city	between	NY	and	LA’)	similarly.	One	might	argue	that	
the	Burali-Forti	paradox	gives	us	special	reason	for	overriding	this	norm	in	the	case	of	set	
theory,	but	we	should	otherwise	follow	it.	

One	might	also	feel	that	rejecting	mathematical	objects	outside	set	theory	fits	
uncomfortably	with	realism	about	non-fundamental	objects	in	the	special	sciences	
(contracts,	languages,	peer	groups,	social	clubs).	So,	if	you	don’t	favor	an	ultra-spare	
ontology	generally	(as	I	don’t),	there’s	a	kind	of	unity	argument	for	favoring	neo-Carnapian	
realism	about	mathematical	objects	over	nominalism.	

One	might	fear	that	accepting	mathematical	objects,	but	not	sets,	prevents	set	theory	from	
doing	the	job	mathematicians	initially	wanted	it	for:	enabling	comparative	study	and	
theorem	transfer	between	different	areas	of	mathematics.	However,	this	is	not	the	case,	
because	we	can	use	potentialist	set	theory	with	ur-elements	(or	just	conditional	logical	
possibility	directly)	to	do	that	job.	

10.3  Agenda 

In	this	final	part	of	this	book,	I’ll	discuss	each	of	the	above	ways	of	extending	the	
potentialist	set	theory	developed	in	Parts	I	and	II	to	a	larger	philosophy	of	mathematics	
(modal	nominalism	and	neo-Carnapian	realism)	in	some	detail.	

First,	I’ll	consider	nominalism	and	the	most	well-known	objection	to	general	mathematical	
nominalism:	the	Quinean	indispensability	argument	(that	we	can’t	avoid	quantifying	over	
mathematical	objects	in	formalizing	our	best	scientific	theories).	I’ll	argue	that	the	kind	of	
nominalist	who	is	motivated	by	the	set-theoretic	considerations	above	can	use	the	logical	
possibility	operator	plus	some	cheap	tricks	to	answer	classic	Quinean	indispensability	
arguments,	but	that	reference	and	grounding	based	version	of	the	Quinean	indispensability	
argument	pose	more	of	a	problem	for	them.	

Then,	I’ll	turn	to	neo-Carnapian	realism	about	non-	set-theoretic	mathematical	objects.	I’ll	
argue	that	adopting	this	option	lets	us	evade	or	reduce	the	lingering	indispensability	
worries	above,	while	maintaining	many	of	the	benefits	of	nominalism.	I’ll	then	use	the	
logical	possibility	operator	to	develop	the	general	neo-Carnapian	picture	in	certain	ways:	
proposing	a	dynamics	for	neo-Carnapian	knowledge	by	stipulative	(re)definition	and	a	
framework	for	evaluating	meta-semantic	answers	to	access	worries.	

I’ll	conclude	by	noting	how	both	nominalist	and	neo-Carnapian	realist	philosophies	of	
mathematics	developed	in	this	part	of	the	book	support	traditional	structuralist	and	(to	a	
certain	extent)	Logicist	intuitions	about	the	nature	of	mathematics.	



Chapter 11 Indispensability 

11.1  Introduction 

With	these	options	for	slotting	potentialist	set	theory	into	a	larger	Platonist	and	Nominalist	
philosophy	of	mathematics	in	mind,	let’s	turn	to	the	famous	Quine-Putnam(Mark	Colyvan	
2019a;	W.	V.	Quine	1961)	indispensability	argument	against	mathematical	nominalism	
(some	variants	of	which	will	also	have	force	against	neo-Carnapian	realism	about	
mathematical	objects).	Although	I	won’t	ultimately	advocate	nominalism,	clarifying	
whether	the	nominalist	can	answer	this	and	related	indispensability	challenges	will	help	us	
choose	between	the	nominalism	and	neo-Carnapian	realist	options	above.	Doing	so	will	
also	reveal	some	interestingly	different	roles	mathematical	objects	can	play	in	the	sciences	
and	an	indispensability	worry	that	applies	equally	to	the	neo-Carnapian	realist	and	the	
nominalist.	

The	classic	Quine	indispensability	argument	belongs	to	a	broader	family	of	related	
challenges.	I’ll	try	to	clarify	what’s	required	for	the	nominalist	to	adequately	answer	a	
(classic	Quinean)	indispensability	challenge.	I’ll	also	highlight	Grounding	and	Reference	
indispensability	challenges	and	argue	that	these	are	usefully	distinguished,	both	from	each	
other	and	the	classic	Quinean	indispensability	challenge.	

11.2  The General Form of Indispensability Arguments 

Abstractly,	(as	Colyvan	suggests	(Mark	Colyvan	2019a)	)	it	can	be	helpful	to	think	in	terms	
of	a	family	of	indispensability	arguments,	with	the	following	shared	form.	

• We	ought	to	have	ontological	commitment	to	all	and	only	the	entities	that	are	
indispensable	to	our	best	scientific	theories.	

• Mathematical	entities	are	indispensable	to	our	best	scientific	theories.	

• We	ought	to	have	ontological	commitment	to	mathematical	entities.	

Different	specific	indispensability	arguments	correspond	to	different	versions	of	the	claim	
that	mathematical	objects	are	indispensable	to	our	best	scientific	theories.	Most	famously,	
we	get	the	classic	Quinean	Indispensability	argument	by	cashing	out	‘indispensability’	in	
terms	of	quantification	and	literal	statement.	This	result	in	the	following	challenge.	

Quinean	(Literal	Statement)	Indispensability	Challenge:	How	can	we	literally	state	our	
best	scientific	theories	without	quantifying	over	(and	thus	committing	ourselves	to)	the	
existence	of	mathematical	objects?	

Recall	that	Quine’s	criterion	says	(in	slogan	form)	that	we	are	committed	to	believing	in	all	
the	objects	which	a	theory	we	believe	in	quantifies	over.	To	cash	out	the	slogan,	consider	



any	logically	regimented	theory	𝑇.124	If	this	theory	𝑇	logically	entails	∃𝑥𝐹𝑥	then	anyone	
who	accepts	𝑇	is	committed	to	believing	in	the	existence	of	some	objects	satisfying	𝐹.	Thus,	
accepting	a	theory	with	first-order	existential	quantification	over	Fs	yields	ontological	
commitment	to	Fs125.	

If	all	this	is	true,	then	philosophers	who	deny	the	existence	of	some	kind	of	objects	F	face	a	
burden	to	provide	(or	at	least	make	it	plausible	that	one	could	in	principle	provide)	a	
logical	regimentation	of	their	best	total	theory	of	the	world	which	doesn’t	‘quantify	over	
Fs,’	i.e.,	doesn’t	imply	that	∃𝑥𝐹(𝑥).	Thus,	it	has	been	argued	that	the	nominalist	about	
mathematical	objects	owes	a	logical	regimentation	(which	I	will	sometimes	call	
paraphrase)	of	all	scientific	theories	they	believe	in	which	doesn’t	quantify	over	
mathematical	objects.	I	will	say	more	about	what	it	means	to	adequately	capture	the	
content	of	this	theory	in	a	way	that	doesn’t	use	mathematical	objects	below.	

And	philosophers	pressing	this	classic	indispensability	argument	maintain	that	one	can’t	
adequately	logically	regiment	certain	key	scientific	theories	nominalists	tend	to	accept	
without	quantifying	over	mathematical	objects.	For	standard	textbook	presentations	of	
these	theories	seem	to	involve	quantification	over	numbers,	and	it	is	not	clear	how	to	
eliminate	this.	For	example,	consider	the	famous	‘inverse	square’	law	relating	mass,	
distance	and	gravitational	force.	

𝐹 = 𝑚(𝑚&/𝑟&	

It	can	seem	far	easier	to	logically	regiment	a	theory	including	this	law	in	a	Platonist	way	
(e.g.,	in	terms	of	functions	from	physical	objects	to	real	numbers	or	a	mass	ratio	relation	
between	physical	objects	and	real	numbers)	than	in	a	nominalist	way.	

I	take	this	challenge	to	be	widely	accepted	as,	if	not	inescapable,	something	which	has	
enough	intuitive	force	to	require	an	answer.	One	can	think	of	it	as	arising	from	a	default	
presumption	that	you	should	be	able	to	say	what	you	mean	literally	(understood	here	to	
require	formalization	in	a	logically	regimented	language126)	together	with	the	appearance	
that	it’s	impossible	to	thus	literally	state	certain	parts	of	widely	accepted	scientific	theory	
without	quantifying	over	mathematical	objects.	

	

124	Assume	T	is	formulated	in	the	language	of	first-order	logic	or	some	extension	of	it	which	
adds	other	notions	like	a	model	necessity	or	possibility	operator	

125	I	leave	aside	the	vexed	topic	whether	accepting	a	theory	which	lets	one	derive	some	
second-order	existence	claim	∃𝑋𝑋(𝑐)	commits	one	to	the	existence	of	second-order	objects,	
as	it	won’t	matter	for	present	purposes.)	

126	One	might	think	of	this	demand	arising	from	a	demand	to	provide	a	(logically	
regimented)	Carnapian	explication	which	solves	puzzles	and	will	stand	up	to	arbitrary	
pedantic	questioning	literally	and	in	a	regimented	language,	plus	the	idea	that	we	apply	
Quine’s	criterion	we	get	only	commitment	to	objects	that	exist.	



While	there	is	an	obvious	intuitive	pull	to	the	above	literal	statement	demand,	some	
philosophers	of	mathematics	have	rejected	it,	and	hence	the	Quinean	indispensability	
challenge(Azzouni	2003;	Melia	1995).	They’ve	noted	that	scientists	often	convey	serious	
theories	of	what	reality	is	like	by	speaking	about	what	would	be	true	under	assumptions	
which	they	don’t	believe	in	(e.g.,	infinitely	deep	water,	frictionless	planes,	ideal	gasses).	And	
they’ve	used	the	role	of	such	clear	fictions	in	the	sciences	to	reject	the	literal	statement	
demand	-	and	hence	avoid	admitting	the	existence	of	mathematical	objects	while	accepting	
Quine’s	criterion.	So,	they	allow	that	the	literal	truth	of	the	theories	they	state	when	doing	
science	would	require	the	existence	of	mathematical	objects,	but	they	deny	that	these	
theories	are	(literally)		true.	

The	persuasiveness	of	this	response	is	a	matter	of	significant	controversy127.	However,	
even	if	this	response	succeeds,	it	doesn’t	protect	against	the	following	explanatory	
indispensability	worry	(raised	by	Baker(A.	Baker	2005)	and	advocated	in	works	like	(Mark	
Colyvan	2019a)),	which	Platonists	have	pressed	in	response.	

Scientific	Explanatory	Challenge:	Demonstrate	that	we	can	explain	scientific	facts	
without	reference	to	mathematical	objects	whose	existence	we	don’t	believe	in.	

We	can	fit	this	explanatory	indispensability	argument	into	the	general	form	given	above,	if	
we	understand	mathematical	objects	to	be	indispensable	to	a	theory	(literally	stated	or	
not)	if	their	existence	is	required	for	ideal/adequate	explanation	of	the	phenomena	which	
the	theory	is	supposed	to	explain	along	the	lines	the	theory	suggests.	Thus,	merely	rejecting	
demands	for	literal	statement	doesn’t	get	nominalists	off	the	hook	as	regards	
indispensability	worries	as	a.	

.	

11.3.  Answering Indispensability Arguments 

Now	what	does	it	take	for	a	philosopher	to	adequately	answer	an	indispensability	
challenge?	

11.3.1 Motivation Via Specific Problem Cases 

It	might	seem	that,	to	answer	the	above	Quinean	indispensability	worry,	the	nominalist	
must	show	how	to	plausibly	logically	regiment	their	best	scientific	theories	without	
quantifying	over	mathematical	objects.	However,	taken	literally,	this	requirement	unfairly	
stacks	the	deck	against	the	nominalist.	For,	plausibly,	independent	philosophical	puzzles	in	
metaphysics	and	the	philosophy	of	science,	physics,	biology	etc.	currently	prevent	everyone	
(nominalist	and	Platonist	alike)	from	attractively	logically	regimenting	certain	parts	of	our	
best	total	scientific	theory.	Indeed,	in	some	cases	it	seems	clear	that	accepting	the	existence	
of	mathematical	objects	couldn’t	possibly	help	clear	the	roadblocks	to	attractively	logically	

	

127	For	example,	see	(M.	Colyvan	2010)	for	one	influential	argument	against	such	‘easy	
road’	response	to	the	classic	Quinean	indispensability	argument.	



regimenting	a	certain	kind	of	physical	theory.	Mathematical	nominalists’	failure	to	solve	
these	puzzles	shouldn’t	count	against	them.	

Instead,	I	take	it,	indispensability	worries	only	create	a	serious	challenge	for	a	
mathematical	nominalist	because,	and	to	the	extent	that,	philosophers	pressing	access	
worries	have	highlighted	specific	portions	of	our	best	scientific	theory,	such	that	one	of	the	
two	following	conditions	holds.	

• We	can	currently	see	how	to	attractively	platonistically	paraphrase	this	portion	of	our	
total	scientific	theory,	but	not	how	to	nominalistically	paraphrase	it.	

• We	have	some	positive	argument	(such	as	Putnam’s	counting	argument	to	be	
discussed	in	chapter	14	below)	that	no	nominalist	theory	can	adequately	logically	
regiment	this	portion	of	our	total	theory.	

And	if	the	nominalist	can	address	all	known	specific	indispensability	arguments	(by	either	
providing	a	paraphrase	strategy	that	lets	one	adequately	capture	the	content	of	the	
disputed	portions	of	our	best	scientific	theory	or	blocking/refuting	the	relevant	specific	
arguments)	then	they	will	also	count	as	sufficiently	diffusing	Quinean	indispensability	
worries128	(at	least	for	the	time	being).	

11.3.2 Adequate Paraphrase, Craig’s Theorem and Expressive Power 

Second,	we	can	ask,	what	does	it	take	for	a	nominalist	(or	Platonist)	logical	regimentation	
to	literally	state	a	natural	language	scientific	theory?	What	does	a	logical	regimentation	of	a	
part	of	our	best	scientific	theory	(in	response	to	a	classic	Quinean	challenge)	need	to	do?	.	

First,	it’s	traditional	and	appealing	to	think	that	nominalistic	logical	regimentations	
provided	in	response	to	Quinean	challenge	should	be	something	which	a	human	being	
could	believe	and	assert.	This	gives	rise	to	an	expectation	that	a	single	natural	language	
theory	should	be	paraphrased	by	a	single/finite	collection	of	sentences129	in	a	finite	
human-learnable	language.	

Second,	we	might	want	our	nominalistic	physical	theory	to	capture	the	inferential	role	of	
our	best	scientific	theory	in	combining	with	other	claims	we	might	learn	are	true	to	derive	
concrete	consequences	about	whether	a	cannon	ball	will	land	before	a	feather	and	the	like.,,	
Thus	we	might	want	a	general	paraphrase	strategy	which	can	formalize	both	our	scientific	
theory	and	a	range	of	other	scientific	and	observational	statements	S	which	can	be	used	to	
derive	statements	from	that	theory	–	not	just	a	logical	regimentation	of	our	best	scientific	
theory	alone.	The	above	human	graspability	idea	—	that	the	answer	to	a	Quinean	challenge	
should	be	something	we	(finite	creatures	speaking	a	human	learnable	language)	could	

	

128	In	doing	this	they	will	be	dispelling	the	apparent	reasons	for	thinking	that	accepting	
nominalism	would	prevent	us	from	attractively	logically	regimenting	our	best	theories	

129	However	some	nominalists	have	also	allowed	paraphrases	to	be	infinite	sets	of	
sentences	if	there	is	some	schema	or	algorithm	for	unpacking	them	(H.	Field	1980).	



actually	say	in	response	to	a	demand	—	also	motivates	a	uniformity	expectation.	The	
nominalist	should	be	able	to	systematically	unpack	and	explain	what	they	really	mean	by	
their	natural	language	scientific	theory.	Thus,	one	might	expect	that	there	should	be	a	
computable	procedure	that	generates	a	nominalistic	logical	regimentation	from	the	original	
English	statement,	when	original	is	sufficiently	clear130.	

A	third	and,	I	think,	crucial	and	under-emphasized	desideratum	is	that	our	nominalistic	
formalizations	of	scientific	theories	should	be	able	to	express	the	kinds	of	constraints	on	
non-mathematical	reality	which	we	intuitively	expect	the	scientific	theory	being	paraphrased	
to	express.	

To	illustrate	this	point,	consider	Craig’s	theorem.	Craig’s	Theorem	might	seem	to	
immediately	answer	Quinean	indispensability	worries	by	showing	that	we	can	always	
transform	a	Platonist	theory	into	a	nominalistic	theory	that	has	all	the	same	nominalistic	
consequences.	For,	as	Stanford	Encyclopedia,	puts	it	(Mark	Colyvan	2019b)	

[Craig’s	theorem]	states	that	relative	to	a	partition	of	the	vocabulary	of	an	
axiomatizable	theory	𝑇	into	two	classes,	𝑡	and	𝑜	(theoretical	and	observational,	
say)	there	exists	an	axiomatizable	theory	𝑇∗	in	the	language	whose	only	non-
logical	vocabulary	is	𝑜,	[which	implies	]	all	and	only	the	consequences	of	𝑇	that	
are	expressible	in	𝑜	alone.	If	the	vocabulary	of	the	theory	can	be	partitioned	in	the	
way	that	Craig’s	theorem	requires,	then	the	theory	can	be	re-axiomatized	so	that	
apparent	reference	to	any	given	theoretical	entity	is	eliminated.	

However,	it	is	generally	agreed	that	Craig’s	theorem	does	not	suffice	to	block	Quinean	
indispensability	worries.	Why?	People	sometimes	say	that	such	theories	are	inelegant	and	
unexplanatory.	For	example,	in	(H.	Field	1980)	Field	raises	the	point	about	Craig’s	theorem	
and	writes	as	follows	

[S]ince	I	don’t	know	any	formal	conditions	that	would	rule	out	such	formal	
trickery,	let	me	simply	say	that	by	‘theory’	I	mean	a	reasonably	attractive	theory.	
‘Theories’	[like	the	ones	we’d	get	by	applying	Craig’s	theorem]	are	obviously	
uninteresting,	since	they	do	nothing	whatever	towards	explaining	the	
phenomenon	in	question	in	terms	of	a	small	number	of	basic	principles.	

I	agree	that	the	type	of	nominalistic	paraphrases	that	are	ensured	to	exist	by	Craig’s	
theorem	can	fail	to	answer	important	indispensability	Quinean	indispensability	type	
worries,	through	failing	to	be	explanatory.	’	

	

130	So,	for	example,	one	(intuitively)	can’t	logically	regiment	ones	pure	mathematical	
language	(in	response	to	indispensability	worries)	by	just	saying	that	all	(of	what	would	
normally	be	considered)	true	Platonistic	mathematical	statements	are	to	be	considered	as	
abbreviating	tautologies	and	all	false	ones	as	abbreviating	contradiction.	One	must	instead	
provide	some	concrete	algorithm	for	formalizing	Platonistic	sentences	into	nominalistic	
ones	in	a	way	that	has	this	property.	



However,	there’s	another	important	further	way	Cragian	paraphrases	can	fall	short.	Even	
when	such	regimentations	regimentation	should	logically	imply	all	the	same	sentences	
involving	purely	nominalistic	relations	(i.e.,	relations	which	the	nominalist	and	Platonist	
agree	necessarily	don’t	apply	to/relate	any	mathematical	objects)	as	a	Platonistically	
regimented	physical	theory,	they	can	fail	to	answer	indispensability	worries	because	the	
nominalistic	vocabulary	used	by	a	Platonist	regimentation	of	a	theory	is	too	impoverished	
to	express	the	intuitive	content	of	the	scientific	theory	being	logically	regimented.	

Consider	a	straightforward	Platonist	logical	regimentation	of	a	physics	textbook	theory	
which	makes	lots	of	predictions	about	the	(say)	position,	mass,	charge	etc.,	of	physical	
objects	by	first-order	logically	implying	many	claims	about	how	certain	relation	between	
objects	and	numbers	(e.g.,	a	mass	in	grams	relation	M(x,y)	relating	objects	to	real	numbers	
or	a	mass	ration	relation	relating	pairs	of	objects	to	real	numbers)	apply.	As	these	
predictions	are	not	nominalistic	consequences	in	the	sense	above,	our	Craigain	re-
axiomatization	of	this	Platonist	theory	need	not	preserve	them.	It	might	not	make	any	
predictions	about	objects’	mass,	charge	etc.	at	all!131	

Accordingly,	nominalistic	regimentations	of	a	theory	(including	those	with	the	good	feature	
guaranteed	by	Craig’s	theorem)	can	fail	because	they	are	expressively	inadequate,	even	if	
they	aren’t	explanatorily	bad.	A	nominalist	paraphrase	produced	by	applying	Craig’s	
theorem	to	the	Platonist	formalization	of	a	scientific	theory	can	fail	to	constrain	physical	
reality132	in	the	way	that	the	nominalist	takes	the	natural	language	scientific	theory	to	

	

131	One	might	try	to	address	this	problem	by	saying	that	really	the	physical	theory	should	
be	considered	alongside	a	theory	that	connects	physical	statements	to	some	kind	of	more	
concretely	observable	claims	(not	to	say	a	sense	data	language).	And	one	might	hope	that	
the	latter	predictions	will	ultimately	be	cashed	out	in	terms	that	don’t	involve	any	
quantification	over	mathematical	objects,	‘the	left	side	of	the	balance	scales	will	be	lower	
down’	or	‘you	will	see	a	black	dot’	would	be	in	nominalistic	terms.	If	you	knew	this	then	
you’d	know	that	applying	Craig’s	theorem	would	give	you	a	theory	that	at	least	got	these	
observational	consequences	right.	

However,	there	are	two	problems	with	this	response.	First	it’s	not	clear	that	the	Platonist	
ever	has	to	cash	out	their	observational	predictions	in	nominalistic	vocabulary	(appeals	to	
numbers	seems	natural	and	helpful	for	capturing	the	detail	of	what	we	can	observe	or	
predict	we’ll	observe,	e.g.,	for	capturing	different	shades	of	colors	or	size	we	can	observe	or	
expect	to	observe).	Second,	and	more	importantly	however,	the	intended	content	of	a	
physical	theory	that	the	Platonist	and	nominalist	alike	will	want	to	capture	with	their	
logical	regimentations	will	generally	go	far	beyond	such	obserational	predications.	The	
Platonist	and	nominalist	alike	want	to	state	theories	that	tell	us	about	invisible	magnetic	
fields	and	remote	stars	and	events	in	the	ancient	past	etc.	

132	That	is,	this	Craigian	translation	can	rule	out	many	of	the	metaphysically	or	
epistemically	possible	scenarios	which	the	nominalist	takes	this	scientific	theory	to	rule	out	



(even	if	this	Craigain	translation	is	unified	and	explanatory	so	far	as	it	goes133).	Therefore,	
Craig’s	Interpolation	theorem	does	not,	on	its	own,	provide	a	satisfactory	answer	to	Quine’s	
literal	statement	challenge.	

I	will	say	that	an	adequate	paraphrase	strategy	for	some	chunk	of	scientific	practice	is	an	
algorithmic	function	which	maps	a	collection	of	sentences	S	(sufficient	to	rationally	
reconstruct	the	practice	in	question)	to	a	collection	of	formal	sentences	in	some	human	
learnable	language	L,	in	a	way	that	preserves	the	truth-conditions	for	these	sentences.	

In	the	rest	of	this	book,	I	will	consider	a	nominalist	paraphrase	strategy	that	produces	
logical	regimentations	which	Platonists	are	forced	to	acknowledge	as	expressively	
adequate	in	the	following	sense.	We	can	prove	from	metaphysical	principles	the	Platonist	
accepts,	that	applying	this	paraphrase	strategy	to	a	scientific	sentence	𝛷	produces	a	
nominalistic	translation	T(𝛷),	which	is	true	at	exactly	the	same	metaphysically	possible	
worlds	as	𝛷.	Accordingly,	if	the	Platonist	regimentation	gets	the	truth	conditions	for	the	
relevant	physical	theory	right	then	so	can	the	nominalsitic	regimentation.	

In	what	follows,	I’ll	call	a	logical	regimentation	strategy	that	captures	the	intended	
(possible	worlds)	truth	conditions	a	scientific	theory	would	have	if	we	Platonism	was	true	a	
Platonistically	acceptable	paraphrase	strategy	and	a	paraphrase	strategy	that	does	the	
above	even	if	there	are	no	mathematical	objects	a	nominalistically	acceptable	
paraphrase	strategy.	Note	that	a	Platonistically	acceptable	paraphrase	generally	won’t	
look	adequate	from	the	nominalist	point	of	view.	For	it	is	likely	to	pair	scientific	sentences	
with	sentences	that	imply	the	existence	of	mathematical	objects,	and	hence	are	false	at	all	
possible	worlds!134	

	

133	Imagine	a	case	where	the	physics	textbook	which	is	being	nomainalized	via	Craig’s	
theorem	includes	some	historical	generalizations	and	claims	about	physicists,	which	allow	
straightforward	nominalization.	In	this	case	the	nomianalistic	consequences	of	the	
Platonistically	regimented	theory	may	be	all	and	only	the	historical	claims	included	and	
implied	by	it.	So	the	nominalistic	formulation	of	the	explanation	for	these	claims	might	be	
just	as	good	as	the	Platonistic	one.	

134	In	some	cases	(such	as	the	logical	regimentation	of	physical	magnitudes	statements	to	
be	discussed	in	Chapter	5)	it	will	be	controversial	whether	a	given	Platonist/Nominalist	
logical	regimentation	is	adequate	in	the	sense	above.	For	it	can	be	philosophically	
controversial	whether	various	non-mathematical	objects	invoked	in	the	paraphrase	exist	
and/or	what	the	truth-value	of	the	scientific	sentences	to	be	paraphrased	takes	on	at	this	
possible	world.	In	this	case,	I	will	say	that	the	Platonist/nominalist	can	attractively	
paraphrase	a	theory	to	the	extent	that	the	additional	philosophical	commitments	(outside	
of	the	existence/nonexistence	of	mathematical	objects)	are	attractive.	



11.4  Other Indispensability Worries 

11.4.1 Reference and Grounding Worries 

In	addition	to	the	Quinean	and	Explanatory	Indispensability	problem,	there	are	two	other	
indispensability	challenges	facing	the	nominalist.	I	will	call	these	the	Finitary	Reference	
and	Grounding	challenges.	

Let’s	begin	with	the	Finitary	Reference	explaining	challenge135.	This	challenge	for	the	
nominalist	concerns	accounting	for	our	claimed	ability	to	use	sentences	in	a	finitely	
learnable	language	to	draw	the	kinds	of	distinctions	we	take	ourselves	to	draw.	

Finitary	Reference	Challenge:	Explain	how	your	sentences	(including	those	you	
take	to	be	false)	are	able	to	have	the	(possible	worlds)	truth	conditions	which	you	
take	them	to	have.	How	are	you	able	to	finitely	learn	a	language	which	can	draw	
the	distinctions	which	take	your	language	to	draw?136	

Additionally,	nominalists	face	a	grounding	worry.	One	might	worry	that	mathematical	
objects	play	an	indispensable	role	in	grounding	the	truth	of	applied	mathematical	
statements.	For	example,	one	might	ask	the	nominalist	‘What	metaphysically	grounds	facts	
of	the	form	‘This	object	is	r	times	more	massive	than	that	one’	if	not	a	three-place	relation	
(assigning	pairs	of	objects	to	their	mass	ratio)	between	physical	objects	and	numbers?’	
That	is,	one	might	argue	that	nominalists	can’t	meet	the	following	grounding	challenge.	

Grounding	Challenge:	Explain	how	the	truth	of	propositions	you	think	are	true	in	actual	
world	can	be	grounded	in	facts	about	the	actual	configuration	of	metaphysical	
fundamentalia	you	accept	(or	are	open	to),	and	how	the	truth	of	propositions	you	think	

	

135	I	have	(speaking	somewhat	loosely)	called	this	a	referential	indispensability	worry,	
because	it	concerns	our	ability	to	‘refer’	to	certain	sets	of	supposedly	possible	worlds	by	
uttering	sentences	which	are	true	at	exactly	these	worlds.	

136	We	might	intensify	this	reference	explaining	challenge	by	adding	the	following	
requirement:	Explain	how	you	would	still	have	been	able	to	finitely	learn	a	language	that	
can	state	a	certain	range	of	thoughts	if	the	actual	world	had	been	different	in	certain	ways!	

Let	me	clarify	this	amplified	challenge	by	making	things	more	concrete.	A	nominalistic	
paraphrase	strategy	might	suffice	to	answer	the	plain	reference	explaining	challenge	(by	
showing	how	creatures	like	us	could	form	sentences	that	pick	out	suitable	sets	of	possible	
worlds,	e.g.,	those	where	one	stick	is	exactly	𝜋	times	longer	than	another)	but	fail	to	answer	
this	amplified	reference	explaining	challenge	as	follows.	This	paraphrase	strategy	might	
explain	our	actual	reference	abilities	only	by	exploiting	certain	contingent	facts	about	the	
world.	But	if	the	nominalist	thinks	that	our	having	these	referential	abilities	(e.g.	our	ability	
to	mean	‘One	stick	is	exactly	𝜋	times	longer	than	another’)	isn’t	hostage	to	these	contingent	
facts	about	the	actual	world,	then	this	more	ambitious	two	dimensionalist	reference	
explaining	challenge	won’t	be	solved.	



could	be	true	in	some	metaphysically	possible	scenarios	could	be	grounded	in	facts	about	
what	the	metaphysical	fundamentalia	would	be	like	in	those	scenarios.	

Obviously,	we	don’t	expect	the	nominalist	to	be	able	to	say	what	fundamentally	grounds	
various	physical	magnitude	facts,	since	we	don’t	yet	know	the	true	fundamental	laws	of	
physics	and	don’t	know	which	magnitudes	are	fundamental.	But	if	no	imaginable	story	
about	grounding	could	be	told	by	the	nominalist	while	the	Platonist	could	tell	many	such	
stories,	this	would	significantly	cut	against	nominalism.	

11.4.2 Sideran Framework 

For	clarity	in	talking	and	thinking	about	grounding,	I	will	use	the	following	a	basic	
framework	taken	from	Sider’s	(Sider	2011).	However,	I	don’t	think	much	I	say	will	depend	
on	this	particular	choice	of	framework.	There	are	three	elements	to	consider.	

First,	we	have	a	concept	of	fundamentality,	which	Sider	identifies	with	joint	carvingness	
(in	the	sense	in	which	the	predicate	‘is	an	electron’	is	intuitively	more	joint	carving	than	the	
notion	‘is	an	electron	or	a	cow’).	Importantly,	this	question	of	joint-carvingness	is	not	just	
supposed	to	apply	to	predicates	but	also	to	all	other	elements	of	our	ideology,	including	
variant	existential	and	universal	quantifier	meanings.	Notions	can	be	more	or	less	
fundamental,	and	a	notion	qualifies	as	fundamental	simpliciter	if	it	is	maximally	
fundamental.	As	we	will	discuss	more	below,	Sider	takes	there	to	be	a	single	maximally	
fundamental	existential	quantifier	sense.	And	fundamental	objects	are	objects	that	exist	in	
this	unique	maximally	fundamental	quantifier	sense.	

Second,	Sider	endorses	the	following	principles	which	connect	the	above	idea	of	
fundamentality	qua	maximal	joint-carvingness	to	expectations	about	some	truths	
grounding/explaining	all	other	truths.	

• “Completeness:	Every	non	fundamental	truth	holds	in	virtue	of	some	fundamental	
truth.”	

• “Purity:	Fundamental	truths	involve	only	fundamental	notions.”	

Third,	Sider	ultimately	cashes	out	the	‘in	virtue	of’	notion	above	in	terms	of	the	existence	of	
a	metaphysical	semantics	which	accounts	for	language	users’	behavior	by	systematically	
tying	their	claims/utterances	to	claims	involving	only	fundamental	(i.e.,	maximally	joint	
carving)	notions137.	

	

137	Technically	appeal	to	the	metaphysical	semantics	lets	Sider	eliminate	the	‘in	virtue	of’	
notion	above	from	his	theory	and	restate	completeness	as	follows,	“New	completeness:	
Every	sentence	that	contains	expressions	that	do	not	carve	at	the	joints	has	a	metaphysical	
semantics.”	Sider’s	examples	of	such	a	metaphysical	semantics	often	have	the	form	of	a	
truth	theory	‘Sentence	S	of	L	is	true	in	L	iff	𝜙’	(where	𝜙	is	a	sentence	involving	only	
fundamentalia).	But	he	writes	“Metaphysical	semantics	are	not	required	by	definition	to	
take	any	particular	form.	They	must	presumably	be	compositional	in	some	sense	(since	
	



I	will	differ	from	Sider	(Sider	2011)	in	understanding	‘Platonism’	to	mean	accepting	the	
existence	of	mathematical	objects	(in	our	current	quantifier	sense)	not	our	most	
fundamental	quantifier	sense138.	However,	this	is	a	mere	terminological	difference,	and	
nothing	turns	on	it.	

Some	remarks	of	Sider’s	in	(Sider	2011)	may	nicely	flesh	out	the	distinction	between	
reference	and	grounding	indispensability	worries.	Specifically,	Sider	advocates	a	project	of	
metaphysical	semantics	(something	philosophers	might	do	when	nominalistically	
regimenting	set	theory	or	applied	mathematics)	which	differs	from	linguistic	semantics	as	
follows.	Both	projects	use	notions	like	reference	and	try	to	explain	why	people	say	the	
things	they	do.	However,	the	aims	of	metaphysical	semantics	differ	from	those	of	linguistic	
semantics	in	a	few	ways.	

For	one	thing	metaphysical	semantics	aims	to	illuminate	relationships	between	what	
people	say	and	fundamentalia,	while	linguistic	semantics	does	not.	Sider	writes,	
“Metaphysical	semantics	is	more	ambitious	[than	linguistic	semantics]	in	that	by	giving	
meanings	in	fundamental	terms,	it	seeks	to...	show	how	what	we	say	fits	into	fundamental	
reality.”	Additionally,	metaphysical	semanticists	don’t	attempt	to	assign	meanings	in	a	way	
that	matches	facts	about	sentences’	syntactic	form	or	illuminates	what	can	be	rationally	
derived	from	them	a	priori,	or	what	can	be	known	by	conceptual	competence	alone	as	
linguistic	semanticists	often	do.	As	Sider	puts	it139,	

“[A	person	doing	metaphysical	semantics]	is...	not	trying	to	integrate	her	
semantics	with	syntactic	theory...And	she	is	free	to	assign	semantic	values	that	
competent	speakers	would	be	incapable	of	recognizing	as	such,	for	she	is	not	
trying	to	explain	what	a	competent	speaker	knows	when	she	understands	her	
language.	She	might,	for	example,	assign	to	an	ordinary	sentence	about	ordinary	
macroscopic	objects	a	meaning	that	makes	reference	to	the	fundamental	physical	
states	of	subatomic	particles.	And	she	might	simply	ignore	Frege’s	...puzzle	of	the	
cognitive	nonequivalence	of	co-referring	proper	names,	since	she	is	not	trying	to	
integrate	her	semantics	with	theories	of	action	and	rationality.”	

	

they	must	be	explanatory	and	hence	cast	in	reasonably	joint-carving	terms,	and	must	
contend	with	infinitely	many	sentences).	But	this	still	allows	considerable	variation.”(Sider	
2011)	

138	Note	that	this	difference	in	terminology	doesn’t	reflect	a	commitment	by	Sider	to	only	
use	the	most	fundamental	quantifier	sense	when	doing	philosophy	or	even	metaphysics.	He	
also	accepts	that	one	sometimes	does	philosophy	using	less	fundamental	quantifier	senses.	
It	is	merely	a	pure	terminological	difference.	

139	See	2.4.2	for	more	about	grounding	and	the	minimal	Sideran	framework	I’ll	adopt	in	the	
following	chapters	addressed	to	philosophers	who	embrace	the	projects	of	traditional	
metaphysics.	



11.4.3 Morals 

I	will	say	much	more	about	the	Reference	and	Grounding	worries	in	Chapter	5,	when	
discussing	a	case	where	Quinean	and	Explanatory	indispensability	worries	look	like	they	
might	be	uncontroversially	solvable,	but	Grounding	and	Reference	worries	pose	a	serious	
challenge	(for	some	nominalists).	

But,	for	now,	I	just	want	to	note	three	things.	First	(much	as	has	already	been	pointed	out	in	
the	case	of	Explanatory	indispensability	worries),	Grounding	and	Reference	worries	
remain	even	if	we	dismiss	the	need	to	literally	state	our	best	theory,	as	easy	road	
nominalists	do.	

Second,	we	should	not	assume	that	single	account	(e.g.,	a	single	nominalistic	paraphrase	
strategy)	will	simultaneously	state	(or	show)	the	solutions	to	Reference	and	Grounding	
demands.	For,	a	paraphrase	strategy	will	plausibly	do	a	better	job	at	answering	Reference	
worries	and	explaining	how	we	can	finitely	learn	and	grasp	the	infinitely	many	different	
propositions	we	can	understand	if	it	sticks	close	to	surface	grammar	(with	maybe	a	few	
divergences	motivated	by	linguistics	or	cognitive	science).	On	the	other	hand,	a	paraphrase	
strategy	which	is	intended	to	show	an	answer	to	questions	about	metaphysical	grounding	
will	likely	get	better	(more	plausible	and	attractive	and	explanatory)	by	going	far	away	
from	surface	grammar	and	explaining	how	heterogeneous	facts	can	be	cunningly	grounded	
in	facts	involving	a	tiny	fundamental	ontology	and	ideology.	

Third,	I	take	the	dialectical	point	about	Quinean	indispensability	worries	made	in	§2.3.2	to	
apply	to	Explanatory,	Grounding	and	Reference	worries	as	well.	That	is,	I	take	it	that	
addressing	these	worries	only	requires	dispelling	the	impression	that	rejecting	the	
existence	of	mathematical	objects	prevents	you	from	doing	something,	e.g.,	telling	a	
satisfactory	story	about	our	ability	to	explain	certain	things,	finitely	learn	a	language	which	
lets	us	draw	certain	distinctions.	As	we	will	see	below,	there	are	certain	cases	where	
independent	philosophical	problems	arise	and	it’s	hard	to	tell	an	attractive	explicit	story	
about	reference	and	grounding	whatever	you	say	about	mathematical	objects	(i.e.,	for	
reasons	that	apply	equally	to	the	Platonist).	Failure	to	provide	an	attractive	analysis	in	
these	cases	shouldn’t	count	against	the	nominalist.	

Chapter 12 Modal If-Thenist Paraphrase Strategy 

With	this	picture	of	indispensability	worries	in	mind,	let’s	turn	to	the	question	of	when	the	
nominalist	can	answer	them.	

In	this	chapter	I	will	introduce	a	key	tool	in	the	arsenal	of	the	nominalist	of	Chapter	10:	a	
general	nominalist	paraphrase	strategy	for	replacing	claims	about	mathematical	objects	
with	claims	about	logical	possibility.	

This	paraphrase	strategy	follows	(Geoffrey	Hellman	1994b)	in	putting	a	modal	twist	on	
familiar	if-thenism	but	is	developed	using	the	conditional	logical	possibility	operator	rather	
than	Hellman’s	machinery.	Roughly	speaking,	the	idea	will	be	that	our	nominalistic	
translation	𝑇(𝜙)	of	the	Platonist’s	sentence	𝜙	says:	it’s	logically	necessary,	fixing	the	facts	



about	all	relevant	non-mathematical	structures,	that	if	there	were	also	mathematical	
structures	then	𝜙.	

I’ll	show	how	this	nominalization	strategy	can	be	applied	to	any	Platonist	sentence	𝜙	
satisfying	a	certain	‘definable	supervenience’	condition.	Then	I’ll	note	that,	where	defined,	
the	nominalist	paraphrases	provided	by	this	strategy	will	let	us	answer	classic	Quinean	
Indispensability	arguments	in	the	sense	specified	in	§2.3.2	above.	That	is,	it	will	let	us	
transform	a	Platonist	theory	into	a	nominalistic	theory	which	—	the	Platonist	must	
acknowledge	—	matches	the	intended	(possible	worlds)	truth	conditions	for	that	Platonist	
theory.	

One	might	worry	that	these	paraphrases’	if-thenist	form	makes	them	objectionably	
instrumentalist	and	unexplanatory.	But	in	§4.6,	I’ll	argue	that	this	is	not	the	case.	In	fact,	in	
certain	central	cases,	we’ll	see	that	relevant	nominalist	regimentations	of	scientific	theories	
are	plausibly	explanatorily	better	(more	general,	powerful	and	illuminating)	than	
corresponding	versions	of	the	same	theories.	The	basic	structure	of	this	paraphrase	
strategy	will	also	be	useful	to	help	explicate	and	develop	a	general	neo-Carnapian	
philosophy	of	language	and	a	more	realist	approach	to	mathematical	objects	outside	set	
theory	(as	we	will	see	in	§7.1).	

12.1 Modal If-Thenist Paraphrase Strategy 

12.1.1 Motivating Example 

To	motivate	and	begin	to	concretely	explain	the	modal	if-thenist	nominalization	strategy,	
consider	the	following	sentence.	

CRITICS:	Some	critics	only	admire	each	other	

A	Platonist	who	believes	in	sets	of	critics,	could	Platonistically	formulate	CRITICS	as	
follows.	

CRITICSX:	There	is	a	set-of-critics	x	such	that,	for	all	y	and	z,	if	𝑦 ∈ 𝑥	and	y	
admires	z	then	𝑧 ∈ 𝑥	

Now	our	modal	if-thenist	paraphrase	strategy	lets	us	capture	this	claim	as	per	
T(CRITICSX)below.	

T(CRITICSX):	□critic,	admires 	[If	there	are	(objects	with	the	intended	structure	of)	a	
single	layer	of	sets-of-	critics	under	elementhood,	then	(it’s	true	in	this	structure	
that)	there’s	a	set-of-critics	x	such	that,	for	all	y	and	z,	if	𝑦 ∈ 𝑥	and	y	admires	z	
then	𝑧 ∈ 𝑥.140	

	

140	Note	that	I	use	the	terms	set	and	∈	for	readability	purposes	only.	Any	sentence	
produced	by	uniformly	substituting	a	predicate	P	and	a	two	place	relation	R	(without	
collision)	for	‘set-of-critics’	and	‘∈’	will	work	equally	well.	



This	says	(roughly)	that	necessarily	if	the	actual	structure	of	critics	and	admiration	were	
supplemented	with	extra	objects	with	the	structure	the	Platonist	takes	the	sets-of-critics	to	
have,	then	the	Platonist’s	claim	CRITICSX	would	be	true.	

Intuitively	(from	a	Platonist	point	of	view)	this	claim	has	the	same	truth	conditions	as	the	
original	claim.	

The	truth	value	of	CRITICSX	is	completely	determined	by	the	structure	of	how	critic,	
admiration	,	set-of-critics	apply.	

We	can	say	there	are	objects	with	the	intended	structure	of	the	sets-of-critics	under	
elementhood	(when	considered	under	some	otherwise	unused	relations	S	and	E)	by	
conjoining	the	following:		

• The	claim	that	there	are	sets	corresponding	to	‘all	possible	ways	of	choosing’	some	
critics.	□6a<8<6,>,D (There’s	a	set	which	contains	exactly	the	critics	who	are	happy)141	

	 Intuitively	this	captures	the	appeal	to	all	possible	ways	of	choosing	by	saying	that	it’s	
logically	necessary	(fixing	the	structure	of	the	critics,	sets-of-critics	and	elementhood)	
that	however	‘happy’	applies	there	will	be	a	set-of-critics	which	contained	exactly	the	
happy	critics.	

• A	collection	of	first-order	conditions	that	are	easy	to	formulate,	e.g.,	claims	that	the	
sets	of	critics	are	extensional,	and	that	sets-of-critics	only	have	critics	as	elements.	

Call	the	above	conjunction	D,	(I’ll	later	call	this	the	definable	supervenience	condition).	
Then	we	have	the	following	translation.	

T(CRITICSX):	□ [6a<8<6,7bV<a;1 𝐷 → 𝐶𝑅𝐼𝑇𝐼𝐶𝑆]	

12.1.2 Definitions 

With	this	motivating	example	in	mind,	I	will	now	explain	the	modal	if-thenist	translation	
strategy.	This	comes	in	two	parts.	

First	there’s	a	definable	supervenience	condition,	which	specifies	the	intended	structure	of	
all	the	‘extra’	objects	and	relations	the	Platonist	believes	in	,	in	terms	of	their	relationship	
to	objects	and	relations	the	Platonist	and	nominalist	can	agree	on142.	Second	there’s	a	
modal	if-thenist	framework	which	we	plug	this	definable	supervenience	description	into.	

To	explain	both	elements	above,	let	me	start	by	introducing	some	definitions.	One	might	try	
to	define	nominalistic	vocabulary	as	vocabulary	which,	with	metaphysical	necessity,	

	

141	C.f.	the	tools	we	used	to	describe	a	full	width	layer	of	sets	in	§11.2)	

142	The	latter	terms	whose	extensions	the	Platonist	and	nominalist	can	agree	on	might	
include	relations	like	‘dog,’	‘bites’	and	‘is	more	massive	than’	but	not	‘number’	‘plus’	or	‘the	
mass	of	...	in	grams	is...’	



applies	only	to	non-mathematical	objects.	However,	even	the	predicate	for	‘real	numbers’	
would	satisfy	that	definition	if	nominalism	is	true	(for	in	this	case,	it’s	metaphysically	
necessary	that	nothing	is	a	real	number).	So,	instead,	we	use	the	following	definition.	

Definition	12.1	(Nominalistic	Vocabulary).		A	predicate	or	relation	𝑅	counts	as	
nominalistic	vocabulary	iff	the	Platonist	accepts	that	it	is	metaphysically	necessary	that	the	
extension	of	𝑅	contains	only	to	objects	that	the	nominalist	would	admit	exist.	For	example,	‘is	
a	cat’	is	a	nominalistic	predicate	and	‘is	taller	than’	a	nominalistic	relations.	

Definition	12.2	(Platonistic	Vocabulary).		A	predicate	or	relation	is	Platonistic	iff	it	is	not	
nominalistic.	

Thus,	Platonistic	vocabulary	includes	not	only	pure	mathematical	vocabulary143	but	also	
applied	mathematical	vocabulary144	and	relations	which	(the	Platonist	thinks)	relate	
mathematical	objects	to	non-mathematical	objects145.	

Now	let’s	turn	to	the	Definable	Supervenience	Condition.	Intuitively,	speaking,	the	
Definable	Supervenience	condition	says	is	a	description	𝐷	which	uniquely	describes	the	
mathematical	structures	the	Platonist	accepts,	using	only	nominalistic	facts.	At	each	
metaphysically	possible	world,	𝐷	uniquely	‘pins	down’	the	pure	and	applied	mathematical	
structures	the	Platonist	believes	in	(given	the	facts	about	non-mathematical	structures	that	
Platonists	and	nominalists	agree	on	at	that	world).	

We	can	specify	what	it	takes	for	a	sentence	D	to	be	a	definable	supervenience	condition	for	
a	Platonist	language	formally,	by	generalizing	the	notion	of	categoricity	to	a	concept	of	
certain	descriptions	of	a	structure	being	‘categorical	over’	the	facts	about	a	certain	part	of	
that	structure.	

The	idea	here	is	that	(just	as	we	can	completely	specify	the	structure	the	Platonist	takes	the	
natural	numbers	to	have	using	logical	vocabulary	alone),	we	can	completely	specify	the	
intended	structure	of	the	goats	and	sets	of	goats,	using	only	facts	about	the	cats	using	
logical	vocabulary	alone.	We	believe	certain	things	(expressible	using	the	conditional	
logical	possibility	operator)	about	what	the	relationship	between	the	goats	and	the	sets	of	
goats	is	supposed	to	be	like,	such	that,	for	any	way	of	fixing	the	goats	structure	there’s	only	
one	way	that	the	overall	goats-and-sets-	of	goat’s	structure	could	be	(which	would	make	
our	beliefs	true).	

	

143	‘is	a	number,’	+	

144	‘is	a	set	of	goats’	‘is	a	function	from	the	cats	to	numbers’	

145	‘...has	more	than...fleas’	and	‘is	an	element	of’	and	‘...is	a	function	from	cats	to	numbers	
which	maps...	to	...’	



So	a	description	𝐷(𝑁(, … , 𝑁V, 𝑃(, … , 𝑃))	is	categorical	for	the	𝑃(, … , 𝑃)	over	𝑁(, … , 𝑁V	if	the	
facts	about	how	𝑁(, … , 𝑁V	apply	completely	determine	how	𝑃(, … , 𝑃)	apply	—	and	indeed	
the	whole	𝑁(, … , 𝑁V, 𝑃(, … , 𝑃)	structure146	with	the	relations	𝑁(, … , 𝑁V).	

We	can	define	this	notion	using	the	conditional	possibility	operator,	and	our	definition	of	
isomorphism	(Definition	7.4)	

Definition	12.3	(Categorical	Over).		Say	that	𝐷	is	a	categorical	description	of	the	relations	
𝒫 = 𝑃(, … , 𝑃)	over	𝒩 = 𝑁(, … , 𝑁V	(where	𝒫 ∩𝒩 = ∅)	just	if	(𝐷[𝑁(, … , 𝑁V, 𝑃(, … , 𝑃)] ∧
𝐷[𝑁(, … , 𝑁V, 𝑃(/𝑃′(, … , 𝑃)/𝑃′)] → 𝒩 ∪ 𝒫 ≅ 𝒩 ∪𝒫-)	

Using	this	we	can	now	define	the	definable	supervenience	condition,	i.e.,	the	condition	we	
expect	our	Platonist	paraphrase	to	satisfy.	

Definition	12.4	(Definable	Supervenience	Condition).		A	sentence	𝐷	is	a	definable	
supervenience	condition,	specifying	how	the	application	of	some	Platonistic	vocabulary	𝒫	
definably	supervenes	on	that	of	some	nominalistic	vocabulary	𝒩	if	and	only	if	the	following	
conditions	hold	

• (From	a	Platonist	POV)	𝐷	is	metaphysically	necessary.	

• ◊ 𝐷𝒩 ,	i.e.,	the	Platonist	isn’t	supposing	the	existence	of	incoherent	objects	and	indeed	it’s	
logically	necessary	that	the	𝒩	structure	can	be	supplimented	with	Platonistic	structure	
in	the	way	that	D	requires.	

• D	is	content	restricted	to	𝒫,𝒩	

• D	is	a	categorical	description	of	the	𝒫,𝒩	structure	over	the	𝒩	structure	

Critically,	we	will	see	that	all	the	standard	uses	of	mathematical	objects	(reals,	complex	
numbers	etc.)	and	applied	mathematical	objects	(classes	of	physical	objects,	functions	from	
physical	objects	to	pure	mathematical	objects)	straightforwardly	satisfy	this	condition.	

When	we	have	a	suitable	Definable	Supervenience	Condition	D,	we	can	translate	every	
sentence	𝜙	which	is	content	restricted	to	the	total	list	of	relations	in	the	Platonist’s	
language	as	follows:	

𝑇(𝜙) = □ (𝒩 𝐷 → 𝜙)	

Intuitively,	this	says	that	it’s	logically	necessary,	given	the	structure	of	objects	satisfying	the	
list	of	nominalistic	relations	𝒩,	that	if	there	were	(objects	with	the	intended	structure	of)	
relevant	mathematical	objects	then	𝜙	would	be	true.	Note	that	the	Platonist	must	believe	it	

	

146	So,	for	example,	if	the	sets	of	people,	along	with	set	membership,	(𝑆people, ∈people)	is	
categorical	over	the	people	𝑃	it’s	not	just	true	that	the	number	of	sets	of	people	is	totally	
determined	by	what	people	exist	but	also	facts	such	as	whether	or	not	any	set	of	people	is	a	
person	must	also	be	determined.	



is	always	logically	possible	to	supplement	the	actual	objects	with	objects	that	behave	like	
the	platonic	objects	and	satisfying	𝐷,	because	they	think	such	objects	exist.	

12.2 A More Detailed Example 

To	clarify	how	this	strategy	can	be	applied	to	more	complex	cases,	consider	a	Platonist	who	
believes	in	three	types	of	mathematical	objects:	natural	numbers,	sets	of	goats	and	partial	
functions	from	goats	to	natural	numbers.	

Consider	the	following	sentence.	

GOATS	‘There	are	a	prime	number	of	goats.’	

The	Platonist	will	formalize	this	statement	with	a	sentence	like	the	following.	

GOATS:	There’s	a	1 − 1	function147	𝑓,	such	that	𝑓	maps	the	goats	onto	an	initial	segment	of	
the	natural	numbers,	from	0	up	to,	but	not	including,	some	prime	number	𝑛.	

Can	we	nominalize	this	sentence?	Yes.	Our	first	step	is	to	note	that	GOATS	is	implicitly	
content	restricted	to	a	certain	list	of	relations:	natural	number,	set	of	goats	etc.	It	doesn’t	
involve	unrestricted	quantification,	and	its	truth	value	must	be	the	same	in	any	logically	
possible	scenarios	which	agree	on	this	structure.	Now,	can	we	write	down	a	definable	
supervenience	sentence	D	(call	it	D[numbers,	goats-to-numbers	functions]	)	which	
categorically	specifies	how	all	the	relations	on	this	list	apply	in	terms	of	how	the	nominalist	
relations	on	the	list	apply?	We	can	write	such	a	D	by	conjoining	the	following	

• A	categorical	description	of	the	natural	numbers	𝑃𝐴◊	(i.e.,	a	sentence	which	uniquely	
pins	down	how	the	Platonist	thinks	ℕ, 𝑆, +,×	apply,	up	to	isomorphism).	

• A	sentence	which	pins	down	the	structure	of	‘all	possible’	partial	functions	from	goats	
to	numbers148,	given	the	structure	of	the	goats	(and	numbers)	

• A	collection	of	‘Julius	Caesar	sentences,’	i.e.,	sentences	specifying	how	the	
mathematical	objects	are	supposed	to	relate	to	the	non-mathematical	objects.	For	
example,	we	might	say	that	the	numbers	are	supposed	to	be	distinct	from	the	sets	of	
goats,	functions	from	goats	to	numbers	etc.149.	

Note	that	there	are	only	two	things	that	can’t	be	obviously	formulated	in	first-order	logic	in	
my	description	of	the	supervenience	description	D[numbers,	goats-to-numbers-functions]	

	

147	Here	I	treat	functions	as	just	another	kind	of	mathematical	object.	

148	I	will	treat	these	as	free	standing	mathematical	objects	

149	This	may	include	specifying	that	the	numbers	and	sets	of	goats	are	distinct	from	all	(the	
finitely)	many	types	of	non-mathematical	objects	relevant	to	the	physical	theory	to	be	
translated.	



above:	the	categorical	description	of	the	natural	numbers,	and	the	description	of	the	partial	
functions	from	goats	to	numbers.	

Recall	that	we	saw	how	to	categorically	describe	the	natural	numbers	with	a	sentence	𝑃𝐴◊	
in	§4.3.2.1.	What	about	describing	the	structure	of	partial	functions	from	the	goats	to	the	
numbers?	We	can	nominalistically	formalize	this	in	the	same	way.	Assume	the	Platonist’s	
language	has	relations	‘function()’	and	‘maps()’	such	that	maps(f,x,y)	iff	f	is	a	function	that	
maps	x	to	y,	i.e.,	f(x)=y.	We	can	informally	pin	down	the	structure	we	want	by	saying	two	
things:	

• There	are	functions	witnessing	all	possible	ways	of	mapping	some	of	the	goats	to	some	
of	the	numbers150.	

• There	are	no	more	functions	than	needed	to	ensure	this,	(i.e.,	every	function	maps	only	
goats	to	numbers151	and	the	functions	are	extensional).	

The	second	claim	is	easy	to	formalize	in	FOL.	And	we	can	write	the	first	using	second-order	
relation	quantification	as	follows152:	

∀𝑅[If	R	is	functional	and	only	relates	goats	to	numbers	then	(∃𝑥)(function(𝑥) ∧
(∀𝑦)(∀𝑥)[maps(𝑥, 𝑦, 𝑧) ↔ 𝑅(𝑦, 𝑧))]	

We	can	rewrite	this	in	the	language	of	logical	possibility,	using	any	two-place	relation	that	
doesn’t	figure	in	the	body	of	scientific	theorizing	we	want	to	translate.	For	example,	I	will	
pick	‘eucrastises’153.	

□ℕ,W_)68<T),V7d1,eT78 [If	eucratises	applies	functionally	and	only	relates	goats	to	numbers	
then	(∃𝑥)	(function(x)	∧ (∀𝑦)(∀𝑥)[maps(𝑥, 𝑦, 𝑧) ↔ eucratises(𝑦, 𝑧))]154	

	

150	Or	in	the	limiting	case	of	the	partial	function	that’s	not	defined	anywhere,	pairing	no	
goats	with	numbers.	

151	That	is,	(∀𝑥)(∀𝑦)𝑓(𝑥) = 𝑦 →	goat(x)∧	number(y)])	

152	For	every	relation	R	which	only	relates	goats	to	numbers	(in	that	(∀𝑥)(∀𝑦)𝑅𝑥𝑦 →	x	is	a	
goat	and	y	is	a	number]	which	is	functional	(R	is	functional	iff	(∀𝑥)(∀𝑦)(∀𝑧)[(𝑅𝑥𝑦 ∧
𝑅𝑥𝑧) → 𝑦 = 𝑧])	corresponds	to	a	function	𝑓.	

153	This	is	the	relation	x	and	y	stand	in	when	x	restores	y	to	the	correct	balance	of	humors	
(eucrasia).	

154	That	is	□ℕ,W_)68<T),V7d1,eT78 [If	nothing	eucratises	two	distinct	things	and	only	goats	
eucratise	and	only	numbers	get	eucratsed	then	(∃𝑥)	(function(x)	∧
(∀𝑦)(∀𝑥)[maps(𝑥, 𝑦, 𝑧) ↔ eucratises(𝑦, 𝑧))]	



It’s	logically	necessary	given	the	structure	of	the	goats,	numbers	and	functions	from	goats	
to	numbers,	that	if	eucrastises	only	relates	goats	to	numbers	and	applies	functionally	
there’s	a	function	x	that	relates	goats	to	numbers	in	the	same	way.	

Given	D[numbers,	goats-to-numbers	functions]	the	nominalist	can	translate	the	Platonist’s	
formalization	of	the	claim	that	there	are	a	prime	number	of	goats	into	a	nominalistic	
version	of	this	claim,	𝑇(𝐺𝑂𝐴𝑇𝑆),	as	follows.	

𝑇(𝐺𝑂𝐴𝑇𝑆):	□ (eT78 𝐷[	numbers,	goats-to-numbers-functions] → 𝜙f$gh>)	

Intuitively,	this	says	that	it’s	logically	necessary,	given	the	structure	of	the	goats,	that	if	
there	were	(objects	with	the	intended	structure	of)	the	numbers,	sets	and	functions	from	
goats	to	numbers	then	𝐺𝑂𝐴𝑇𝑆	would	be	true.	

Furthermore,	we	can	show	that	the	Platonist	must	agree	that	this	translation	is	true	at	the	
correct	set	of	metaphysically	possible	worlds	(i.e.,	the	worlds	at	which	they	take	𝜙	to	be	
true);	they	must	think	that	it’s	metaphysically	necessary	that	𝑇(𝜙) ↔ 𝜙.	

At	each	possible	world	𝑤,	the	truth	value	of	𝐺𝑂𝐴𝑇𝑆	is	completely	determined	by	the	
structure	of	goats,	functions	and	numbers	at	that	world155.	And	(according	to	the	Platonist)	
the	latter	structure	is	completely	determined	by	the	structure	of	the	goats	at	𝑤	together	
with	our	definable	supervenience	description	D.	D	completely	pins	down	what	sets	and	
functions	(the	Platonist	thinks)	there	are	at	w,	given	the	facts	about	nominalistic	stuff	at	𝑤.	
There’s	only	one	logically	possible	way	(structurally	speaking)	to	supplement	the	pattern	
of	goats	at	𝑤	with	numbers	and	functions	as	required	by	the	claim	D	which	the	Platonist	
takes	to	be	a	metaphysically	necessary	truth.	So	𝐺𝑂𝐴𝑇𝑆	is	true	at	w	if	and	only	if	it’s	
logically	necessary,	given	the	facts	about	the	goats	at	𝑤	and	𝐷,	that	𝜙.	

So	our	total	translation	will	have	the	following	form156.	

□ [eT78 𝜓( ∧ □ (ℕ,> 𝜓&) ∧ □ (ℕ,W_)68<T),V7d1,eT78 𝜓M) → 𝜙f$gh>]	

As	in	the	previous	case,	the	Platonist	must	say	that	this	statement	is	true	at	exactly	the	
same	metaphysically	possible	worlds	where	GOATS	is	true.	Note	that	this	nominalistic	
translation	employs	nested	□	s157.	We	describe	the	natural	number	structure	the	Platonist	
believes	in	modally,	saying	that	the	numbers	are	supposed	to	have	a	structure	(when	

	

155	Note	that	𝐺𝑂𝐴𝑇𝑆	can	be	written	with	quantifiers	restricted	to	objects	which	at	least	one	
of	the	Platonistic	or	nominalistic	relations	just	mentioned	(e.g.,	‘goat,’	‘set,’	‘...	is	an	element	
of...’	‘number,’	‘function,’	‘...	is	a	function	that	assigns...	to	...’’)	apply	to.	

156	Here	𝜓(	is	the	part	of	our	descriptions	of	the	numbers	and	functions	from	goats	to	
numbers	which	is	straightforwardly	stateable	in	FOL.	

157	See	the	point	at	the	end	of	section	3.2.5,	that	nested	conditional	logical	possibility	
operators	freeze	the	scenario	currently	being	talked	about,	not	the	actual	world	matters	
greatly.	



considered	under	the	successor	relation)	that	makes	it	impossible	for	0	to	be	happy	and	the	
successor	of	every	happy	number	to	be	happy	without	all	numbers	being	happy.	Compare	
this	to	the	way	we	might	describe	the	structure	of	a	map	by	saying	it’s	not	three-colorable.	

12.3  Clarifications and Advantages 

12.3.1 Harmlessness of Platonist Science 

We	can	show	that	the	nominalistic	paraphrase	strategy	produced	by	our	translation	
strategy	T	preserves	the	desired	inferential	role	of	scientific	sentences.	It	captures	both	
inferences	from	applied	mathematical	sentences	to	other	applied	mathematical	sentences,	
and	inferences	between	applied	mathematical	sentences	and	observational	sentences.158	

But	we	can	also	show	(see	Appendix	D.1)	that	where	we	know	it’s	metaphysically	
necessary	that	◊ 𝐷ℕ 	(something	my	Platonist	and	nominalist	alike	take	themselves	to	
know159)	we	have	

Theorem	12.1.		Suppose	that	𝛷,𝛹	are	content	restricted	to	𝒫 ∪𝒩	and	⊢ 𝛷 → 𝛹	then	⊢
𝑇(𝛷) → 𝑇(𝛹).	Furthermore	if	⊢ 𝑇(𝛷) → 𝑇(𝛹)	then	⊢ (𝐷 ∧ 𝛷) → 𝛹,	

	

158	At	least,	this	claim	holds	on	the	plausible	assumption	that	the	former	can	be	understood	
as	content	restricted	to	some	Platonist	vocabulary	and	the	latter	can	be	understood	as	
content	restricted	to	some	nominalist	vocabulary.	

I	tentatively	hypothesize	that	no	non-negotiable	scientific	practice	requires	unrestricted	
quantification.	To	roughly	motivate	this	idea,	we	might	say	that	when	concerned	with	
physics	or	biology,	scientists	don’t	(and	needn’t)	concern	themselves	with	talking	about	
what	fictional	characters,	or	marriage	licenses	could	be	like.	So,	we	shouldn’t	need	to	use	
sentences	whose	quantifiers	are	restricted	to	range	over	literally	all	objects,	including	
these	irrelevant	ones.	It	suffices	to	use	quantifiers	which	range	over,	e.g.,	all	(relevant	
applied	mathematical	objects	and)	physical	particles	and	spatial	points,	rather	than	
statements	of	universal	quantification.	

Also	note	that	formulating	all	our	physics	room	talk	with	restricted	quantifiers	doesn’t	
require	us	to	have	any	illuminating	conception	of	each	of	the	types	of	physical	objects	we	
are	quantifying	over,	like	‘quark’	or	‘boson’	(thanks	to	Vann	Mcgee	for	pressing	this	point	in	
conversation.).	We	can	take	our	quantifiers	to	range	over	objects	satisfying	some	rather	
broad	uninformative	notion	like	‘fundamental	physical	object’	or	physical	object.	Or,	if	a	
Leibnitizan	regress	appears	to	exist,	that	the	physics	relevant	particles/particles	at	a	
certain	level	or	lower	are	such	and	such.’)	This	is	important	because	it	means	that	we	can	
ask	questions,	‘how	many	different	kinds	of	fundamental	physical	particles	are	there?’	
without	having	much	of	a	sense	of	what	these	particles	are	like.	

159	We	will	generally	be	able	to	derive	this	from	the	fact	that	□� 𝐷ℕ ,	i.e.,	that	it’s	logically	
necessary	that	however	the	nominalistic	relations	apply	it’s	possible,	holding	fixed	those	
nominalistic	relations,	that	𝐷.	



That	is	Platonist	scientific	arguments	from	𝐷 ∧ 𝛷	to	𝛹	(where	the	latter	don’t	involve	
unrestricted	quantification)	can	be	easily	transformed	into	nominalist	scientific	arguments,	
from	𝑇(𝜙)	to	𝑇(𝜓)	and	vice	versa.	Note	that,	for	any	statement	𝜈	that’s	content	restricted	to	
nominalist	vocabulary	𝑇(𝜈) ↔ 𝜈	is	easily	derivable.	

Putting	this	together,	we	get	that	whenever	a	Platonist	can	use	their	Platonist	assumption	D	
conjoined	with	sentences	𝜌(, … , 𝜌)	content	restricted	to	nominalistic	stuff	to	prove	𝜌-	
content	restricted	to	nominalistic	stuff,	there	is	a	good	argument	from	𝜌(, … , 𝜌)	to	𝜌-.	

12.3.2 Conditional Logical Possibility and Field’s Conservativity 

Let	me	end	with	two	points	of	comparison	between	this	strategy	and	that	famously	
advocated	by	Field	in	Science	Without	Numbers(H.	Field	1980).	

First,	using	the	logical	possibility	operator	and	axioms	I’ve	proposed	is	helpful	to	those	who	
would	follow	Field’s	paraphrase	strategy	as	well.	In	this	way	we	can	cash	out	an	intuitively	
appealing	‘conservativity’	argument	Field	makes	in(H.	Field	1980)	to	account	for	the	
goodness	of	Platonist	science	from	a	nominalist	point	of	view,	while	avoiding	worries	about	
circularity	which	I	will	now	explain.	

In	(H.	Field	1980)	Field	wants	to	explain	why	using	mathematics	in	the	sciences	is	harmless	
and	indeed	helpful,	despite	the	fact	that	(as	he	wanted	to	say	at	the	time)	existence	claims	
about	mathematical	objects	are	false.	He	wants	to	say	this	is	true	because	mathematical	
axioms	are	conservative	(in	the	sense	below).	Reasoning	with	these	axioms	just	speeds	up	
proofs;	it	doesn’t	let	us	prove	anything	new	about	non-mathematical	objects.	

if	𝐵	is	any	sentence,	𝐵∗	is	the	result	of	restricting	𝐵	to	non-mathematical	entities,	
and	𝑀(, … ,𝑀)	are	the	axioms	of	a	mathematical	theory	𝑀,	the	conservativeness	of	
M	can	be	expressed	by	the	following	schema	:	
(C)	If	◊ 𝐵,	then	◇(𝐵∗ ∧ 𝑀( ∧ …∧𝑀)).	

Field	argues,	working	in	ZFC,	that	one	can	always	take	a	model	of	just	the	non-
mathematical	entities	recognized	by	a	theory	and	produce	a	model	which	also	recognizes	a	
hierarchy	of	sets	taking	those	objects	as	ur-elements.	And	he	is	criticized	in	(Bueno	2020)	
for	circularly	using	set	theory	to	justify	the	claim	that	assuming	set-theoretic	axioms	won’t	
let	you	prove	anything	false	about	non-mathematical	objects	in	this	way.	

But	if	we	accept	the	notion	of	logical	possibility	and	the	axioms	I’ve	proposed	for	it,	we	can	
justify	a	version	of	Field’s	desired	conservativity	result	that	can	the	work	he	wants	(for	
suitable	axioms	describing	mathematical	objects,	like	a	hierarchy	of	sets	𝑉, 	up	to	some	
suitably	definable	height	𝑉,)	from	modal	principles	that	don’t	assert	the	existence	of	
mathematical	objects.160	

	

160	Let	M	be	supervenience	description	for	a	hierarchy	of	sets	with	ur	elements	chosen	from	
the	physical	objects	with	height	𝜔.	Let	𝑅(, … , 𝑅)	be	some	list	of	nominalistic	vocabulary	
such	that	it’s	metaphysically	necessary	that:	only	non-mathematical	objects	are	related	by	
	



Second,	my	paraphrase	strategy	always	produces	finitely	stateable	theories	where	it	
applies,	and	in	Chapter	14	I’ll	argue	that	it	can	be	applied	to	solve	the	physical	magnitude	
problems	(at	least	for	purposes	of	Quinean	indispensability,	if	not	reference	and	
grounding)	which	drove	Field	to	appeal	to	infinitely	many	different	sentences	satisfying	a	
schema,	rather	than	producing	a	single	sentence	that	formalizes	the	scientific	theory	at	
issue161	

	

these	relations	and	every	non-mathematical	object	has	at	least	one	of	these	relations	apply	
to	it.	

Then	for	any	list	of	nominalistic	relations	𝑅(…𝑅),	we	can	use	axioms	like	those	proposed	
in	Part	II	to	show	that	□◊ 𝑀4",…,4# .	That	is,	it’s	necessary	that	whatever	the	nominalistic	
𝑅(…𝑅)	structure	is	like,	this	structure	can	be	supplemented	with	some	new	objects	
playing	the	roles	of	sets	in	𝑉*	with	ur-elements.	

And	given	□◊ 𝐷4",…,4# ,	we	can	prove	the	analog	of	Field’s	consiervativity	statement.	For	
consider	an	arbitrary	nominalistic	sentence	𝛽,	corresponding	to	Field’s	B*	(a	description	of	
what’s	supposed	to	be	happening	with	regard	to	the	physical	objects),	hence	content	
restricted	to	our	list	of	nominalist	relations	𝑅(, …𝑅)	and	satisfying	◇𝛽.	

We	can	prove	that	if	□◊ 𝑀4",…,4# 	and	◇𝛽,	then	◇(𝛽 ∧ 𝑀( ∧. . .∧ 𝑀)).,	as	follows.	

Assume	that	□◊ 𝑀4",…,4# 	and	◇𝛽.	Enter	this	◊	context.	Then	we	know	𝛽.	We	can	import	our	
assumption	that	□◊ 𝑀4",…,4# ,	as	it	is	content	restricted	to	the	empty	list	of	relations.	Then	
we	can	infer	◊ 𝑀4",…,4# 	by	□	Elimination	(	Lemma	B.4	of	section	B	of	the	online	appendix).	
Now	because	that	𝛽	is	content	restricted	to	𝑅(, … , 𝑅)	we	can	infer	that	◊ (𝑀4",…,4# ∧ 𝛽)	by	
Axiom	8.6	(Importing).	So	leaving	the	diamond	context	we	have	◇ ◊ (𝑀4",…,4# ∧ 𝛽),	hence	
◊ (𝑀4",…,4# ∧ 𝛽)	by	Axiom	8.2	(Diamond	Elimination)	and	◇(𝑀 ∧ 𝛽)	by	Axiom	8.3	
(Diamond	Ignoring).	

Thus	we	can	use	modal	nominalistic	reasoning	about	logical	possibility,	rather	than	set	
theory	(as	Field	does)	to	show	that	assuming	the	existence	of	a	hierarchy	of	sets	with	ur-
elements	over	the	physical	objects	you	are	currently	talking	in	terms	of	up	to	𝑉*	is	
harmless,	and	doesn’t	let	you	prove	anything	false	or	unjustified	about	these	non-
mathematical	objects.	

161	However	certain	disadvantages	may	also	be	admitted.	Most	obviously,	accepting	the	
conditional	logical	possibility	operator	is	controversial	(though,	recall,	Field	himself	
advocates	accepting	a	primitive	logical	possibility	operator	and	uses	it	in	his	argument	for	
conservatism).	Also,	the	kind	of	paraphrases	of	physical	magnitude	statements	provided	
will	not	be	as	attractively	‘intrinsic’	in	the	way	Field	wants.	
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Chapter 13 Explanatory Indispensability 

13.1  Introduction 

With	the	above	strategy	for	nominalistically	paraphrasing	Platonist	scientific	theories	in	
mind,	let’s	now	turn	to	the	Explanatory	Indispensability	challenge.	

In	this	chapter	I	will	argue	that	translations	produced	by	the	strategy	from	Chapter	3	can	
be	used	to	answer	Explanatory	Indispensability	challenges	as	well	as	Quinean	demands	for	
literal	statement.	Much	of	the	chapter	will	consider	a	certain	prominent	and	representative	
case	where	mathematical	objects	have	been	claimed	to	be	explanatorily	indispensable:	
Baker’s	Magicadas	explanation(A.	Baker	2005).	I’ll	note	that	we	can	(Platonistically)	
logically	regiment	Baker’s	Platonist	explanation	for	why	certain	cicadas	tend	to	have	life	
cycles	that	are	a	prime	number	of	years,	in	such	a	way	that	that	the	nominalization	strategy	
from	Chapter	12	can	be	applied.	

I	will	argue	that	the	resulting	nominalistic	theory	is	explanatorily	at	least	as	good	as	(and	
arguably	even	better	than)	the	original	Platonist	explanation.	In	doing	this	I	hope	to	
address	a	natural	worry	that	(despite	being	true	at	the	right	set	of	possible	worlds),	the	if-
thenist	structure	of	such	nominalizations	of	scientific	theories	prevents	them	from	
providing	good	explanations.	I	will	further	argue	that	the	nominalistic	paraphrase	strategy	
deployed	here	improves	on	existing	nominalist	paraphrases	strategies	proposed	by	Baker	
and	Field	in	certain	ways.	

13.2  Motivating Case: Three Colorability 

To	illustrate	how	the	conditional	logical	possibility	operator	is	useful	for	providing	
illuminating	nominalistic	mathematical	explanations	of	physical	phenomena	—	and	why	
one	might	think	these	explanations	improve	on	Platonist	ones	—	let’s	return	to	the	case	of	
three	colorable	maps.	

Suppose	that	a	certain	map	(perhaps	one	with	infinitely	many	countries)	has	never	actually	
been	three	colored.	A	good	explanation	for	this	fact	might	be	that	(in	a	mathematical	sense)	
the	map	isn’t	three	color.	

A	natural	Platonist	explanation	along	these	lines	goes	as	follows.	

Platonist	Non-Three-Colorability:	There	is	no	function	(in	the	sense	of	a	set	of	
ordered	pairs)	which	takes	all	countries	on	the	map	to	numbers	1,2,3,	in	a	such	a	
way	that	adjacent	countries	are	always	paired	with	distinct	numbers.	

However,	we	can	also	consider	a	nominalist	version	of	this	explanation,	as	follows.	

Modal	Non-Three-Colorability:	¬◊7bC76;)8,6T_)8aK 	Each	country	is	either	yellow,	
green	or	blue	and	no	two	adjacent	countries	are	the	same	color	(and	each	country	
is	exactly	one	color).	
	



And	the	above	modal	explanation	can	seem	to	be	at	least	as	good,	indeed	better	than	the	
nominalist	explanation.	

In	particular,	one	might	argue	that	the	Platonist	non-three-colorability	principle	only	
intuitively	explains	the	fact	that	the	map	is	not	three	colored	because	we	have	background	
knowledge	of	a	relationship	between	set-theoretic	facts	and	the	modal	facts	above.	
Specifically,	we	think	that	there	are	functions	corresponding	to	all	possible	ways	of	pairing	
countries	with	one	of	the	numbers	1,	2	or	3,	and	hence	all	possible	ways	of	‘choosing’	how	
to	color	these	countries.	And	if	we	didn’t	accept	this,	then	we	would	have	no	reason	to	
suppose	that	there	really	was	a	function	corresponding	to	a	potential	3-coloring162.	

Thus,	it	may	seem	that	the	real	explanatory	work	here	is	being	done	by	the	modal	
principle;	claims	about	what	mathematical	objects	like	set-theoretic	functions	exist	
witnessing	facts	about	how	it	would	be	logically	possible	for	any	predicates	to	apply	don’t	
really	add	anything	to	the	explanation.	

Indeed,	one	might	argue	that	the	Platonist	account	only	seems	explanatory	and	satisfying	
because	the	modal	facts	(about	conditional	logical	possibility)	make	us	feel	that	we’ve	
explained	the	phenomenon.	For	we	if	imagine	giving	up	the	assumption	that	there	are	
sets/functions	corresponding	to	all	logical	possibilities	for	how	colors	could	apply,	then	the	
Platonist	story	no	longer	feels	explanatory.	For	we	would	no	longer	be	able	to	infer	from	
the	fact	that	there’s	no	function	coding	a	way	of	three	coloring	the	map	to	the	conclusion	
that	the	map	isn’t	(and	couldn’t	be)	three	colored.	

A	Platonist	might	resist	the	above	argument	by	saying	that	they	get	from	set	and	function	
existence	to	the	conclusion	the	map	isn’t	three	colorable	in	a	different	way.	The	Platonist	
might	say	they	that	this	inference	is	justified	by	appealing	to	something	like	the	following	
non-modal	comprehension	schema	–	rather	than	to	any	modal	notion	like	conditional	
logical	possibility.	

Ur-element	Comprehension	Schema:	For	every	English-definable	predicate	𝜙	
definable	with	parameters,	if	𝜙	only	applies	to	non-sets163:	

(∃𝑥)¥𝑠𝑒𝑡(𝑥) ∧ (∀𝑦);𝑦 ∈ 𝑥 ↔ 𝜙(𝑦)D¦	

But	note	that	the	above	schema	only	asserts	that	there	are	sets	corresponding	to	every	way	
that	some	predicates	in	our	current	language	(will)	actually	apply	to	some	objects.	Thus,	it	

	

162	The	argument	has	some	similarities	to	the	argument	of	§3.1	that	we	need	to	have	a	
notion	of	logical	possibility	that’s	distinct	from	having	a	set-theoretic	model,	even	though	
the	completeness	theorem	(ultimately)	winds	up	showing	that	the	two	notions	are	
extensionally	equivalent	for	first-order	claims.	

163	So,	assuming	certain	popular	axioms	of	set	theory	with	ur-elements	like	that	given	in	
(McGee	1997b),	only	applies	to	set-many	objects)	



doesn’t	capture	our	intuitive	idea	that	the	mere	structure	of	how	the	countries	are	related	
by	adjacency	explains	why	this	map	will	never	be	three	colored.	

It	also	doesn’t	explain	why	we	should	expect	it	to	be	physically	and	metaphysically	
necessary	that	intrinsic	duplicates	of)	this	map	won’t	be	three	colored164	.	And	perhaps	it	
doesn’t	explain	why	we’d	expect	an	analog	of	non-three	colorability	to	hold	for	all	triples	of	
properties	we	might	introduce	via	some	‘logic	preserving	change	to	our	language’	that	adds	
new	predicates165.	

Accordingly,	I	think	considering	the	above	explanation	provides	a	nice	motivating	example	
for	how	nominalistic-mathematical	explanations	for	scientific	facts	can	be	as	good	(and	in	
some	senses	even	intuitively	better	than)	Platonist	ones.	Perhaps	(in	this	specific	case)	the	
modal	formulation	of	our	explanation	even	matches	ordinary	language	better	than	the	
Platonist	one	.	For	we	tend	to	express	the	above	thought	about	maps	being	three	colorable,	
rather	than	ontologically	about	maps	having	three	colorings.	

13.3  Magicadas 

13.3.1 An Argument for Explanatory Indispensability 

Now	let’s	turn	to	the	main	case	to	be	considered	in	this	chapter.	Stanford	Encyclopedia	
(Mark	Colyvan	2019a)	summarizes	the	Magicadas	case	and	testifies	to	its	prominence	in	
the	literature	as	follows.	

“One	example	of	how	mathematics	might	be	thought	to	be	explanatory	is	found	in	
the	periodic	cicada	case	(Yoshimura	1997	and	Baker	2005).	North	American	
Magicadas	are	found	to	have	life	cycles	of	13	or	17	years.	It	is	proposed	by	some	
biologists	that	there	is	an	evolutionary	advantage	in	having	such	prime-numbered	
life	cycles.	Prime-numbered	life	cycles	mean	that	the	Magicadas	avoid	
competition,	potential	predators,	and	hybridization.	The	idea	is	quite	simple:	
because	prime	numbers	have	no	non-trivial	factors,	there	are	very	few	other	life	
cycles	that	can	be	synchronized	with	a	prime-numbered	life	cycle.	The	Magicadas	
thus	have	an	effective	avoidance	strategy	that,	under	certain	conditions,	will	be	
selected	for.	While	the	explanation	being	advanced	involves	biology	(e.g.,	
evolutionary	theory,	theories	of	competition	and	predation),	a	crucial	part	of	the	
explanation	comes	from	number	theory,	namely,	the	fundamental	fact	about	
prime	numbers.	

	

164	Perhaps	you	could	add	a	sui-generis	law	that	all	instances	of	the	comprehension	schema	
hold	with	metaphysical	necessity.	But	if	one	accepts	the	notion	of	logical	possibility	then	
explanations	that	appeal	to	such	a	law	(even	granting	that	it’s	a	genuine	law)	seem	less	
direct	and	illuminating	than	explanations	by	appeal	to	general	laws	of	logical	possibility	
which	you	already	accept.	

165	See	(McGee	1997b).	



Baker	(2005)	argues	that	this	is	a	genuinely	mathematical	explanation	of	a	
biological	fact.	There	are	other	examples	of	alleged	mathematical	explanations	in	
the	literature,	but	this	remains	the	most	widely	discussed	and	is	something	of	a	
poster	child	for	mathematical	explanation.”(Mark	Colyvan	2019a)	

This	description	doesn’t	specify	a	precise	explanation	or	explanandum.	However,	I	take	the	
following	principle	to	be	a	(simple	but)	fairly	representative	example	of	the	kind	of	
explanation	at	issue.	Although	not	many	animals	have	multi-year	hibernation	cycles	like	
cicadas,	cicada	predators	can	have	regular	multi-year	cycles	of	population	spikes	and	
troughs.	In	this	case,	there	will	be	evolutionary	benefit	to	cicada	species	avoiding	spikes	in	
predator	population.	And	a	mathematical	principle	like	the	following	can	help	us	connect	
these	constraints	to	the	conclusion	that	cicadas	have	(or	are	likely	to	have)	a	prime	
numbered	life-cycle.	

It’s	metaphysically/physically/mathematically	necessary	that	if	for	some	𝑛	
• premise	1:	There	are	predator	species	which	have	population	spikes	of	length	𝑝,	

for	each	𝑝 ≤ 𝑛	and	
• premise	2:	The	Magicadas’	life	cycle	(re:	emerging	from	hibernation	every	𝑐	

years)	is	optimal	with	regard	to	minimizing	overlap	with	predator	population	
spikes,	among	a	set	S	of	‘biologically	viable	options’166	which	include	some	prime	
number	> 𝑛	and	are	all	less	than	2𝑛	
then	the	Magicadas	have	a	prime	number	length	life	cycle.	

When	combined	with	the	empirically	motivated	claim	that	premise	1	is	satisfied	(with	
regard	to	some	specific	natural	number	𝑛)	and	premise	2	is	satisfied	(with	regard	to	the	
same	number	𝑛	and	the	set	S	of	numbers	satisfying	some	number	theoretic	predicate	𝜙),	
the	above	claim	will	entail	that	Magicadas	have	a	prime	number	length	life	cycle.	And	we	
can	see	that	the	above	principle	is	a	mathematical	truth	by	noting	that	any	composite	
number	relatively	prime	to	every	predator	cycle	length	𝑝 < 𝑛	must	be	equal	to	or	greater	
than	2𝑛.	Thus,	all	possible	cicada	life	cycle	lengths	which	are	both	relatively	prime	to	all	
these	predator	cycles	(hence	minimizing	overlap	with	them)	and	less	than	2𝑛	will	be	prime.	

Thus	we	have	a	mathematical	principle	which	plays	a	key	role	in	explaining	a	physical	
phenomenon	(that	the	Magicadas	have	a	prime	number	length	life	cycle),	and	we	want	to	
know	whether	the	existence	of	numbers	is	necessary	to	that	work.	

	

166	That	is,	for	each	predator	type,	the	long	run	fraction	of	times	Magicadas	with	this	life	
cycle	would	overlap	with	predator	population	spikes	-given	that	they	overlap	at	least	once-	
is	less	than	or	equal	to	the	long-run	fraction	of	times	Magicadas	with	any	of	these	
alternative	biologically	viable	option	life	cycles	would	overlap.	I	take	the	argument	to	be	
presuming	(plausibly	enough)	that	because	predators	evolve	too	you	presumably	can’t	
avoid	predation	by,	e.g.,	being	around	on	alternate	years	w.r.t.	some	predator	which	also	
has	a	two	year	cycle.	



Note	that	I	wrote	the	above	principle	as	a	modal	claim	‘It’s	
metaphysically/physically/mathematically	necessary	that,’	because	I	take	the	fact	that	the	
conditional	claim	about	life	cycles	above	is	a	law	to	do	explanatory	work.	If	we	just	believed	
that	this	material	conditional	happened	to	actually	be	true	in	our	world	(and	didn’t	see	why	
it	mathematically	had	to	be)	it	wouldn’t	feel	like	a	good	explanation.	

13.3.2 Existing Nominalizations 

In	existing	work(Rizza	2011),	Rizza	argues	(correctly	I	think)	that	the	above	case	presents	
a	genuinely	mathematical	explanation	for	a	scientific	phenomenon,	but	not	one	that	
commits	us	to	the	existence	of	mathematical	objects.	He	backs	this	up	by	providing	a	
particular	nominalistic	paraphrase	for	Baker’s	Platonist	mathematical	explanation	of	the	
above	facts	about	Magicadas.	

Rizza	(essentially)	points	out	that	we	can	reconstruct	a	version	of	the	Platonist	argument	
which	only	quantifies	over	some	initial	segment	of	the	natural	numbers.	He	then	proposes	
to	replace	quantification	over	numbers	with	quantification	over	time	points	in	some	evenly	
spaced	sequence	of	years	with	a	starting	point.	Using	relations	like	congruence	between	
temporal	intervals	‘there’s	as	much	time	between	𝑎	and	𝑏	as	between	𝑐	and	𝑑,’	we	can	then	
define	an	analog	to	successor,	plus,	times	etc	on	this	sequence	of	years,	creating	a	temporal	
structure	(a	sequence	of	points	in	time)	that’s	isomorphic	to	some	initial	segment	of	the	
natural	numbers.	Thus,	we	can	reformulate	the	above	Platonist	argument	that	(under	
relevant	assumptions)	we	should	expect	to	see	cicadas	with	prime	length	life	cycles	by	
systematically	replacing	claims	about	this	initial	segment	of	the	numbers	(and	
mathematical	relations	on	it)	with	corresponding	claims	about	this	initial	segment	of	the	
years.	

Now	in	order	to	state	the	explanans	and	explanandum	in	Baker’s	Magicadas	explanation,	
we	need	to	somehow	make	claims	about	cicada	life	cycles,	and	the	biologically	viable	
options	for	alternative	cicada	and	predator	life	cycles.	So,	a	Platonist	logical	regimentation	
of	the	explanation	might	use	the	following	relations.	

• ‘species	...	has	a	life	cycle	of	length	...’	between	animal/species	or	populations	of	
cicadas	and	numbers	

• ‘the	biologically	viable	options	for	cicada/predator	life	cycles	(the	life	cycles	
cicadas/predators	could	have	if	selection	favored	it)	are	exactly	the	numbers	within	
the	range….	to	...	years’.	

Rizza’s	nominalistic	paraphrases	use	analogous	relations	between	animals/species	and	
points	in	the	finite	sequence	of	temporal	points.	(To	make	this	feel	natural,	we	might	think	
of	the	first	relation	as	meaning	something	like	‘𝑥	has	a	life	cycle	with	length	such	that	if	𝑥	
emerged	during	the	year	designated	0	then	it	would	next	be	disposed	to	awake	in	year	𝑦,	
and	then	to	repeat	the	cycle	and	give	birth	to	children	who	would’).	

In	this	way,	Rizza	argues	that	we	can	dispense	with	mathematical	objects	in	Baker’s	
example,	by	giving	the	above	nominalistic	mathematical	explanation	instead.	



Notably,	Rizza’s	nominalization	strategy	resembles	and	takes	inspiration	from	Field’s	
influential	strategy	for	nominalizing	physical	magnitude	claims	in	(H.	Field	1980)	(which	I	
won’t	summarize).	Both	paraphrase	strategies	(in	effect)	assume	the	existence	of	a	physical	
structure	which	resembles	a	mathematical	structure	used	in	the	theory	to	be	paraphrased	
(some	temporal	points	isomorphic	to	initial	segment	of	the	natural	numbers	in	one	case,	
and	an	infinite	plurality	of	spacetime	points	isomorphic	to	the	reals	in	the	other	case).	Both	
then	appeal	to	measurement	theoretic	uniqueness	theorems	to	show	that	their	paraphrase	
delivers	correct	truth	values	in	all	scenarios	where	the	relevant	physical	assumption	holds.	
One	might	argue	Rizza’s	story	has	an	advantage	over	Field’s	in	requiring	weaker	physical	
assumptions,	as	Rizza	only	needs	to	assume	there	are	a	finite	number	of	temporal	points	
(but	I	will	question	whether	the	benefits	of	this	are	worth	the	cost	below).	

13.3.3 Weaknesses of Rizza’s paraphrase strategy 

Rizza	paraphrases	require	finding	a	copy	of	the	mathematical	structures	mentioned	by	the	
Platonist	theory	they’re	trying	to	paraphrase	in	the	physical	world.	This	significantly	limits	
how	widely	they	can	be	applied.	

For	instance,	one	might	well	want	to	appeal	to	mathematical	structures	too	large	to	have	
physical	models	in	attempting	to	most	illuminatingly	explain	some	
(logically/mathematically	necessary)	physical	phenomenon.	For	consider	how	sometimes	
the	most	illuminating	proof	of	some	fact	about	the	real	numbers	involves	considering	them	
within	the	complex	numbers.	Similarly,	one	might	expect	that	different	and	(sometimes)	
larger	mathematical	structures,	(e.g.,	segments	of	the	hierarchy	of	sets)	could	be	relevant	to	
giving	the	most	illuminating	explanation	for	a	mathematical	phenomenon167.	And,	as	Baker	
pointed	out	in	(Alan	Baker	2016)	even	in	cases	where	we	can	prove	some	science-relevant	
mathematical	constraint	on	reality	using	relatively	small	mathematical	structures,	we	can	
often	prove	a	more	powerful	and	general	claim	(and	hence	show	that	the	law	in	question	
would	hold	under	a	wider	range	of	cases168)	by	appealing	to	more	varied	and	sometimes	
larger	mathematical	structures.	

For	example,	one	might	argue	that	Rizza’s	paraphrase	isn’t	as	good	an	explanation	as	the	
Platonist	explanation	for	Baker’s	Cicadas	fact,	because	it’s	not	as	general.	Rizza	shows	can	
state	and	prove	that	prime	cicada	lifecycles	are	required	to	minimize	overlap	for	any	
particular	value	of	L	(and	all	suitably	truncated	versions	of	all	needed	lemmas	which	only	
talk	about	the	initial	segment).	But	without	assuming	there	are	an	infinite	number	of	

	

167	As	Feferman	notes	in	(Feferman,	n.d.)	appeal	to	the	existence,	(or	at	least	logical	
possibility/coherence)	of	very	large	mathematical	structures	may	provide	our	only	reason	
for	thinking	that	certain	mathematical	axioms,	and	hence	figure	indispensably	in	our	best	
explanation	for	why	no	proofs	inscriptions	of	certain	kinds	exist.	

168	That	is,	one	can	show	that	fewer	physical	assumptions	are	necessary	to	guarantee	that	
the	law	applies.	
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spacetime	points,	he	can’t	state	(much	less	prove)	the	general	theorem	quoted	for	arbitrary	
values	of	L.	

One	also	might	worry	that	Rizza’s	paraphrase	strategy	doesn’t	let	us	account	for	the	
biological	significance	that	facts	about	the	gcd	have	on	the	Platonic	explanation.	For	
example,	the	original	biology	paper	Rizza	cites	uses	remarks	about	infinite	sequences	like,	
“Note	that	[a	certain	fraction]	yields	an	average	valid	for	𝑡 ⇒ ∞	because	the	process	is	
periodic	with	period	[𝑐 ∗ 𝑝].”(Goles,	Schulz,	and	Markus	2001)	to	argue	that	cicada	fitness	
goes	up	as	gcd(𝑐, 𝑝)	goes	down.	However,	Rizza’s	paraphrase	strategy	can’t	handle	such	
infinite	sequences	though	Field’s	can).	

13.4  Nominalizing Baker’s Explanation 

We	can	avoid	the	problems	above	by	regimenting	Baker’s	Platonist	explanation	with	the	
paraphrase	strategy	of	chapter	12		instead.	

To	apply	this	strategy	to	Baker’s	Magicadas	explanation,	we	need	to	show	that	one	can	
platonistically	formalize	the	latter	theory	in	a	way	that	satisfies	the	definable	
supervenience	condition	above.	So,	we	need	a	description	that	pins	down	all	relevant	
Platonistic	structures,	given	the	facts	about	how	some	nominalistic	vocabulary	applies169.	

We	can	nominalistically	paraphrase	talk	of	sets	of	temporal	points,	and	functions	from	
temporal	points	to	numbers	in	the	same	way	we	were	able	to	capture	talk	of	sets	of	critics	
and	functions	from	goats	to	numbers	in	Chapter	12.2.	But	what	about	the	platonistic	
notions	used	to	discuss	(actual	and	biologically	viable	possible)	life	cycles?	

• PlatonistActualLifecycle(x,n)	iff	an	animal/species	x	has	a	life	cycle	of	length	n	

• PlatonistPossibleLifecycle(x,n)	it	is	a	biologically	viable	option	for	animal/species	x	to	
have	a	life	cycle	of	length	n	

These	relations	definably	supervene	on	nominalistic	relations	of	essentially	the	kind	Rizza	
mentions.	For	example,	a	nominalistic	version	of	the	ActualLifecycle(x,n)	might	relate	
animals/species	and	pairs	of	temporal	points.	

• NominalistActualLifecycle(x,a,b)	iff	animal/species	x	is	disposed	to	hibernate	for	the	
length	of	time	between	a	and	b	and	then	repeat	the	cycle.	

Specifically,	we	can	uniquely	specify	how	the	relation	ActualLifecycle	(that	the	Platonist	
uses)	behaves	in	terms	of	NomalistActualLifecycle,	plus	Platonist	vocabulary	concerning	
numbers	and	functions	from	numbers	to	years	(which	we’ve	already	shown	satisfies	the	

	

.	



definably	supervenience	condition)	plus	a	notion	of	temporal	congruence170	and	temporal	
ordering,	i.e.,	using	the	relations:	

• TempCong(x,y,z,w)	iff‘as	much	time	passes	from	x	to	y	as	from	z	to	w’)	

• Before(x,y)	‘temporal	point	x	is	before	temporal	point	y’	

Note	that	just	as	we	described	the	structure	of	goats	and	sets	of	goats	and	functions	from	
numbers	to	using	the	techniques	for	mimicking	second-order	quantification	above,	we	can	
categorically	describe	the	natural	number	structure	and	uniquely	pin	down	the	intended	
structure	of	functions	from	these	numbers	to	temporal	points.	We	can	then	specify	how	the	
Platonist	actual	life	cycle	relation	relates	these	‘numbers’	to	temporal	points	as	follows.	

An	animal/species	𝑥	bears	the	Platonistic	‘actual	life	cycle	length’	relation	to	a	natural	
number	𝑛	iff	𝑥	bears	the	nominalistic	‘actual	life	cycle	length’	relation	to	a	pair	of	temporal	
points	𝑎, 𝑏	and	there	are	𝑛	years	between	𝑎	and	𝑏.	And	(given	the	truth	of	the	definable	
supervenience	conditions	for	functions	from	numbers	to	years),	this	will	be	true	if	and	only	
if	some	function	counts	off	n	temporal	points	separated	by	1-year	intervals	with	𝑓(0) = 𝑎	
and	𝑓(𝑛) = 𝑏.	So,	we	have	the	following.	

PlatonistActualLifecycle(x,n)	iff	the	usual	definable	supervenience	conditions	for	
the	numbers	and	years	is	satisfied	and	there	are	temporal	points	a	b	such	that	
NominalistActualLifecycle(x,a,	b),	and	there’s	a	function	f	which	maps	the	
numbers	from	1	to	n	to	temporal	points	in	such	a	way	that	f(0)=a	and	f(n)=b	and,	
for	each	number	k,	f(k)	is	before	f(k+1),	and	the	time	between	f(k)	and	f(k+1)	is	
congruent	to	that	between	the	beginning	and	endpoints	of	the	canonical	year.	

13.5  Advantages and Applicability 

We	can	immediately	see	how	adopting	the	above	strategy	removes	the	limitations	for	Field	
and	Rizza’s	strategies	noted	in	§3.	Those	strategies	couldn’t	mirror	Platonist	theories	and	
explanations	involving	very	large	mathematical	structures	because	they,	in	effect,	
depended	on	finding	a	copy	of	all	mathematical	structures	employed	by	the	Platonistic	
theory/explanation	in	the	physical	world.	Thus,	they	couldn’t	translate	Platonist	theories	
quantifying	over	mathematical	structures	too	large	to	have	models	in	actual	space	and	
time.	This	raised	doubts	about	the	applicability	of	Fieldian	paraphrase	strategies,	and	their	
explanatory	goodness	(in	comparison	to	Platonist	alternatives)	where	they	could	be	
applied.	

In	contrast,	my	preferred	paraphrase	strategy	has	no	problem	applying	Platonist	theories	
that	quantify	over	arbitrarily	large	mathematical	structures	(provided	we	have	a	suitable	
description	of	them).	For	it	is	logically	possible	that	existing	physical	structures	exist	
alongside	arbitrarily	large	mathematical	structures.	

	

170	This	holds	assuming	that,	like	Rizza	we	have	some	definite	description	of	a	pair	of	
temporal	points	picking	out	a	canonical	year.	



Thus,	for	example,	unlike	Rizza(Rizza	2011),	we	have	no	problem	saying	that	for	all	natural	
numbers	L,	if	the	biologically	viable	options	for	predator	life	cycles	are	those	natural	
numbers	𝑝	such	that	2 ≤ 𝑝 ≤ %

&
	and	those	for	cicada	life	cycles	are	exactly	those	natural	

numbers	𝑐	such	that	2 + %
&
≤ 𝑐 ≤ 𝐿	and	Magicadas	have	life	cycles	favored	by	the	type	of	

selection	for	fitness	discussed	above,	they	have	life	cycles	lasting	prime	numbers	of	years.	

Adopting	this	paraphrase	strategy	may	also	let	us	address	some	concerns	which	Colyvan	
raises	about	the	explanatory	virtues	of	Field’s	paraphrases	in(Mark	Colyvan	2001).	Colyvan	
suggests	that	Platonist	formulations	of	physical	laws	provide	theoretical	unification	by	
letting	us	articulate	the	idea	that	two	very	different	physical	systems	(say,	a	wave	in	water	
and	an	electromagnetic	wave)	have	a	similar	physical	structure	and	obey	the	same	
differential	equation.	

I	take	the	point	to	be	that	a	Platonist	would	say	that	both	a	wave	in	water	and	an	
electromagnetic	wave	can	be	described	by	a	function	which	satisfies	the	same	pure	
mathematical	description	(a	certain	differential	equation).	In	this	case	my	nominalist	can	
say	something	similar,	that	it	is	logically	possible	for	each	physical	structure	to	exist	
alongside	a	function	capturing	the	relevant	features	of	the	physical	system,	and	logically	
necessary	that	a	certain	shared	description	(in	this	case	the	differential	equation171)	would	
be	satisfied.	

For	example,	in	the	case	of	a	water	wave,	the	Platonist	would	identify	a	function	describing	
how	the	water’s	height	at	each	location	varies	with	time,	(and	say	this	function	satisfies	a	
certain	differential	equation).	And	my	nominalist	would	say	that	it’s	physically	necessary	
that	the	physical	relations	that	constitute	the	definable	supervenience	base	for	claims	
about	these	abstracta	apply	so	that	it’s	logically	necessary	(given	how	these	relations	
apply),	that	any	function	which	captures	the	height	of	the	water	as	a	function	of	time	(as	
specified	in	the	relevant	definable	supervenience	condition	𝐷172)	obeys	that	same	
differential	equation.	Thus,	both	Platonist	and	nominalist	regimentations	of	our	theories	
will	make	clear	that	the	same	function	describes	the	behavior	of	the	water	wave	and	the	
electromagnetic	wave.	

Similar	considerations	address	another	concern	Colyvan	raises	in	the	same	chapter	of	
(Mark	Colyvan	2001):	that	the	Platonist	can	say	what’s	correct	about	physical	theories	
which	get	some	mathematical	equation	right	but	incorrectly	describe	the	underlying	
physical	structures	governed	by	that	equation	in	some	other	way,	and	the	nominalist	can’t.	

	

171	If	you	employ	the	strategy	for	removing	mathematical	vocabulary	suggested	at	the	end	
of	the	previous	section,	this	description	might	be	the	result	of	uniformly	substituting	some	
other	predicates/relations	for	mathematical	predicates/relations	in	the	Platonist’s	
description.	

172	See	chapter	5	for	discussion	of	what	this	definable	supervenience	condition	might	look	
like	



We	can	also	use	my	nominalistic	paraphrase	strategy	to	say	that	two	physical	systems	
‘have	shared	structure’	in	the	sense	of	being	(when	considered	under	certain	relations).	

13.6 A Worry about Instrumentalism 

Now	let’s	turn	to	the	topic	of	explanation.	I’ve	argued	that	the	nominalist	version	of	Baker’s	
Platonist	explanation	is	adequate	in	the	sense	of	Chapter	11.3.2	(so	that,	e.g.,	it	imposes	
exactly	the	intended	constraints	on	non-mathematical	reality).	But	is	it	a	good	explanation?	

One	might	worry	that	appeal	to	my	nominalization	of	the	Magicadas	Conditional	above	isn’t	
as	explanatorily	useful	as	the	Platonist	original,	because	it	has	an	unappealingly	
instrumentalist	form.	It	might	seem	to	resemble	intuitively	unattractive	instrumentalist	
reformulations	of	scientific	theories	to	avoid	ontological	commitment.	For	example,	
consider	a	version	of	our	best	actual	physical	theory	(or	Newton’s)	which	says	there	is	no	
moon	and	eliminates	explanatory	appeals	to	the	moon,	by	positing	suitably	changed	
instrumentalist	laws	of	gravitation,	optics	etc.	This	theory	doesn’t	assert	the	existence	of	
the	moon,	but	says	(it’s	a	law	that)	everything	else	will	behave	as	it	would	if	there	were	a	
moon	with	certain	properties	and	our	original	physical	laws	applied	(whether	or	not	there	
is	a	moon).	

The	paraphrases	associated	with	this	moon-denying	theory	would	be	short,	like	mine.	And	
the	moon-denying	theory	makes	the	right	predictions	about	everything	that	will	happen	to	
non-moon	objects	in	the	future.	Yet	there	is	intuitively	a	sense	in	which	the	actual	existence	
of	the	moon	does	explanatory	work	in	accounting	for	things	like	the	motions	of	the	tides,	
and	the	moon	denying	theory	which	posits	(seemingly	ad	hoc)	variations	in	the	laws	of	
gravity	near	a	certain	point	in	the	solar	system	seems	to	provide	a	worse	explanation.	Thus,	
although	not	indispensable	to	stating	the	constraints	we	expect	to	apply	to	the	behavior	of	
non-moon	things,	commitment	to	the	existence	of	the	moon	very	plausibly	is	indispensable	
to	our	best	explanation	of	the	behavior	of	non-moon	things.	

So,	a	critic	might	wonder,	how	do	we	know	that	the	nominalized	Cicadas	explanation	just	
proposed	(and	all	other	explanations	produced	via	the	strategy	outlined	in	§3)	aren’t	bad	in	
just	that	way?	Isn’t	their	form	even	suspiciously	similar	(both	are	broadly	‘if-thenist’)?	

To	address	this	worry,	I	will	highlight	an	important	point	of	disanalogy.	To	explain	the	
motion	of	the	tides,	the	moon-instrumentalist	needs	to	posit	controversial	alternative	
physical	laws.	They	must	appeal	to	laws	which	are	(intuitively)	inelegant	and	less	suitable	
to	be	supported	by	inductive	generalization	than	the	simpler	theory	which	says	that	gravity	
works	the	same	everywhere.	Accordingly,	their	overall	theory	strikes	the	Platonist	as	a	
priori	less	plausible	than	the	moon	endorsing	theory	(even	if	both	imply	all	the	same	
consequences	for	non-moon	objects).	It	is	certainly	not	something	which	moon	advocates	
are	already	committed	to	accepting	or	take	themselves	to	have	strong	independent	reason	
to	believe.	

In	contrast,	in	the	Magicadas	case	(as	we	have	seen),	the	nominalist	theory	which	implies	
all	the	same	data	about	concrete	objects	as	our	Platonist	theory	does	is	not	only	
comparably	plausible	but	actually	something	which	the	Platonist	themselves	already	
accepts	(or	has	strong	independent	reason	to	believe	and	take	to	be	a	law).	



What	about	simplicity?	I	claim	that	the	basic	logical	laws	which	let	one	derive	the	
mathematically	necessary	premise	in	the	Cicadas	explanation	above	are	very	simple	(so	far	
as	laws	go).	Admittedly,	nominalist	statement	of	other	contingent	physical	laws	produced	
by	the	paraphrase	above	might	be	slightly	more	complex	than	straightforward	Platonist	
versions	of	these	laws.	But	I	think	with	regard	to	these	principles,	the	nominalist	can	more	
plausibly	say	that	the	kind	of	extra	complexity	arrived	at	is	like	what	you	get	by	plugging	
the	fact	that	heat	is	molecular	motion	into	some	theory	where	it’s	sufficient	and	helpfully	
abstractive	to	treat	it	as	a	fundamental	property	or	even	a	fluid.	

The	special	point	Baker	is	making	with	this	example	—	that	it’s	implausible	to	say	that	talk	
of	mathematical	objects	is	just	a	convenient	fiction	used	to	describe	physical	facts,	because	
mathematical	objects/facts	play	an	explanatory	role	—	has	been	answered.	

13.7  Conclusion and Morals 

In	this	chapter,	I	have	argued	that	considering	the	paraphrase	strategy	of	Chapter	3	
strongly	suggests	that	mathematical	objects	aren’t	indispensable	to	either	literally	stating	
or	explaining	why	Magicadas	have	prime	number	length	life	cycles	or	explaining	this	fact.	
Mathematical	explanations	for	scientific	facts	can	often	be	replaced	by	logical	explanations	
(and	if	we	use	the	paraphrase	strategy	I	have	suggested,	this	needn’t	involve	sacrifice	to	
unificatory	power).	

One	obvious	question	to	ask	is:	how	far	does	this	generalize?	I	lack	space	to	fully	answer	
this	question	here.	I’ve	only	considered	an	example.	But	the	modal	if-thenist	strategy	under	
consideration	clearly	generalizes	to	handle	many	extra	cases.	Indeed.	it	generalizes	to	all	
cases	of	supposed	explanatory	indispensability	which	are	commonly	cited	if	the	next	
chapter’s	mission	of	regimenting	physical	magnitude	claims	can	be	carried	out.	For,	if	we	
look	at	Lyon’s	list	of	purported	mathematical	explanations	of	scientific	facts	in	(Lyon	2012)	
the	following	picture	emerges.	The	paraphrase	strategy	advocated	in	this	chapter	can	be	
immediately	applied	to	about	half	the	cases	Lyon	mentions	(regardless	of	success	in	
regimenting	physical	magnitude	claims).	For	example,	interested	readers	will	easily	see	
how	it	can	be	used	to	nominalistically	explain	the	fact	that	no	walk	satisfying	the	conditions	
for	the	famous	Köningsburg	bridge	problem	ever	crosses	each	Köningsburg	bridge	exactly	
once).	In	the	other	cases,	it’s	not	clear	whether	this	paraphrase	strategy	can	be	applied	
solely	because	the	facts	to	be	mathematically	explained	involve	distance	and	other	physical	



magnitude	functions	and	it	is	not	clear	whether	we	can	write	definable	supervenience	
conditions	for	these.173174	

Chapter 14 Physical Magnitude Statements and Sparsity 

Now	let’s	return	to	the	Classic	Quinean	Indispensability	challenge	and	one	of	the	most	
serious	and	influential	motivations	for	it:	suspicion	that	the	Platonist	can	attractively	
logically	regiment	statements	about	physical	magnitudes	(like	length	and	charge)	while	the	
nominalist	cannot.	

In	this	chapter	I’ll	review	Putnam’s	famous	cardinality	argument	that	the	nominalist	can’t	
adequately	paraphrase	physical	magnitude	claims,	and	a	follow	up	to	it	which	I	will	call	the	
sparse	quantities	argument.	Then	I’ll	argue	that	we	can	evade	these	arguments	and	
probably	(technically)	answer	the	relevant	Quinean	indispensability	challenge	by	
combining	the	modal	if-thenist	paraphrase	strategy	of	Chapter	3	with	two	cheap	tricks.	

Interestingly,	however	this	paraphrase	provides	limited	help	to	the	nominalist	overall.	For	
the	answer	to	classic	Quinean	indispensability	worries	I	propose	is	intuitively	unsatisfying	
in	certain	ways,	and	considering	it	highlights	the	importance	of	associated	Grounding	and	
Reference	challenges	for	the	nominalist,	which	remain	unanswered.	However,	I’ll	suggest	
that	merely	clarifying	the	nominalist’s	real	problem	with	physical	magnitudes	in	this	way	
has	some	philosophical	value.	

14.1 Putnam’s Counting Argument 

In	(Hilary	Putnam	1971),	Putnam	makes	an	influential	counting	argument	that	(a	certain	
kind	of)	nominalist	cannot	write	logically	regimented	sentences	which	are	“adequate	for	

	

173	For	example,	one	can	explain	why	honeycombs	have	the	hexagonal	etc.	structure	that	
they	do	by	saying	that	this	structure	uniquely	minimizes	the	surface	area	required	to	
contain	a	certain	volume.	That	is:	it’s	mathematically	necessary	that	if	honeycombs	have	a	
structure	which	has	an	optional	volume	to	surface	area	ratio	(while	obeying	certain	
structure)	then	they	will	have	this	particular	hexagonal	structure.	In	these	cases,	it	seems	
that	the	mathematically	necessary	conditional	will	be	a	logically	necessary	conditional	(just	
as	in	the	other	cases),	however	because	the	physical	antecedent	and	consequent	involve	
claims	about	lengths	and	such	physical	magnitudes	it	is	not	clear	that	they	can	be	
nominalistically	stated.	

174	Easy	road	nominalists	might	also	try	to	use	the	great	intuitive	similarity	between	cases	
of	mathematical	explanation	for	physical	facts	that	can	be	straightforwardly	handled	by	the	
strategy	of	this	chapter	and	those	that	cannot	to	argue	that	in	both	cases	what	we	really	
have	is	ultimately	best	seen	as	a	logical	explanation	of	scientific	facts.	We	just	(they	might	
say)	are	prevented	from	demonstrating	this	fact	in	some	cases	by	same	fact	that	motivated	
people	to	be	easy	road	nominalists	in	the	first	place:	that	we	need	the	fiction	of	
mathematical	objects	to	finitely	state	certain	bundles	of	facts	about	how	physical	
magnitude	properties	and	relations	apply	to	non-mathematical	objects.	



the	purposes	of	science”	because	they	cannot	(appropriately)	logically	regiment	certain	
statements	about	lengths.	

In	particular,	Putnam	targets	a	materialist	nominalist,	who	believes	in	broadly	material	
objects	like	sticks,	stones	and	electrons,	but	not	any	immaterial	objects	like	numbers	or	
spatial	points.	He	notes	that	many	scientific	theories	are	ordinarily	stated	by	appealing	to	a	
physical	magnitude	function,	like	a	length	or	mass	function	which	relates	physical	objects	
to	numbers.	For	the	nominalist	to	capture	the	way	we	apply	laws	like	Newton’s	law	of	
gravity:	

𝐹 =
𝑔𝑀7𝑀9

𝑑& 	

they	must	interpret	length	statements	that	have	(something	like)	the	following	form	

𝐿<:	‘𝑐	is	𝑞@ ± 𝑞(	times	the	length	of	𝑑’175	

where	𝑞@	and	𝑞(	are	rational	numbers176	

Now	Putnam	argues	that	his	nominalist	cannot	adequately	formalize	such	statements	
because	(roughly	speaking)	they	can’t	accommodate	the	intuition	that	it’s	epistemically	
possible	for	objects	to	stand	in	arbitrary	length	ratios	to	one	another	even	while	there	only,	
say,	less	than	3000	total	material	objects	(hence	less	than	3000	total	objects,	from	their	
point	of	view).	

Intuitively,	a	pair	of	sticks	could	(in	principle)	stand	in	infinitely	many	different	length	
ratios	to	one	another,	while	existing	in	a	world	with	𝑛 ≥ 2	or	fewer	material	objects.	
Indeed,	for	each	pair	of	length	statements	𝐿< ≠ 𝐿C 	like	‘The	ratio	between	𝑐	and	𝑑	is	3.2 ± 1	
and	‘The	ratio	between	𝑐	and	𝑑	in	4.1 ± 3.37,’	it’s	metaphysically	and	(initially)	
epistemically	possible	that	one	is	true.	Furthermore,	we	shouldn’t	rule	out	the	possibility	
that	there	are	at	most	𝑛	material	objects,	but	¬;𝐿< ↔ 𝐿CD	(for	any	distinct	𝐿< 	and	𝐿C 	as	
above).	So,	from	their	point	of	view,	no	statement	of	the	following	form	(for	distinct	
sentences	𝐿< 	and	𝐿C 	as	above)	is	a	necessary	truth177	

Finite	Objects	Conditional	for	𝐿< , 𝐿C:	‘If	the	number	of	individuals	is	at	most	𝑛	then	𝐿< ↔ 𝐿C ’	

	

175	I	mean	this	to	abbreviate	a	corresponding	claim	where	𝑐	and	𝑑	are	replaced	by	
nominalistically	acceptable	definite	descriptions	or	names	of	spatial	paths	(or	other	
physical	objects)	with	lengths.	

176	Note	that	by	using	only	rational	numbers,	but	including	a	margin	of	error,	Putnam	is	
able	to	approximate	the	claim	that	𝑥	has	length	𝑟	times	the	unit	meter	stick	in	Paris	
(though,	of	course,	now	the	meter	is	defined	differently)	for	any	real	number	𝑟	to	any	
degree	of	accuracy	(while	speaking	a	finite	human-learnable	language).	

177	More	specifically,	Putnam	points	out	that	they	shouldn’t	regard	any	sentence	of	the	form	
below	as	a	theorem.	



However,	we	can	show	by	a	counting	argument	that	for	some	𝑖, 𝑗	the	associated	Finite	
Objects	Conditional	must	be	a	necessary	truth,	(assuming,	as	is	commonplace,	that	all	
statements	are	formalized	using	only	finitely	many178	relations	𝑁(, …𝑁V).	For	there	are	
only	finitely	many	distinct	scenarios	which	the	application	of	𝑁(, … , 𝑁V	to	at	most	𝑛	objects	
can	distinguish.	But	there	are	infinitely	many	distinct	length	ratio	sentences,	(i.e.,	sentences	
of	the	form	𝐿< 	for	some	𝑖).	Hence,	by	the	pigeonhole	principle,	some	pair	of	distinct	length	
sentences	𝐿< 	and	𝐿C 	must	take	on	the	same	truth-value	in	all	such	scenarios.	Thus,	the	
nominalist’s	rendering	of	some	Finite	Objects	Conditional	with	distinct	𝐿< 	and	𝐿C 	must	be	a	
necessary	truth,	violating	the	intuitive	epistemic	possibility	requirement	above.	

In	contrast,	Putnam	argues	that	a	Platonist	who	believes	in	spatial	points	(or	paths)	can	
attractively	regiment	physical	magnitude	statements	in	a	way	that	allows	for	the	above	
epistemic	possibility.	His	idea	is	essentially179	the	following.	One	can	define	the	length	ratio	
between	path	𝑝(	and	𝑝&	by	saying	that	the	ratio	of	the	length	of	𝑝(	to	𝑝&	is	𝑟	iff	for	every	
function	𝑓	which	respects180	the	following	nominalistic	relations	.	

𝑝( ≤% 𝑝&	‘path	𝑝&	is	as	long	or	longer	than	path	𝑝(’	

• ⊕% (𝑝(, 𝑝&, 𝑝M)	‘the	combined	lengths	of	path	𝑝(	and	𝑝&	together	are	equal	to	the	length	
of	path	𝑝M’	

and	satisfies	certain	other	obviously	necessary	conditions	for	being	a	correct	length	
function,	we	have	W(d")

W(d+)
= 𝑟.	Measurement	theoretic	uniqueness	theorems	ensure	that	if	

space	satisfies	the	condition	that	length	is	richly	instantiated	(see	Appendix	13)	then	
there	is	a	unique	function	𝑓	satisfying	the	above	conditions	(and	thus	length-ratios	are	all	
well-defined).	The	assumption	that	length	is	richly	instantiated	is,	roughly,	a	way	of	
asserting	that	any	path	can	be	subdivided	into	𝑛	equal	length	sub	paths	(Note,	we	will	later	
use	the	fact	that	such	a	condition	can	be	nominalisticly	stated)181	

	

178	C.f	(Davidson	1967)	

179	Putnam	actually	defines	a	‘distance	in	meters’	function	which	applies	to	pairs	of	points.	
My	deviation	from	Putnam’s	approach	is	inspired	by	(Sider	n.d.).	

180	The	function	𝑙(𝑥)	respects	≤% ,⊕%	just	if	𝑎 ≤% 𝑏 ↔ 𝑙(𝑎) ≤ 𝑙(𝑏)	and	⊕% (𝑎, 𝑏, 𝑐) ↔ 𝑙(𝑎) +
𝑙(𝑏) = 𝑙(𝑐).	

181	One	might	wonder	what	becomes	of	the	counting	argument	if	we	take	this	line.	It’s	
striking,	and	prima	facie	puzzling,	fact	that	Putnam’s	counting	argument	for	the	‘false	
theorem’	that	the	nominalist	must	accept	a	above	doesn’t	make	use	of	any	premises	that	
are	specific	to	the	nominalist.	So,	it	looks	like	the	Platonist	is	equally	committed	to	
accepting	the	theorem	above.	How	does	the	view	Putnam	ultimately	proposes	avoid	falling	
to	the	same	criticism	that	leads	Putnam	to	reject	the	type	of	nominalism	he	is	rejecting?	

	



14.1.1 Responding to the Counting Argument 

As	work	like	(H.	Field	1980)	has	emphasized,	Putnam’s	original	argument	about	lengths	
doesn’t	stymie	a	nominalist	who	accepts	space	time	points	as	the	set-theoretically	
motivated	nominalist	we’re	considering	(c.f.,	Chapter	10)	is	perfectly	free	to	do.	

Indeed,	we	can	directly	apply	the	paraphrase	strategy	from	chapter	3	to	nominalize	
Putnam’s	own	formalization	of	physical	magnitude	statements.	For	the	latter	only	makes	
use	of	the	reals,	natural	numbers,	functions	from	paths	to	reals	and	functions	from	pairs	of	
paths	to	reals,	and	(structures	which	clearly	definably	supervene	on	facts	about	the	
application	of	nominalist	vocabulary)	and	the	nominalistic	relations	path,	𝑝( ≤%	‘path	𝑝&	is	
as	long	or	longer	than	path	𝑝(’	and	⊕% (𝑝(, 𝑝&, 𝑝M)	the	combined	lengths	of	path	𝑝(	and	𝑝&	
together	are	equal	to	the	length	of	path	𝑝M).182	

	

I	take	the	solution	to	this	mystery	to	be	something	like	the	following.	Philosophers	who	
accept	spatial	points	don’t	have	to	regard	a	theorem	of	the	type	above	(saying	‘If	the	
number	of	individuals	is	at	most	𝑛	then	𝐿< ↔ 𝐿C .’	for	distinct	𝐿< 	and	𝐿C)	as	a	false	theorem.	
For	they	will	say	that	all	the	intuitively	epistemically	possible	scenarios	considered	above	
involve	infinitely	many	spatial	points.	Thus,	accepting	the	truth	of	𝐿< ↔ 𝐿C 	in	possible	
worlds	with	only	𝑛	or	fewer	total	objects	is	no	problem.	

To	put	the	same	point	differently,	what’s	actually	a	‘false	theorem’	is	this:	

If	there	are	< 𝑛	many	physical	objects,	then	a	pair	of	objects	stands	in	ratio	𝐿< 	if	and	only	if	
they	stand	in	ratio	𝐿C 	(nothing	can	have	a	mass	ratio	in	such	and	such	range).	

Putnam’s	materialist	has	a	problem	because	she	can	deduce	the	above	claim	from	the	claim	
Putnam	proves	--	that	if	there	are	<)	many	material	objects	(where	this	doesn’t	include	
spatial	points)	then	all	things	stand	in	length	ratio	𝐿< 	iff	they	stand	in	length	ratio	𝐿C .	

So,	the	answer	to	my	question	is	that	Putnam’s	Platonist	avoids	trouble	because	they	reject	
this	inference.	

182	Thus	we	can	apply	the	results	from	chapter	3	to	show	that,	where	𝜙	is	a	length	
statement	logically	regimented	in	the	way	that	Putnam	proposes,	𝑇(𝜙)	is	defined	and	gets	
the	right	truth-value	in	all	metaphysically	possible	worlds	if	𝜙	does.	

𝑇(𝜙) ↔
def
□ (P
,
,⊕
,
,path 𝐷 → 𝜙)	

Here	𝐷	formalizes	the	claim	that	(fixing	≤% ,⊕% ,path)	there	are	objects	satisfying	a	
categorical	description	of	the	reals	as	well	as	objects	corresponding	to	all	possible	
functions	from	pairs	of	paths	to	reals	above.	And	𝜙	is	the	Platonist	paraphrase	for	the	claim	
that	all	functions	𝑓	satisfying	Putnam’s	conditions	also	make	𝐿< 	true,	i.e.,	𝑓(𝑥)/𝑓(𝑦)	is	in	
𝑞<% ± 𝑞<" .	



Thus	Putnam’s	argument	about	nomialistically	formalizing	length	statements	can	be	
answered.	And	one	might	hope	to	generalize	this	strategy	by	treating	mass,	charge,	etc.	
statements	the	same	way.	However,	an	important	problem	has	been	raised	for	generalizing	
this	response.	

14.2  The Sparse Magnitudes Problem 

Considering	physical	magnitudes	other	than	length	raises	a	potential	problem	for	a	
nominalist	using	the	strategy	above.	Specifically,	it	seems	some	physical	magnitudes	can	
take	on	definite	values	which	don’t	supervene	on	the	nominalistic	relations	between	
objects	with	these	physical	magnitudes	considered	above.	As	Eddon	puts	it	(Eddon	2013):	

It	seems	possible	for	there	to	be	a	world,	𝑤(,	in	which	𝑎	and	𝑏	are	the	only	
massive	objects,	and	𝑎	is	twice	as	massive	as	𝑏.	It	also	seems	possible	for	there	to	
be	a	world,	𝑤&,	in	which	𝑎	and	𝑏	are	the	only	massive	objects,	and	𝑎	is	three	times	
as	massive	as	𝑏.	Worlds	𝑤(	and	𝑤&	are	exactly	alike	with	respect	to	their	patterns	
of	LESS	and	CONG	relations.	And	thus	they	are	exactly	alike	with	respect	to	the	
constraints	these	relations	place	on	numerical	assignments	of	mass.	But	if	they	
are	exactly	alike	with	respect	to	the	constraints	these	relations	place	on	numerical	
assignments	of	mass,	then	it	cannot	be	the	case	that	these	worlds	differ	with	
respect	to	the	masses	of	𝑎	and	𝑏.	So	it	seems	we	cannot	discriminate	between	the	
two	possibilities	we	started	out	with183.	

Field	notes	and	discusses	a	version	of	this	problem	in	(Field_1984)	and	the	last	chapter	of	(	
Field_1989).	

We	can	turn	Eddon’s	point	more	into	a	more	general	and	explicit	argument	that	no	analysis	
of	a	certain	kind	could	work,	by	formulating	it	as	a	slight	modification	of	Putnam’s	counting	
argument.	Consider	mass	ratio	sentences	of	the	form	

𝑀<:	‘The	masses	of	objects	𝑐	and	𝑑	stand	in	ratio	𝑞<% ± 𝑞<" ’	

By	the	intuition	Eddon	expresses	above,	it	seems	that,	for	each	number	𝑛 ≥ 2	and	mass	
ratio	𝑟 ∈ ℝ	,	it	is	(metaphysically	and,	for	large	values	of	𝑛,	epistemically)	possible	that	only	
𝑛	objects	that	have	masses	exist,	and	yet	the	objects	𝑐	and	𝑑	stand	in	mass	ratio	𝑟.	So	for	
any	distinct	mass	ratio	statements	𝑀< 	and	𝑀C ,	it	is	possible	for	there	to	be	at	most	𝑛	objects	
but	¬;𝑀< ↔ 𝑀CD.	So,	by	Putnam’s	argument,	any	attempt	to	regiment	𝑀< 	using	finitely	many	
relations	between	the	objects	that	have	masses	will	fail.	

All	this	raises	a	worry	for	the	nominalist.	For	it	suggests	that	we	cannot	be	sure	of	
producing	an	adequate	nominalistic	paraphrase	if	we	treat	mass	statements	the	same	way	

	

183	This	is	stated	as	an	objection	to	a	nominalization	attempt	involving	only	two	physical	
magnitude	relations,	but	the	same	counterexample	works	if	we	add	the	third	⊕	relation	
considered	above	



we	treated	length	statements	above.	Unlike	in	the	case	of	length,	mass	facts	intuitively	don’t	
supervene	on	how	the	relations	

• 𝑝( ≤j 𝑝&	iff	path	𝑝&	is	as	massive	or	more	massive	than	path	𝑝(	

• ⊕j (𝑝(, 𝑝&, 𝑝M)	iff	the	combined	masses	of	path	𝑝(	and	𝑝&	together	are	equal	to	the	
mass	of	path	𝑝M	

apply	to	physical	objects	that	have	masses.	

14.3  Cheap Tricks 

However,	I’ll	now	argue	that	we	can	plausibly	solve	this	problem	(sufficiently	to	answer	
classic	Quinean	indispensability	worries),	by	supplementing	the	paraphrase	strategy	of	
Chapter	3	with	a	pair	of	cheap	tricks.	

14.3.1 Relation to Length Trick 

First	note	that	if	we	(temporarily)	assume	that	length	is	richly	instantiated,	we	can	solve	
Eddon’s	problem	by	using	distance	ratios	to	nominalistically	pin	down	other	physical	
magnitudes.	

Specifically,	a	nominalist	who	wants	to	paraphrase	physical	statements	masses,	or	any	
other	property	(given	by	real	numbers)	can	do	so	y	by	invoking	a	four-place	relation	𝑀	
between	pairs	of	objects	with	masses	and	pairs	of	paths,	as	follows:184	

• 𝑀(𝑝(, 𝑝&, 𝑚(, 𝑚&)	which	holds	iff	‘the	mass	𝑚(	is	as	many	times	(or	more)	the	mass	of	
𝑚&	as	the	length	of	the	path	𝑝(	is	to	the	length	of	the	path	𝑝&.’	

Even	though	this	four-place	relation	may	not	be	very	physically	(or	metaphysically)	
natural,	it	reflects	a	genuine	nominalistically	acceptable	fact	about	the	world	and	suffices	
for	our	purposes.	By	the	measurement	theory	results	mentioned	above,	we	can	uniquely	
pin	down	the	length	function	(up	to	a	choice	of	unit)	using	nominalist	relations	𝑝( ≤% 𝑝&	
and	⊕% (𝑝(, 𝑝&, 𝑝M),	at	all	worlds	where	length	is	richly	instantiated	and	then	pin	down	
mass	ratios	facts	by	M	which	compares	them	to	length	ratios185.	This,	in	turn,	is	enough	to	
allow	us	to	apply	the	paraphrase	strategy	of	Chapter	3	as	discussed	above.	

	

184	If	you	prefer	to	take	length	to	relate	pairs	of	spatial	points	rather	than	paths,	as	Field’s	
strategy	for	nominalistically	stating	rich	instantiation	conditions	requires,	we	can	replace	
each	path	with	a	pair	of	spatial	points.	

185	Specifically,	we	demand	that	any	mass	function	ℳ	satisfy	the	constraint	that	if	ℒ	is	a	
length	function	respecting	≤% ,⊕%	then	𝑀(𝑚(, 𝑚&, 𝑝(, 𝑝&)	holds	iff	ℳ(𝑚()/ℳ(𝑚&) ≥
ℒ(𝑝()/ℒ(𝑝&).	Note	that	any	attempt	to	assign	the	wrong	mass	ratio	𝑟′	to	a	pair	of	objects	
𝑚(, 𝑚&	with	mass	ratio	𝑟	can	be	ruled	out	by	considering	paths	𝑝(, 𝑝&	whose	length	ratio	
falls	between	that	of	𝑟	and	𝑟′	and	noting	that	ℳ	fails	the	above	condition	for	a	pair	of	paths	
	



Importantly,	even	if	length	isn’t	necessarily	richly	instantiated,	the	paraphrases	proposed	
by	our	paraphrase	strategy	still	give	the	correct	truth-values	in	those	worlds	where	length	
is	richly	instantiated.186	

14.3.2 Holism trick 

Now	what	about	the	above	assumption	that	length	is	metaphysically	necessarily	richly	
instantiated?	This	assumption	seems	unmotivated	but,	happily,	we	can	eliminate	it	via	
another	cheap	trick	if	(as	currently	appears	to	be	the	case)	our	best	scientific	theory	
implies	that	length	is	actually187	richly	instantiated	(as	a	matter	of	physical	law).	

To	see	how,	consider	some	such	Platonistic	theory	P	which	implies	that	space	is	richly	
instantiated.	As	noted	above,	we	can	produce	a	partially	accurate	nominalization	(call	it	
𝑇∗(𝑃)	)	which	gets	the	correct	truth-value	at	worlds	where	length	is	richly	instantiated	but	
may	get	the	wrong	truth	value	at	other	possible	worlds.	

And	we	can	formalize	the	claim	that	length	is	richly	instantiated	nominalistically,	as	per	
Appendix	D,	with	a	sentence	R.	

Thus,	we	can	write	a	nominalistic	sentence	which	gets	correct	truth	values	at	all	possible	
worlds	by	simply	conjoining	our	partial	paraphrase	of	the	theory	𝑇∗(𝑃)	with	the	claim	that	
length	is	richly	instantiated	R.	

Paraphrase:	𝑇∗(𝑃) ∧ 𝑅	

For	at	worlds	where	length	is	richly	instantiated,	𝑇∗(𝑃)	has	the	correct	truth	value,	and	R	is	
true,	so	their	conjunction	is	true.	And	at	worlds	where	length	isn’t	richly	instantiated	the	
theory	we’re	paraphrasing	is	false,	and	so	is	R.	Thus,	our	paraphrase	has	the	intended	truth	
value	at	all	metaphysically	possible	worlds.	

	

such	that	ℒ(𝑝()/ℒ(𝑝&)	falls	between	𝑟	and	𝑟′.	The	existence	of	such	a	pair	of	paths	is	
guaranteed	by	the	assumption	that	length	is	richly	instantiated.	

186	If	desired,	we	can	use	the	same	trick	to	ensure	that	determinate	values	for	all	physical	
magnitudes	can	be	pinned	down	in	all	possible	worlds	where	at	least	one	physical	
magnitude	is	richly	instantiated	(whether	or	not	it’s	length).	Rather	than	requiring	that	
physical	magnitude	functions	honor	a	single	4	place	relation	claim	M	(like	the	one	relating	
length	and	mass	statement	above)	require	that	it	honor	a	corresponding	four	place	relation	
for	each	pair	of	distinct	physical	magnitudes	𝑀< 	and	𝑀C 	as	well	as	respecting	the	particular	
𝑝( ≤j( 𝑝&	and	⊕j( (𝑝(, 𝑝&, 𝑝M)	relatios	for	each	of	these	magitudes.	

187	For	example,	we	can	make	the	same	argument	below	if	our	best	theory	implies	that	
space	is	quantized,	i.e.,	all	distances	between	spatial	points	are	multiples	of	some	minimum	
distance.	The	same	argument	given	by	(Sider	n.d.)	to	argue	for	measurement	theoretic	
uniqueness	results	and	the	same	tricks	useable	to	nominalistically	state	the	claim	that	
space	is	Archimedean	turn	out	to	work	in	this	case.	



This	strategy	can	be	easily	extended	to	handle	physical	magnitudes	taking	values	in	ℝ)	or	
ℂ).	

Thus,	the	nominalist	plausibly	can	address	the	problems	about	physical	magnitude	
statements	raised	by	Putnam	and	Eddon	above	—	sufficiently	well	to	answer	the	classic	
Quinean	indispensability	argument.	

14.4 Remaining Indispensability Worries 

However,	readers	will	likely	find	the	above	solution	quite	unsatisfying!	I’ll	suggest	that	
attending	to	our	discomfort	highlights	further	grounding	and	reference	indispensability	
worries	of	the	type	foreshadowed	in	§11.4	.	

14.4.1 Grounding Indispensability 

First,	it	feels	worrying	that	the	kind	of	4	place	relation	M	(between	paths	with	lengths	and	
pairs	of	objects	with	masses	or	some	other	target	physical	magnitude)	invoked	above	is	so	
extrinsic,	arbitrary	and	not	physically	natural.	It’s	(prima	facie)	very	much	not	the	kind	of	
relation	we’d	like	to	make	part	of	our	fundamental	ideology	when	doing	metaphysics.	

Thus,	a	nominalist	who	addresses	the	classic	Quinean	indispensability	argument	via	the	
tricks	I’ve	proposed	above,	arguably	faces	a	grounding	problem.	If	the	4	place	relation	we	
used	to	paraphrase	mass	facts	isn’t	metaphysically	fundamental,	what	kind	of	
metaphysically	fundamental	objects	and	relations	do	ground	the	fact	that	𝑚(	is	𝜋	times	
more	massive	than	𝑚&?	Platonists	can	say	that	mass	facts	are	grounded	in	a	relation	
between	physical	objects	and	mathematical	ones,	e.g.,	the	3	place	relation	which	holds	
between	pairs	of	objects	and	their	real-valued	mass-ratio.	But	what	can	the	nominalist	say?	

14.4.2 Reference Indispensability 

Second,	one	might	feel	that	nominalistically	formalizing	our	best	scientific	theory	via	the	
cheap	tricks	above	leaves	our	apparent	ability	to	make	certain	other	claims	a	mystery.	For	
example	(rejecting	holism)	one	might	think	that	we	can	–	somehow	–	express	mass	
statements	on	their	own,	rather	than	conjoined	with	a	larger	physical	theory.	Or	one	might	
think	we	can	meaningfully	state	mass	claims	conjoined	with	alternative	larger	physical	
theories	which	don’t	imply	that	length	is	richly	instantiated.	And	the	cheap	tricks	I’ve	
suggested	above	don’t	suffice	—	or	don’t	clearly	suffice	—	to	let	one	nominalistically	
formalize	such	statements.	

Thus,	one	might	argue	that	mathematical	nominalists	can	account	for	our	ability	to	state	
such	partial	and/or	alternative	scientific	theories.	In	contrast,	Platonists	can	make	sense	of	
them	by	taking	our	language	to	include	something	like	a	three-place	relation	‘𝑥	stands	in	
mass	ratio	𝑟	to	𝑦’	between	physical	objects	and	mathematical	ones	.	Thus,	we	might	be	
forced	to	accept	the	existence	of	mathematical	objects	in	order	to	make	sense	of	our	ability	
to	literally	state	certain,	seemingly	meaningful,	scientific	theories	other	than	our	current	
best	theory.	



I	have	called	this	a	reference	explaining	worry	insofar,	as	it	concerns	accounting	for	our	
ability	to	(finitely	learn	a	language	which	lets	us)	‘refer	to’	certain	classes	of	possible	
worlds	by	stating	sentences	that	are	true	at	exactly	these	worlds.	

14.4.3 Morals 

In	this	chapter	I’ve	argued	that	we	can	plausibly	answer	classic	Quinean	indispensability	
worries	about	adequately	formalizing	physical	magnitude	statements	in	our	best	scientific	
theories	of	the	world,	by	combining	the	paraphrase	strategy	of	Chapter	5	with	some	cheap	
tricks.	

However,	Putnam	and	Eddon’s	points	still	highlight	a	prima	facie	problems	for	the	
nominalist	because	a	significant	reference	and	grounding	indispensability	worry	about	
physical	magnitude	statements	remains.	Although	not	needed	to	state	our	best	scientific	
theories,	mathematical	objects	may	be	indispensable	to	accommodating	certain	
philosophical	intuitions	about	reference	and	grounding.	If	there	are	no	numbers,	how	are	
humans	able	to	finitely	learn	languages	which	draw	certain	distinctions	between	
metaphysically	possible	worlds	quite	different	from	our	own	(not	needed	to	state	our	best	
theory),	and	what	could	ground	the	truth	of	fundamental	physical	magnitude	facts	in	the	
worlds?	

If	one	accepts	this	reformulation	of	indispensability	worries,	there	are	some	important	
upshots	for	readers	of	different	stripes.	

First,	hardcore	naturalists	may	be	inclined	stop	taking	indispensability	worries	(based	on	
concerns	about	physical	magnitude	statements)	seriously.	For	we	see	that	the	nominalist’s	
real	problem	doesn’t	concern	stating	or	(in	a	sense)	attractively	explaining	scientific	facts	
involving	mass	and	charge	but	rather	accounting	for	certain	a	priori	philosophical	
intuitions	about	metaphysical	possibility,	reference	and	grounding.	Philosophical	
explanation	is	the	sticking	point,	not	scientific	explanation.	

Second,	if	we	slot	in	the	grounding	and	reference	indispensability	arguments	into	the	
philosophical	literature	in	place	of	the	classic	Quinean	indispensability	argument	above	but	
take	the	latter	seriously	(accepting	the	existence	of	mathematical	objects	on	these	grounds)	
there	are	several	interesting	consequences.	

For	one	thing,	if	one	accepts	the	existence	of	mathematical	objects	because	of	the	above	
grounding	challenge,	then	one	has	an	automatic	answer	to	certain	access	worries.	I	have	in	
mind	the	suggestion	(Jenkins	2008)	that	if	there	hadn’t	been	mathematical	objects	
everything	about	the	physical	world	would	have	been	the	same.	For,	if	masses	are	
grounded	in	(and	thus,	plausibly,	something	like	partly	constituted	by)	a	certain	relation	
holding	between	physical	objects	and	numbers,	then	the	following	(opposite)	
counterfactual	intuition	seems	plausible:	if	numbers	suddenly	stopped	existing	then	
objects	wouldn’t	have	had	masses,	just	as	if	hair	suddenly	stopped	existing	then	people	
would	stop	having	beards.	

For	another	thing,	consider	arguments	that	we’re	only	justified	in	believing	mathematical	
objects	exist	because	of	the	role	they	play	in	our	best	scientific	theories	(as	per	the	Quinean	



indispensability	argument)	(Mark	Colyvan	2001),	so	we	should	think	mathematical	objects	
are	contingent.	The	reference	and	grounding	indispensability	arguments	raised	in	in	this	
section	present	a	twist	on	the	classic	Quinean	indispensability	argument	which	(if	
compelling)	does	justify	the	necessary	existence	of	mathematical	objects.	For,	in	order	to	
resolve	the	grounding	and	reference	problems	raised	above,	mathematical	objects	would	
seem	to	need	to	exist	necessarily.	

Chapter 15 Weak Quantifier Variance and Mathematical Objects 

15.1 A Different Approach to The Unity of Mathematics 

So	much	for	nominalism.	Now	let’s	turn	to	the	philosophy	of	mathematics	I	ultimately	want	
to	advocate.	

In	Chapter	10,	we	considered	a	‘unity	of	mathematics’	argument	that	philosophers	who	
accept	the	potentialist	set	theory	advocated	in	this	book	should	also	be	nominalists	about	
other	mathematical	objects,	cashing	out	all	of	pure	mathematics	as	an	investigation	of	pure	
logical	possibility	facts	(i.e.,	claims	stateable	without	any	quantifiers	occurring	outside	of	
unsubscripted	□	and	◊	claims).	I	suggested	(very	briefly)	that	a	neo-Carnapian	approach	
which	combined	realism	about	mathematical	objects	outside	of	set	theory	with	potentialist	
set	theory	could	also	honor	these	mathematical	uniformity	intuitions.	

In	this	chapter,	I	will	develop	such	a	proposal.	I	call	this	proposal	the	Weak	Quantifier	
Variance	Explanation	of	Mathematicians’	Freedom	(QVEMF).	For	it	appeals	to	a	Weak	
Quantifier	Variance	thesis	in	philosophy	of	language	which	takes	inspiration	from	some	
familiar	and	popular	neo-Carnapian	ideas	but	(as	we	will	see)	does	not	require	endorsing	
controversial	Carnapian	rejections	of	metaphysics.	

As	noted	in	Chapter	10,	adopting	such	a	view	lets	us	honor	Benacerraf’s	idea	that	we	
should	treat	apparently	grammatically	and	inferentially	similar	talk	of	numbers,	cities	and	
electrons	similarly	and	avoid	classic	Quinean	and	Reference	explaining	challenges,	since	we	
acknowledge	that	mathematical	objects	literally	exist.	However,	in	§15.3	I	will	note	that	a	
kind	of	Grounding	Indispensability	challenge	arises	and	discuss	some	ways	of	avoiding	or	
answering	this	challenge.	

In	Chapter	16	I	will	consider	some	more	general	concerns	about	developing	and	defending	
Weak	Quantifier	Variance.	

15.2 Weak Quantifier Variance and Mathematicians’ Freedom 

15.2.1 Motivations 

To	motivate	and	introduce	the	Weak	Quantifier	Variance	thesis	which	supports	the	
approach	to	mathematics	I	want	advocate,	consider	our	knowledge	of	holes	and	shadows.	

In	ordinary	contexts	we	appear	to	quantify	over	objects	like	holes	in	a	road	or	in	a	piece	of	
Swiss	cheese.	For	example,	we	may	say	that	there	are	three	potholes	in	the	road	between	
one	town	and	another,	or	that	one	piece	of	cheese	has	more	holes	in	it	than	another.	And	if	
one	accepts	the	existence	of	these	holes,	it	is	appealing	to	think	of	them	as	distinct	from	



things	like	the	air	that	occupies	them	or	surrounding	portions	of	the	‘hole	host’	(e.g.,	the	
cheese	or	the	pavement).188	

Is	there	an	access	problem	about	our	knowledge	of	holes?	One	might	try	to	get	such	an	
access	worry	going,	by	arguing	as	follows.	Our	ability	to	visually	determine	how	many	
holes	there	are	in	a	road,	depends	on	our	(implicit	or	explicit)	accuracy	concerning	how	
hole	facts	supervene	on	facts	about	the	distribution	of	solid	matter	in	space189.	For	
example,	we	must	be	disposed	to	make	correct	judgments	about	how	steeply	indented	a	
road	must	be	to	count	as	containing	a	hole.	But	what	can	explain	the	match	between	our	
beliefs	on	this	topic	and	the	corresponding	objective	reality	about	when	there	is	a	hole	in	
the	road?	It	doesn’t	seem	like	sensory	experience	or	scientific	practice	strongly	motivates	
thinking	that	any	particular	place	to	draw	the	line	is	intrinsically	physically/metaphysically	
special	(even	allowing	for	some	vagueness).	Thus,	people’s	apparent	ability	to	draw	the	line	
correctly	(re:	how	steeply	indented	a	substance	has	to	be	to	contain	a	hole)	could	seem	to	
create	an	access	problem190.	Consider	the	match	between	facts	of	the	form	below	and	
human	beliefs	about	these	facts.	

When	a	road	is	missing	a	cylinder	of	material	of	depth	3	cm	and	width	15cm,	
there	is	a	hole	in	that	road.	
When	a	road	is	missing	a	cylinder	of	material	of	depth	.01	cm	and	width	.1	cm,	
there	is	not	a	hole	in	that	road.	

We	process	visual	information	in	way	that	draws	the	line	somewhere	(maybe	with	some	
vagueness),	but	what	explains	the	match	between	where	we	do	draw	the	line	and	the	
correct	place	to	draw	the	line?	

However,	it’s	appealing	to	say	that	there	isn’t	really	any	such	access	problem	for	holes,	
because	one	can	give	the	following	metasemantic	explanation	for	human	accuracy	about	
minimum	hole	indentation	facts	and	the	like.	If	we	had	been	inclined	to	say	something	
(logically	coherent	but)	different	about	when	an	indented	object	counts	as	‘containing	a	
hole’	(e.g.,	that	substances	surfaces	had	to	contain	an	indentation	of	greater/lesser	
steepness	in	order	to	contain	a	hole)		then	the	meaning	of	the	words,		“hole”	and	“there	is”	
would	have	been	different,	so	that	our	utterances	would	have	still	expressed	truths.	That	is,	
we	would	have	been	speaking	as	slightly	different	language	in	which	a	slightly	different	
collection	of	sentences	of	the	form,	“Whenever	a	solid	road	is	indented	in	according	to	

	

188	See	(D.	Lewis	1990)	

189	Though	see	(S.	Berry	2019)	for	a	puzzle	about	this	notion	of	solidity.	

190	Note	that	the	issue	with	this	‘access	problem	for	holes’	is	not	supposed	to	be	about	
vagueness,	but	about	our	ability	to	be	accurate	(or	even	close	to	accurate)	about	how	hole	
facts	supervene	on	indentation	facts	



geometrical	formula	𝜙	there	is	a	hole	in	it”	express	true	propositions191.	Accordingly,	
there’s	no	mystery	or	spooky	Leibnizian	predetermined	harmony	in	our	possession	of	true	
beliefs	about	things	like	about	how	steeply	indented	holes	must	be.192	

Note	that	the	explanation	above	seems	to	involve	(a	form	of)	quantifier	meaning	change,	in	
that	it	requires	that	our	adopting	different	hole	attribution	practices	would	have	caused	a	
shift	in	the	meaning	some	logical	vocabulary	like	the	existential	quantifier	(not	just	a	shift	
in	the	meaning	of	the	world	‘hole.’	For	example,	note	that	changing	between	more	and	less	
generous	standards	for	hole	existence	could	require	the	truth	value	of	the	Fregean	
sentence	which	says	“There	are	𝑛	things”	using	only	first-order	logical	expressions	and	
equality193194	

15.2.2 Introducing Weak Quantifier Variance 

Thinking	about	cases	like	the	above	motivates	the	following	Weak	Quantifier	Variance	
Thesis.	

(Weak)	Quantifier	Variance	Thesis:	

	

191	Arguably	our	current	language	allows	for	contextual	variation	in	how	strict	the	
standards	for	hole	existence	are	and	hence	(for	the	reasons	to	be	discussed	below)	
corresponding	variation	in	the	meaning	of	‘there	is.’	So	one	might	think	of	there	being	a	
shared	core	meaning	to	‘there	is’	(perhaps	associated	with	the	introduction	and	elimination	
rules)	which	combines	with	contextual	factors	to	determine	truth	conditions	for	sentences	
involving	‘there	is’	at	each	metaphysically	possible	worlds.	For	present	purposes	I’ll	simply	
talk	about	shifts	in	quantifier	meaning,	but	I	don’t	mean	to	prejudge	this	issue.	

192	Or	at	least	there’s	no	mystery	if	we	bracket	access	worries	about	knowledge	of	logical	
coherence.	

193	For	example,	the	sentence	that	says	there	are	two	things	(∃𝑥)(∃𝑦)[¬𝑥 = 𝑦 ∧ (∀𝑧)(𝑧 =
𝑥 ∨ 𝑧 = 𝑦)].	

194	Also	note	that	the	quantifier	meaning	change	involved	explanation	above	does	not	
suggest	that	when	we	start	talking	in	terms	of	holes	and	shadows	(or	switch	from	stricter	
to	laxer	standards	for	hole	existence)	we	bring	these	objects	into	being.	The	existence	of	
holes	and	shadows	is	not	caused	by,	or	grounded	in,	the	existence	of	language	users	who	
talk	in	terms	of	holes	and	shadows,	and	it	will	be	true	to	say	“there	were	holes	before	there	
were	people,	and	before	I	started	talking	in	terms	of	them.”	Instead	we	are	merely	changing	
our	language	so	that	some	sentences,	e.g.,	“there	is	something	[namely,	a	hole]	in	the	region	
of	the	cheese	plate	which	is	not	made	of	matter”	go	from	expressing	a	false	proposition	in	
our	old	language	to	expressing	a	different,	true,	proposition	in	our	current	language	
(See(Einheuser	2006)	for	a	vigorous	development	of	this	point.).	



• There	are	a	range	of	different	meanings	“there	is”	could	have	taken	on,	which	all	obey	
the	syntactic	rules	for	existential	quantification195.	

• These	senses	need	not	all	be	mere	quantifier	restrictions	of	some	fundamental	
maximally	natural	quantifier	sense	(if	there	is	one)196.	

I	call	the	above	claim	the	Weak	Quantifier	Variance	thesis	because	it	doesn’t	include	the	
further	‘parity’	claim	(that	none	of	these	variant	quantifier	senses	is	somehow	
metaphysically	special)	which	is	generally	included	in	definitions	of	Quantifier	Variance197.	
So,	for	example,	it	would	be	compatible	with	Weak	Quantifier	Variance	to	say	that	there’s	a	
maximally	natural	quantifier	sense	corresponding	to	what	objects	exist	fundamentally.	

And,	indeed,	some	friends	of	traditional	metaphysics	have	found	their	own	reasons	for	
accepting	the	above	Weak	Quantifier	Variance	thesis	(and	thereby	putting	themselves	in	a	
position	to	give	the	Quantifier	Variance	Explanation	of	Mathematicians	Freedom	defended	
in	this	chapter).	For	example,	in	(Sider	2009)	Sider	uses	Weak	Quantifier	Variance	to	
capture	the	intuition	that	ordinary	speakers’	non-philosophical	utterances	like,	‘There’s	a	
hole	in	the	road’	can	express	uncontroversially	true	statements,	even	if	it’s	an	open	
question	whether	holes	exist	in	the	sense	more	relevant	to	the	(traditional	fundamental)	
metaphysics	seminar.	Sider	says	there’s	a	unique,	maximally	natural,	sense	of	the	quantifier	
which	ontologists	aim	to	study/employ198.	But	he	allows	that	there	are	also	other	(perhaps	
less	metaphysically	joint-carving)	senses,	which	the	quantifier	can	take	on	in	ordinary	

	

195	By	this	I	mean	that,	for	each	such	quantifier	sense	there	is	some	possible	language	such	
that	all	applications	of	the	standard	syntactic	introduction	and	elimination	rules	for	the	
existential	quantifier	within	that	language	are	truth	preserving.	However,	that	does	not	
mean	that	one	can	form	a	single	language	containing	both	quantifier	senses	and	then	apply	
the	introduction	and	elimination	rules	to	prove	the	equivalence	of	these	senses.	See	
(Warren	2014),	among	others,	on	this	point.	

196	That	is,	these	variant	quantifier	senses	need	not	be	interpretable	only	as	ranging	over	
some	subset	of	the	objects	which	exist	in	the	fundamental	quantifier	sense,	in	the	way	that	
we	might	say	the	“all’	in	a	typical	utterance	of	“all	the	beers	are	in	the	fridge”	restricts	a	
more	generous	quantifier	sense	to	only	range	only	over	objects	in	the	speakers’	house.	

197	See,	for	example,	(Hirsch	2010),	(Eklund	2009)	and	Chalmers’	characterization	of	
Quantifier	Variance	as	(roughly)	the	idea	that,	“there	are	many	candidate	meanings	for	the	
existential	quantifier	(or	for	quantifiers	that	behave	like	the	existential	quantifier	in	
different	communities),	with	none	of	them	being	objectively	preferred	to	the	other.”	
(Chalmers	2009)	

198	See	the	argument	that	(even	from	Sider’s	point	of	view)	we	don’t	actually	speak	a	
language	with	Sider’s	maximally	joint	carving	quantifier	sense	in	most	philosophical	
contexts	(including	discussions	of	metaphysics	and	ontology).	



contexts,	on	which	utterances	of	‘There	is	a	hole	in	the	road.’	clearly	can	express	a	true	
proposition.	

Note	that	saying	some	kinds	of	objects	(e.g.,	cities,	numbers)	might	not	exist	in	the	sense	
relevant	to	the	Sider’s	fundamental	ontology	room	doesn’t	amount	to	saying	that	these	
objects	‘don’t	really	exist.’	It	is	entirely	compatible	with	truthful	assertion	that	these	objects	
literally	exist	in	the	course	of	daily	life	(and	while	studying	ethics	or	non-fundamental	
metaphysics	about	money	and	gender,	or	writing	philosophy	of	mathematics	books	like	
this	one)	–	much	as	acknowledging	that	rabbits	don’t	exist	on	the	(relatively)	more	natural	
and	joint-carving	quantifier	sense	employed	by	fundamental	physics	is	compatible	with	
saying	rabbits	literally	exist	in	most	ordinary	contexts,	including	biology	seminars.	When	
outside	the	fundamental	physics/ontology	room,	our	position	on	such	objects	seems	much	
more	naturally	expressed	by	saying	that	rabbits/holes/cities/numbers	might	not	be	
fundamental	than	that	they	don’t	really	exist199	

15.2.2 Explaining Mathematicians’ Freedom 

Now	let’s	turn	to	the	special	case	of	mathematics.	Contemporary	mathematical	practice	
seems	to	allow	mathematicians	significant	freedom	to	introduce	new	kinds	of	
mathematical	objects,	such	as	complex	numbers,	sets	and	the	objects	and	arrows	of	
category	theory.	For	example,	Julian	Cole	writes,	“Reflecting	on	my	experiences	as	a	
research	mathematician,	three	things	stand	out.	First,	the	frequency	and	intellectual	ease	
with	which	I	endorsed	existential	pure	mathematical	statements	and	referred	to	
mathematical	entities.	Second,	the	freedom	I	felt	I	had	to	introduce	a	new	mathematical	
theory	whose	variables	ranged	over	any	mathematical	entities	I	wished,	provided	it	served	
a	legitimate	mathematical	purpose.	And	third,	the	authority	I	felt	I	had	to	engage	in	both	
types	of	activities.	Most	mathematicians	will	recognize	these	features	of	their	everyday	
mathematical	lives.”(Cole	2013b).	

Philosophers	of	mathematics	face	a	challenge	about	how	to	account	for	this,	and	they	have	
developed	a	number	of	styles	of	response.200	

	

199	Also	note	that	(as	discussed	in	(S.	Berry	2015))	accepting	the	Weak	Quantifier	Variance	
Thesis	does	not	require	one	to	accept	that	normal	English	employs	verbally	different	
expressions	corresponding	to	at	least	two	different	quantifier	senses	(a	metaphysically	
natural	and	demanding	one	and	a	laxer	one)	at	the	same	time,	so	that	it	might	be	true	to	say	
things	bad-sounding	things	like	“composite	objects	exist	but	they	do	not	really	exist"	in	
certain	contexts.	With	regard	to	any	particular	context,	we	can	fully	agree	with	David	Lewis	
that,	“The	several	idioms	of	what	we	call	‘existential’	quantification	are	entirely	
synonymous	and	interchangeable.	It	does	not	matter	whether	you	say	‘some	things	are	
donkeys’	or	‘there	are	donkeys’	or	‘donkeys	exist.’	whether	true	or	whether	false	all	three	
statements	stand	or	fall	together.”	(D.	Lewis	1990)	

200	Sometimes	the	following	worries	are	raised	about	the	endorsement	of	mathematicians’	
freedom	above.	What	would	happen	if	mathematicians	simultaneously	adopted	a	pair	of	
	



If	we	accept	the	above	Weak	Quantifier	Variance	Thesis,	we	can	explain	mathematicians’	
freedom	to	introduce	new	kinds	of	apparently	coherent	objects	along	the	following	lines.	

Quantifier	Variance	Explanation	of	Mathematicians’	Freedom:	When	
mathematicians	(or	scientists	or	sociologists)	introduce	axioms	characterizing	
new	types	of	objects,	this	choice	can	not	only	give	meaning	to	newly	coined	
predicate	symbols	and	names	but	can	change/expand	the	meaning	of	expressions	
like	“there	is,”	in	such	a	way	as	to	ensure	the	truth	of	the	relevant	hypotheses.	
Thus,	for	example,	mathematicians’	acceptance	of	existence	assertions	about	
complex	numbers	might	change	the	meaning	of	our	quantifiers	so	as	to	make	the	
sentence,	“There	is	a	number	which	is	the	square	root	of	−1.”	go	from	expressing	
a	falsehood	to	expressing	a	truth.	Similarly,	sociologists’	acceptance	of	
ontologically	inflationary	conditionals	like,	“Whenever	there	are	people	who...	
there	is	a	country	which...	”	can	change	the	meaning	of	their	quantifiers	so	as	to	
ensure	that	these	conditionals	will	express	truths.201		

Hitherto,	I	take	it,	versions	of	QVEMF	have	largely	been	developed	by	philosophers	who	
combine	acceptance	of	the	Weak	Quantifier	Variance	thesis	above	with	some	strong	anti-

	

internally	consistent,	but	incompatible,	conceptions	of	pure	mathematical	structures?	What	
would	happen	if	mathematicians	adopted	a	conception	of	some	mathematical	structure	
which	imposed	undue	constraints	on	the	total	size	of	the	universe	(e.g.,	a	logically	coherent	
collection	of	axioms	describing	a	purported	mathematical	structure	which	imply	that	the	
total	universe	contains	at	most	100	things?)	

In	a	nutshell,	I	think	we	can	answer	the	first	challenge	by	saying	that	mathematicians’	
actual	(and	claimed)	freedom	only	allows	a	given	mathematical	community/context	to	
employ	any	logically	coherent	total	collection	of	conceptions	of	pure	mathematical	
structures	(see	work	in	progress	Tom	Donaldson	on	this	point).	So	a	proponent	of	the	
Quantifier	Variance	explanation	of	mathematicians’	freedom	can	say	that	if	mathematicians	
simultaneously	employ	a	pair	of	incompatible	conceptions	of	mathematical	structures	(in	
some	context)	a)	this	would	be	an	accident	and	b)	at	most	one	of	these	conceptions	of	
mathematical	structures	would	express	a	truth.	

And	we	can	answer	the	second	challenge	by	noting	that	the	axioms	characterizing	pure	
mathematical	objects	always	employ	quantifiers	that	are	implicitly	restricted	to	some	
collection	of	pure	mathematical	structures	(see	the	discussion	of	implicit	quantifier	
restriction	in	the	Peano	Axioms	in	(S.	Berry	2018b)),	so	these	conceptions	cannot	impose	
any	restrictions	on	the	total	size	of	the	universe.	I	will	say	something	about	how	we	might	
generalize	this	to	the	case	of	applied	mathematical	knowledge	(like	principles	concerning	
sets	with	ur-elements)	below.	

201	See	(Berry	2019a)	and	(Berry	2015).	



metaphysical	claim	(such	as	the	parity	principle	above)	or	project.202	However,	I’m	
suggesting	that	more	metaphysically	realist	philosophers	could	also	adopt	QVEMF	(backed	
by	the	Weak	Quantifier	Variance	Thesis	above)	and	should	consider	doing	so.	

As	noted	above,	adopting	the	Weak	Quantifier	Variance	Thesis	and	accepting	the	existence	
of	mathematical	objects	together	with	the	QVEMF	explanation	for	mathematicians’	
freedom	lets	us	honor	Benacerraf’s	goal	of	treating	apparently	grammatically	and	
inferentially	similar	talk	of	numbers	and	cities	similarly	(acknowledging	that	both	apparent	
kinds	of	objects	exist).	It	allows	us	to	say	that	a	single	notion	of	existence	is	relevant	to	
claims	like	“Evelyn	is	prim.”	and	“Eleven	is	prime.”	in	any	given	context	(though,	of	course,	
future	choices	may	further	change	which	notion	of	existence	one’s	language	employs).	
Proponents	of	this	view	need	not	say	that	mathematicians’	statements	are	literally	false203,	
or	say	that	mathematical	statements	have	a	different	logical	form	from	claims	which	
ordinary	speakers	treat	similarly	(e.g,	apparent	existence	claims	about	holes	and	
countries),	in	cases	where	the	specific	reasons	(like	the	Burali-Forti	worries	above)	for	not	
doing	so.	

Admittedly	many	questions	can	be	raised	about	Quantifier	Variance	and	the	Quantifier	
Variance	explanation	of	mathematicians’	freedom,	which	I	can’t	discuss	at	any	length	here.	
For	example,	what	would	happen	if	mathematicians	simultaneously	adopted	a	pair	of	
internally	consistent,	but	incompatible,	conceptions	of	pure	mathematical	structures?	What	
would	happen	if	mathematicians	adopted	a	conception	of	some	mathematical	structure	
which	imposed	undue	constraints	on	the	total	size	of	the	universe	(e.g.,	a	logically	coherent	
collection	of	axioms	describing	a	purported	mathematical	structure	which	imply	that	the	
total	universe	contains	at	most	100	things?)	

In	a	nutshell,	I	think	we	can	answer	the	first	challenge	by	saying	that	mathematicians’	
actual	(and	claimed)	freedom	only	allows	a	given	mathematical	community/context	to	
employ	any	logically	coherent	total	collection	of	conceptions	of	pure	mathematical	
structures204.	So,	a	proponent	of	the	Quantifier	Variance	explanation	of	mathematicians’	
freedom	can	say	that	if	mathematicians	simultaneously	employ	a	pair	of	incompatible	
conceptions	of	mathematical	structures	(in	some	context)	a)	this	would	be	an	accident	and	
b)	at	most	one	of	these	conceptions	of	mathematical	structures	would	express	a	truth.	

And	we	can	answer	the	second	challenge	by	noting	that	axioms	characterizing	pure	
mathematical	objects	always	employ	quantifiers	that	are	implicitly	restricted	to	some	

	

202	Here	I	have	in	mind	(Augustin	Rayo	2013)	and	(Thomasson	2015)	as	well	as	(Hirsch	
2010).	

203	Recall	Lewis	saying,	“I	am	moved	to	laughter	at	the	thought	of	how	presumptuous	it	
would	be	to	reject	mathematics	for	philosophical	reasons.	How	would	you	like	the	job	of	
telling	the	mathematicians	that	they	must	change	their	ways,	and	abjure	countless	errors,	
now	that	philosophy	has	discovered	that	there	are	no	classes?”(D.	K.	Lewis	1991)	

204	Thanks	to	Tom	Donaldson	for	helpful	discussion	on	this	point.	



collection	of	pure	mathematical	structures	(see	the	discussion	of	implicit	quantifier	
restriction	in	pure	mathematics	in	(S.	Berry	2018b)),	so	these	conceptions	cannot	impose	
any	restrictions	on	the	total	size	of	the	universe.	

However,	a	fuller	answer	to	these	challenges	would	fit	the	above	claims	into	a	general	
metasemantic	story	which	also	yields	attractive	verdicts	about	our	practice	of	talking	in	
terms	of	objects	like	holes,	cities,	contracts	etc.	I’ll	make	some	preliminary	suggestions	
about	such	a	story	and	how	to	answer	worries	that	allowing	Quantifier	Variance	based	
answers	to	the	access	worries	about	hole	angle	etc.	developed	here	would	prove	too	much	
in	Chapter	7.	

15.3  Grounding Indispensability Worries for QVEMF 

Accepting	that		mathematical	objects	(outside	set	theory)	literally	exist	lets	my	Quantifier	
Variantist	dodge	the	classic	Quinean	and	(finitary)	reference	Indispensability	worries	for	
nominalists.	However,	the	neo-Carnapian	realism	about	mathematical	objects	I	advocate	is	
deeply	similar	to	the	forms	of	nominalism	discussed	in	Chapter	10	(in	various	ways	noted	
in	that	chapter).	And	something	can	feel	troubling	about	the	idea	that	mere	language	
change	can	dissolve	such	a	difficult	problem.		

The	grounding	indispensability	argument	against	the	QVEMF	below	develops	the	above	
intuition.	Note	that	(as	per	the	Siderian	picture	in	11.4.2)	this	argument	takes	some	notion	
of	grounding	(not	necessarily	the	same	one)	to	apply	to:	facts,	objects	and	relations.	Thus,	
we	can	talk	about	both	whether	facts	involving	mathematical	objects	are	grounding	
fundamental	and	whether	relations	like	‘x	stands	in	mass	ratio	r	to	y’	are	grounding	
fundamental.	

Grounding	Worry	for	Quantifier	Variantists:	All	facts	can	be	grounded	in	terms	
of	facts	involving	only	fundamental	objects205.	And	(one	might	think!)	accepting	
the	Quantifier	Variance	explanation	of	mathematicians’	freedom	requires	saying	
that	all	logically	coherent	characterizations	of	mathematical	structures	are	‘on	
par.’	Thus,	proponents	of	the	QVEMF	must	either	say	that	all	possible	logically	
coherent	mathematical	structures	are	metaphysically	fundamental	(contra	the	
core	intuitions	used	to	motivate	potentialist	set	theory	in	Chapter	2	or	that	no	
mathematical	objects	are	metaphysically	fundamental	(e.g.,	all	mathematical	
objects’	existence	is	grounded	in	modal	facts	about	logical	possibility	in	some	way	
that	implies).	
So,	it	should	be	possible	to	ground	all	facts	involving	mathematical	objects	in	facts	
that	don’t	involve	mathematical	objects.	But,	as	noted	above,	it	is	not	clear	how	to	
solve	this	grounding	problem.	What	can	ground	facts	about	physical	magnitudes	if	
not	a	relation	to	numbers?	And	the	requirements	for	nominalistically	grounding	
applied	mathematical	facts	are	very	similar	to	those	for	nominalistically	
paraphrasing	applied	mathematics	facts.	So,	Quantifier	Variantist	realists	about	

	

205	c.f.	(Sider	2011)’s	purity	thesis	



mathematical	objects	face	a	grounding	indispensability	problem	which	is	just	as	
bad	as	the	reference	explaining	indispensability	problem	above.	

Thus,	one	might	conclude	that	the	arguments	about	physical	magnitude	statements	above	
pose	a	serious	problem	for	the	Quantifier	Variance	realist	as	well	as	for	the	nominalist.			

I	will	argue	that	there	are	a	number	of	attractive	strategies	for	responding	to	this	worry.	

First,	of	course,	you	might	argue	that	the	nominalistic	Reference	and	Grounding	challenge	
are	both	solvable.	For	example,	various	philosophers	have	advocated	accepting	platonic	
physical	mass,	charge	and	other	abstracta.	If	such	platonic	physical	magnitude	abstracta	
existed,	they	could	be	used	to	answer	both	finitary	reference	and	grounding	worries	about	
physical	magnitude	facts206.	

Second,	you	could	argue	that	the	Grounding	Challenge	is	answerable	while	the	Reference	
challenge	is	not.	Recall	that	we	had	independent	reason	for	thinking	formal	constraints	on	
grounding	are	quite	different	from	those	specified	for	adequate	paraphrase	in	§11.3.2.		The	
finiteness	and	learnability	constraints	on	nominalistic	paraphrase	don’t	apply	when	
providing	grounding.	So	certain	arguments	that	we	can’t	‘adequately’	nominalistically	
regiment	physical	magnitude	statements	for	the	purposes	of	finite	reference	explaining	
challenge	don’t	work	when	applied	to	grounding.		

For	positive	examples	of	answers	to	the	Grounding	challenge	which	aren’t	answers	to	the	
Reference	challenge,	see	Hellman’s	story	about	how	physical	magnitude	facts	could	be	
grounded	in	facts	involving	infinitely	many	different	length/mass/whatever	atomic	
properties.	One	might	also	suggest	that	the	‘language	of	metaphysical	fundamentalia’	is	
sufficiently	different	from	the	languages	humans	speak,	that	fundamental	facts	about	the	
extent	to	which	something	is	F	need	not	be	grounded	in	facts	about	whether	or	not	some	
binary	property	or	relation	holds	between	objects	at	all.	Maybe	what’s	metaphysically	
fundamental	is	analog,	where	language	is	binary,	so	to	speak.		

Third	you	could	reject	the	demand	for	grounding	all	together.	And	fourth	you	could	reject	
the	parity	reasoning	above,	the	idea	that	someone	who	gives	a	quantifier	variance	
explanation	of	mathematical	objects	is	committed	to	saying	that	no	mathematical	objects	
are	among	the	metaphysical	fundamentalia	(none	`exist’	on	Sider’s	maximally	natural	
quantifier	sense).	I	will	argue	that	the	latter	two	styles	of	answers	are	more	appealing	than	
they	might	at	first	seem	below.	

15.3.1 Rejecting Grounding 

	

As	Quantifier	Variance	has	traditionally	been	developed	as	part	of	a	larger	neo-Carnapian	
program	which	rejects	traditional	metaphysical	questions	as	meaningless,	I	suspect	that	

	

206	One	could	deploy	the	strategy		



rejecting	demands	for	grounding	all	together	would	be	most	popular	response	to	the	above	
grounding	challenge	among	my	fellow	neo-Carnapians.	

Admittedly,	this	rejection	may	seem	to	come	with	a	cost.	For	the	notion	of	grounding	
provides	one	way	of	fleshing	out	an	enduringly	appealing	idea:	that	an	apparently	complex	
universe	and	variegated	language	can	be	explained	in	terms	of	a	few	simple	notions.	
Advocates	of	the	Sideran	framework	reviewed	in	§11.4.2	will	say	there’s	a	single	small	
collection	of	maximally	fundamental	concepts	and	kinds	of	objects,	such	that	facts	about	
them	ground	everything.	

However,	neo-Carnapians	can	and	have	honored	the	same	idea	in	a	different	way,	by	saying	
that	(in	some	sense)	everything	can	be	reconceptualized	in	terms	of	a	conceptually	
parsimonious	basis	language,	but	there	are	a	range	of	different	equally	good	basis	
languages	(perhaps	making	different	choices	of	mathematical	ontology)	at	issue.	We	appeal	
to	something	like	Augustin	Rayo’s	symmetric	‘nothing	but’	relation	(Agustín	Rayo	2015)	or	
talk	of	conceptual	re-carving.	And	we	then	say	that	reality	is	‘simple’	in	the	sense	that	all	
facts	expressible	in	our	language	(and	maybe	some	specified	range	of	other	languages)	
bear	this	nothing-but	relation	to	facts	in	some	simple	‘basis	language.’	

If	we	adopt	this	strategy	(i.e.,	cash	out	metaphysical	parsimony	intuitions	in	terms	of	
something	like	Rayo’s	symmetric	‘just	is’	relation	rather	than	a	grounding	relation),	we	
won’t	say	there’s	a	unique	correct	choice	of	basis	language	(the	point	of	the	metaphor	of	
basis	vectors	is	that	there	are	a	number	of	different	choices	which	are	equally	good	for	
representing	a	given	vector	space).	Rather	we	can	say	that	a	range	of	choices	of	basis	
language	are	equally	capable	of	bringing	out	the	unity	and	elegance	underlying	the	
diversity	and	variety	we	see	in	the	world.	

On	this	strategy,	the	neo-Carnapian	could	grant	that	that	nominalists’	problems	answering	
the	Reference	Indispensability	Challenge	discussed	in	Chapter	14	reveal	that	we	need	to	
think	about	physical	magnitudes	in	terms	of	a	relationship	to	some	abstract	objects,	(be	
they	numbers	on	their	own,	numbers	identified	with	certain	sets,	or	the	abstract	mass	
objects,	when	choosing	a	parsimonious	basis	language	adequate	for	stating	a	simple	Theory	
of	Everything).	But	they	could	say	that	all	these	ways	of	thinking	in	terms	of	different	
abstract	objects	are	equally	good	choices	of	a	simple	basis	language	for	drawing	all	the	
meaningful	distinctions	we	want	to	draw	and	showing	how	a	simple	shared	reality	lurks	
under	the	apparently	complexity	suggested	by	natural	languages	(by	paraphrasing	natural	
language	statements	into	some	simpler	language).	

In	this	way,	the	neo-Carnapian	can	claim	to	achieve	whatever	the	traditional	Platonist	
thinks	they’ve	achieved	(in	terms	of	the	above	unifying	ambition)	by	grounding	everything	
in	a	few	things	by	showing	that	everything	stands	in	a	just	is/conceptual	re-carving	etc.	
relation	to	a	simple	basis	language.	

They	will	take	any	traditional	Platonist	story	about	what	the	supposedly	metaphysically	
fundamental	objects	and	concepts	are	(backed	up	with	the	kind	of	systematic	paraphrases	
of	sentences	in	an	apparently	richer	language	with	sentences	in	an	apparently	narrower	
one)	and	say	the	following.	That’s	one	acceptable	basis	language.	Whatever	range	of	
dappled	and	variegated	facts	the	Platonist	thinks	are	grounded	in	these	few	simple	facts	



can	indeed	be	adequately	conceptualized	in	terms	of	this	more	limited	
language/facts/ideology	is	adequate.	

However	(a	neo-Carnapian	of	this	stripe	can	say)	a	different	basis	language	which	replaced	
the	pure	mathematical	structures	which	this	paraphrase	strategy	appeals	to	with	different	
ones	that	can	do	the	same	applied	mathematical	work	(e.g.,	replacing	appeal	to	a	free	
standing	copy	of	the	natural	numbers	or	reals	with	a	copy	of	the	numbers	inside	the	
hierarchy	of	sets)	would	be	equally	illuminating	and	‘metaphysically	insightful’	(to	
whatever	extent	the	neo-Carnapian	will	grant	the	meaning	of	the	expression).	Any	
sufficiently	expressive	pure	mathematical	language	can	be	combined	with	some	small	
collection	non-pure-mathematical	vocabulary	to	form	an	adequate	basis	language.	

Note	that	this	idea	that	different	choices	of	pure	mathematical	structures	(with	sufficient	
expressive	power)	are	somehow	philosophically/metaphysically	on	par207	fits	naturally	
with	a	point	from	the	literature	on	Quinean	empiricist	answers	to	access	worries	about	
mathematical	objects.	This	is	the	idea	that	Quinean	indispensability	considerations	don’t	
seem	to	justify	belief	in	any	particular	mathematical	structure,	as	different	mathematical	
structures	seem	capable	of	doing	the	same	work	in	regimenting	our	physical	theories208	
and	physicists	don’t	seem	to	care	much	which	ones	are	invoked.	

15.3.2 Agnostic Platonism 

Now	I	want	to	draw	attention	to	a	different,	less	familiar,	style	of	approach	to	the	
Grounding	Challenge	above,	which	I’ll	call	Agnostic	Platonism.	Friends	of	the	Quantifier	
Variance	explanation	of	mathematicians’	freedom	who	don’t	share	traditional	Carnapian	
opposition	to	metaphysics	can	take	a	different	line	in	responding	to	the	above	Grounding	
worry	(that	would	not	be	available	to	nominalists).	

Suppose	we	grant	that	the	history	of	debate	over	Quine’s	indispensability	argument	
suggests	some	mathematical	objects	are	among	the	metaphysical	fundamentalia.	
Proponents	of	the	QVEMF	can	still	resist	the	Grounding	Worry	above	by	rejecting	the	idea	
that	QVEMF	implies	all	coherent	conceptions	of	mathematical	objects	must	be	
metaphysically	(as	opposed	to	merely	mathematically)	on	par,	and	thence	the	argument	
that	no	mathematical	objects	can	be	grounding	fundamental.	

In	slogan	form,	someone	who	accepts	agnostic	Platonism	would	say:	maybe	some	
mathematical	structures	are	metaphysically	special,	but	mathematicians	don’t	care	which	
ones	those	are,	and	they	don’t	need	to	care	in	order	to	reliably	form	true	mathematical	
beliefs	and	satisfy	the	epistemic	aims	of	the	project	of	pure	mathematics!	

Perhaps	indispensability	arguments	suggest	that	some	mathematical	objects	(capable	of	
doing	certain	applied	mathematical)	work	exist	fundamentally.	But,	as	noted	above	these	
considerations	don’t	seem	to	justify	belief	in	any	particular	mathematical	structure	(as	

	

207	See	§16.3	and	§16.4	for	some	caveats	and	a	way	of	thinking	this	through	more	carefully.	

208	See,	for	example,	(Clarke-Doane	2012)	



different	mathematical	structures	seem	capable	of	doing	the	same	work	in	
regimenting/grounding	our	physical	theories).	

Allowing	(in	response	to	indispensability	worries)	that	some	mathematical	structures	may	
be	metaphysically	fundamental	might	seem	to	raise	access	worries	(over	and	above	the	
access	worries	about	access	to	facts	about	logical	coherence	which	the	QVEMF	theorist	
already	faces209).	For	although	these	worries	can	suggest	the	fundamentalia	plausibly	
include	some	mathematical	objects,	we	don’t	know	(and	perhaps	can	never	know)	which.	

But	the	agnostic	Platonist	avoids	this	access	problem	by	saying	that	getting	mathematics	
right	doesn’t	require	guessing	which	mathematical	structures	are	among	the	
fundamentalia.	Note	that	this	idea	(that	reliably	speaking	the	truth	in	mathematical	
ordinary	language	doesn’t	require	knowing	the	right	answer	to	corresponding	
metaphysical	questions	about	fundamental	ontology)	mirrors	what	it	is	natural	to	say	
about	our	knowledge	of	holes,	in	the	following	sense.	It	may	turn	out	to	be	the	case	that	
some	particular	hole-like	notion	(maybe	the	topological	notion	of	holes)	will	be	used	in	
physics.	But	construction	workers	can	draw	the	line	where	they	want	with	regard	to	hole	
boundaries	and	reliably	speak	the	truth	without	having	to	take	any	such	stance	regarding	
fundamental	metaphysics.	

One	might	object	that	a	similar	access	worry	arises	with	regard	to	metaphysicians’	
knowledge	of	which	mathematical	structures	are	grounding	fundamental.	However,	we	can	
answer	this	access	worry	by	noting	that	there’s	no	access	to	account	for.	Metaphysicians	
don’t	even	appear	to	know	very	much	about	which	mathematical	structures	are	
metaphysically	fundamental!	

At	this	point	a	reader	sympathetic	to	conventional	actualist	set-theoretic	foundationalism	
might	object:	how	can	I	endorse	the	arbitrariness	-based	criticism	of	actualist	set	theory	
developed	in	Chapter	1,	while	advocating	Agnostic	Platonism	about	mathematical	
fundamentalia	without	hypocrisy?	For	isn’t	dividing	up	the	pure	mathematical	objects	into	
those	with	fundamental	existence	vs.	those	without	just	as	arbitrary	as	saying	that	the	
hierarchy	of	sets	just	happens	to	stop	at	a	certain	point?	And	isn’t	being	committed	to	
arbitrariness	in	which	mathematical	objects	are	fundamental	just	as	bad	as	being	
committed	to	arbitrariness	in	size	of	the	total	mathematical	universe?	

Even	if	this	charge	of	hypocrisy	were	correct,	I	think	the	Quantifier	Variantist	view	
advocated	above	would	still	be	an	improvement	on	conventional	set-theoretic	
foundationalism.	For	the	arbitrary	joint	posited	by	the	agnostic	Platonist	doesn’t	constrain	
acceptable	mathematical	practice,	whereas	that	posited	by	classic	set-theoretic	
foundationalism	does.	The	agnostic	Platonist	need	not	admit	any	limits	on	which	logically	
coherent	pure	mathematical	structures	mathematicians	could	choose	to	talk	in	terms	of.	
For	they	don’t	think	mathematicians	can	only	introduce	or	study	structures	which	are	
grounding	fundamental.	In	contrast,	the	conventional	set-theoretic	actualist	foundationalist	

	

209	See	(S.	Berry	2018b)	for	an	argument	that	these	access	worries	about	logical	coherence	
are	solvable.	



holds	that	any	conception	of	a	pure	mathematical	structure	mathematicians	could	
legitimately	adopt	must	have	an	intended	model	within	the	actualist	hierarchy	of	sets	(thus	
constraining	the	space	of	legitimate	structures	mathematicians	could	adopt).	

However,	I	will	now	sketch	a	more	aggressive	defense	against	this	charge	of	hypocrisy.	If	
the	other	assumptions	needed	for	my	Weak	Quantifier	Variance	realist	to	face	access	
worries	hold	(i.e.,	we	need	to	provide	grounding,	and	mathematical	objects	are	needed	for	
that	task)	then	it	seems	that	everyone,	not	just	the	Agnostic	Platonist,	must	admit	that	
certain	mathematical	structures	are	special	in	that	they	play	a	role	in	grounding	non-
mathematical	facts	about	the	world	(e.g.,	maybe	length	reflects	a	fundamental	facet	of	
reality	and	length	facts	require	grounding	in	the	real	numbers).	

So	the	Agnostic	Platonist	still	has	the	advantage	that	it	only	requires	us	to	posit	that	one	
special	joint	in	the	space	of	coherent	conceptions	of	mathematical	structures	(specifying	
which	particular	mathematical	structures	play	a	role	in	grounding	and/or	constituting	
particular	applied	mathematical	facts,	e.g.,	facts	about	events	and	probability,	or	lengths)	
where	the	classic	set-theoretic	foundationalist	is	committed	to	two	positing	two	joints	in	
reality	(this	joint,	plus	the	joint	determining	where	the	hierarchy	of	sets	happens	to	stop).	
That	is,	both	philosophers	will	be	committed	to	some	kind	of	fact	like	‘the	pure	
mathematical	objects	which	play	roles	in	grounding	physical	facts	are	exactly	the	real	
numbers	and	three	layers	of	sets	over	them.’	But	the	set-theoretic	foundationalist	will	also	
be	committed	to	a	fact	like	‘the	hierarchy	of	sets	just	happens	to	stop	at	X	point’	(where	
that	point	is	usually	taken	to	occur	way	above	the	point	where	all	sets	used	in	physical	
theories	exists/what	is	needed	to	contain	models	for	all	mathematical	structures	used	in	
physics).	

Moreover,	it	seems	more	plausible	that	facts	about	the	fundamental	laws	of	physics	might	
provide	an,	as	yet	undiscovered,	principled	division	between	those	mathematical	objects	
which	play	a	role	in	grounding	applied	mathematical	facts	and	those	which	don’t,	than	it	
does	that	some	choice	of	a	height	for	the	hierarchy	of	sets	will	turn	out	to	be	principled210.	

	

210	Indeed,	one	might	argue	as	follows.	Applied	mathematics	hasn’t	seemed	to	motivate	a	
unique	choice	of	which	mathematical	structures	exist,	because	(from	a	traditional	Platonist	
point	of	view)	the	total	collection	of	mathematical	objects	must	do	two	jobs.	It	must	make	
sense	of	applied	mathematics	and	everything	we	could	study	in	pure	mathematics.	Given	
this	goal,	it	has	seemed	natural	to	consider	both,	e.g.,	both	a	free-standing	real	number	
structure	and	a	copy	of	the	real	numbers	within	various	larger	structures,	like	the	
hierarchy	of	sets	(containing	objects	for	pure	mathematical	study),	as	candidates	for	
mathematical	reference	within	our	best	physical	theories.	And	there’s	no	uniquely	natural	
choice	of	a	collection	of	mathematical	objects	which	does	both	jobs.	

However,	the	agnostic	Platonist	does	not	expect	fundamental	mathematical	objects	to	do	
both	these	jobs.	(As	noted	above)	they	can	take	the	truth	of	existence	claims	about	pure	
mathematical	objects	to	be	grounded	in	something	like	facts	about	logical	possibility.	Thus,	
it	seems	more	plausible	that	whatever	aspects	of	our	best	physical	theories	make	appeal	to	
	



Thus,	to	summarize,	I	think	the	(admittedly	prima	facie	strange)	idea	of	saying	that,	
although	mathematicians	can	introduce	any	pure	mathematical	structure	they	like,	some	
pure	mathematical	structures	are	metaphysically	special	and	instantiated	by	objects	which	
are	grounding	fundamental	is	more	appealing	than	it	first	seems.	

Chapter 16 Weak Quantifier Variance, Knowledge by Stipulation and Access 
Worries 

In	this	chapter	I	will	zoom	out	and	further	develop	the	Weak	Quantifier	Variance	thesis.	

First,	I’ll	use	the	paraphrase	strategy	from	Chapter	3	to	further	explicate	my	statement	of	
the	Weak	Quantifier	Variance	Thesis	in	§6.2	(eliminating	informal	appeal	to	languages	that	
‘talk	in	terms	of	more	objects	than	our	own’).	In	doing	this,	I	hope	to	answer	worries	that	
neo-Carnapian	theories	can’t	be	literally	stated	without	making	paradoxical	claims	(like	
‘there	is	something	that	I’m	not	now	quantifying	over.’	

Second,	I’ll	discuss	a	common	worry	about	the	kind	of	neo-Carnapian	response	to	access	
worries	about	mathematical	objects	and	holes	I	have	advocated	above.	The	worry	is:	why	
couldn’t	one	give	a	similar	answer	to	access	worries	about	knowledge	of	fairies,	morality	or	
god?	Wouldn’t	any	principled	metasemantic	story	that	let	us	dissolve	access	worries	
suggested	by	(certain	aspects	of)	our	knowledge	of	mathematical	objects	and	holes	in	the	
way	I	suggested	prove	too	much?	

16.1  A Theory of Stipulative (Re)Definition 

16.1.1 A Strategy for Stating Weak QV Theses 

In	(Linnebo	2018b)	and	(Studd	2019)	Linnebo	and	Studd	each	assert	a	kind	of	Weak	
Quantifier	Variance	thesis	using	the	interpretational	possibility	operator.	They	say	that	
‘there’s	no	maximal	quantifier	sense’	in	the	sense	that	however	many	objects	(e.g.,	sets)	one	
is	currently	talking	in	terms	of,	one	could	think	or	talk	in	terms	of	more	sets.	Principles	like	
the	Modal	Powerset	Axiom	8.11	let	me	say	something	structurally	similar.211	However,	on	
their	own,	such	logical	possibility	claims	don’t	tell	us	anything	about	the	possibility	of	
language	change.	

So,	a	natural	question	is,	can	one	explicitly	state	a	Weak	Quantifier	Variance	thesis	that	can	
do	the	kind	of	philosophical	work	proposed	above	(i.e.,	solve	certain	access	problems)	
without	invoking	an	interpretational	possibility	operator	—	or	other	new	conceptual	
resources?	Can	I	take	the	scare-quotes	off	my	claims	about	languages	that	‘talk	in	terms	of	
more	objects	than	our	own’	without	paradox	(or	introducing	some	such	new	notions)?	

	

fundamental	mathematical	objects	indispensable	(if	such	there	are)	should	suggest	a	
unique	choice	of	which	mathematical	structures	to	take	to	be	grounding	fundamental.	

211	Note	how	the	latter	axiom	tells	us	that	(it’s	logically	necessary	that)	it	would	be	logically	
possible	for	the	total	universe	to	be	strictly	larger	than	it	actually	is.	



I’ll	argue	for	an	affirmative	answer	by	providing	a	theory	about	the	effects	of	certain	acts	of	
ontologically	inflationary	stipulative	definition,	whereby	(informally	speaking)	a	
person	attempts	to	start	talking	in	terms	of	extra	objects.	

Specifically,	I’ll	consider	cases	where	speakers	of	a	certain	kind	of	language	𝐿@	shift	to	
speaking	a	different	language	𝐿(,	by	making	a	certain	kind	of	stipulative	definition.	I’ll	
propose	a	concrete	‘translation	procedure’	by	which	sentences	in	𝐿(	can	be	translated	into	
sentences	of	𝐿@	which	have	the	same	possible	world	truth	conditions	(and	grounding	in	
fundamentalia).	

This	translation	algorithm	serves	a	few	purposes.	First,	it	explains	how	a	person	could	(in	
principle)	easily	go	from	competent	use	and	understanding	of	𝐿@	to	corresponding	use	and	
understanding	of	𝐿(.	They	could	do	this	by	systematically	translating	sentences	of	𝐿(	back	
to	sentences	of	𝐿@.	Compare	the	way	that	an	English	speaker	who	knew	how	to	
systematically	translate	German	sentences	to	English	ones	could	be	said	to	understand	
German.	

Of	course,	if	we	wanted	to	fully	formalize	this	claim	in	a	mathematically	precise	way,	we’d	
need	to	ascend	to	a	metalanguage	which	contains	a	truth	predicate	for	𝐿@,	so	we	could	
assert	that	each	sentence	in	𝐿(	is	true	iff	its	translation	in	𝐿@	is	true.	However,	this	in	no	
way	suggests	that	you	need	to	have	a	truth	predicate	for	your	own	language	to	shift	
languages	by	making	a	stipulation.	Rather,	it	suffices	to	have	the	disposition	to	assert	
sentences	in	the	new	language	just	when	you’d	be	willing	to	assert	their	translations	in	the	
original	language.	And	nothing	about	having	that	disposition	requires	having	a	truth	
predicate	for	your	initial	language.212	

16.1.2 Stipulative (Re)Definitions and Their Effects 

So	now	it’s	time	to	actually	state	the	relevant	(limited)	theory	of	stipulative	
(re)definition213.	

First,	I’ll	propose	a	framework	for	thinking	about	(idealized)	explicit	acts	of	attempted	
stipulative	redefinition.	Then	I’ll	make	a	proposal	about	their	effect	on	sentences’	truth	
conditions	and	grounding	facts.	

For	expository	simplicity,	in	this	chapter	I’ll	only	attempt	to	describe	the	effects	of	
stipulative	definitions	that	redefine/re-purpose	terms	already	in	𝐿@	(rather	than	
introducing	any	entirely	new	predicates	or	relation	symbols	to	the	lexicon).	However,	my	

	

212	Now	admittedly,	familiar	issues	about	general	truth	predicates	and	the	Liar	paradox	do	
prevent	us	from	making	certain	fully	general	claims.	The	range	of	possible	stipulations	
whose	effect	on	speakers	of	𝐿@	I’ll	be	describing	won’t	include	any	that	increase	expressive	
power	sufficiently	to	get	one	to	start	speaking	current	metalanguage	L	(or	any	other	
language	that	has	a	truth	in	𝐿@	predicate).	But	I	will	argue	that	we	don’t	need	any	such	
general	claim	below.	

213	I	make	an	earlier	version	of	this	proposal	in	(Berry	2015).		



proposal	can	be	easily	generalized	to	capture	the	effects	of	(many)	stipulative	definitions	
that	do	introduce	new	vocabulary214.	

I	propose	that	we	can	think	of	acts	of	attempted	explicit	stipulative	definition	as	involving	
at	least	two	elements.	

First,	there	is	a	sentence	S	whose	(metaphysically	necessary)	truth	the	stipulation	attempts	
to	secure.	In	the	case	of	stipulations	introducing	new	kinds	of	mathematical	objects,	this	
sentence	S	would	specify	how	the	mathematical	objects	being	introduced	are	to	be	related	
to	one	another	(and	perhaps	also	how	these	objects	are	to	relate	to	various	previously	
understood	mathematical	objects).	

So,	for	example,	a	stipulation	introducing	complex	numbers	might	attempt	to	secure	the	
truth	of	some	sentence	S	that	conjoins	the	claim	that	every	pair	of	real	numbers	𝑟(, 𝑟&	
corresponds	to	a	complex	number	𝑟( + 𝑖𝑟&	(with	𝑟( + 0𝑖 = 𝑟()	with	the	rules	for	complex	
multiplication	and	addition215.	This	stipulation	might	also	fix	that	the	complex	numbers	are	
not	to	be	identical	to	any	physical	objects,	people	etc.	

A	stipulation	attempting	to	introduce	a	notion	like	‘city’	might	(among	other	things)	specify	
how	facts	about	the	application	of	‘city’	are	to	definably	supervene	on	facts	about	the	
application	of	antecedently	understood	terms/concepts	(e.g.,	‘person,’	‘lives	in,’	‘spatial	
point’).	

Second,	there’s	a	fact	about	which	terms	in	our	current	language	a	given	act	of	stipulation	is	
empowered	to	change	vs.	which	terms’	current	meaning	(or	at	least	pattern	of	application)	

	

214	One	can	use	the	same	tools	to	model	(typical	cases	of)	of	stipulative	definitions	that	
introduce	entirely	new	vocabulary.	Modeling	the	effect	of	introducing	new	vocabulary	
would	be	straightforward	if	we	were	allowed	to	introduce	new	(otherwise	meaningless)	
predicates	inside	the	conditional	logical	possibility	operator.	However,	if	our	current	
language	contains	sufficiently	many	relations	𝑅(…𝑅)	of	suitable	arity	whose	application	
definably	supervenes	on	that	of	other	relations	𝑅′(…𝑅′),	we	can	achieve	the	same	effect	
with	a	little	ingenuity	(by	considering	situations	where	the	new	relations	R1...Ri	code	up	
the	intended	application	of	both	𝑅(…𝑅)	and	the	new	relations	𝑁(…𝑁V	being	introduced.	

Similarly,	we	can	model	the	effect	of	typical	stipulations	that	use	the	current	application	of	
a	term	which	is	being	redefined	to	help	specify	its	new	extension	(c.f.	Linnebo’s	notion	of	
dynamic	abstraction	in	(Linnebo	2018b)	discussed	in	§5.4.	This	will	be	quite	useful.	For	
example,	suppose	I	want	to	start	talking	and	thinking	in	terms	of	(something	like)	cities.	
Then	I	will	probably	want	to	expand	the	application	of	“is	located	at”	so	that	cities	can	
count	as	located	in	certain	regions.	However,	in	doing	this,	I	will	not	want	to	allow	any	
change	to	(the	structure	of)	how	“is	located	at”	relates	people,	physical	objects	etc.	to	
spatial	points.	

215	Here	I	take	these	addition	and	multiplication	rules	to	be	written	in	a	way	that	implies	
that	complex	numbers	without	an	imaginary	part	are	identical	to	the	corresponding	real	
number,	as	expected.	



are	supposed	to	be	held	fixed.	Note	that	not	all	stipulations	are	made	with	the	intent	of	
introducing	new	objects.	Sometimes	we	merely	wish	to	change	the	meaning	of	a	term	(or	
introduce	a	new	term).	For	example,	one	might	introduce	a	term	like	‘bachelor’	by	an	act	of	
stipulative	definition	which	puts	forward	the	sentence	“∀𝑥(bachelor(𝑥) ↔
[man(𝑥)&¬married(𝑥)])"	together	with	permission	to	modify	the	application	of	the	
relation	symbol	‘bachelor()’	but	not	‘married(),’	‘man()’	or	any	logical	vocabulary.	

Third,	we	might	want	to	insist	that	a	stipulative	definition	is	required	to	keep	certain	
sentences	(typically	ones	that	strike	us	as	analytic	or	conceptually	central)	in	our	previous	
language	expressing	metaphysically	necessary	truths.	So,	for	example,	if	we	start	talking	in	
terms	of	holes	and	shadows,	we	might	want	to	preserve	the	truth	of	some	claim	like	‘for	
any	way	of	choosing	some	physical	objects,	there’s	a	set	which	collects	exactly	these	
objects’216.	However,	we	can	achieve	this	by	taking	the	sentence	S	our	stipulation	attempts	
to	make	true,	to	include	these	all	these	conceptually	central	necessary	truths	in	our	old	
language	as	conjuncts.	

To	discuss	these	issues	more	formally,	let	us	consider	a	logically	regimented217	
(interpreted)	language	𝐿@.	

I	have	suggested	that	one	can	think	of	acts	of	stipulative	redefinition	as	determining	an	
ordered	triple	as	follows218:	

• A	sentence	S	whose	truth	is	being	stipulated	(this	may	include	various	conceptually	
central	truths	which	the	stipulation	is	intended	to	preserve).	

• A	set	of	atomic	relation-symbols	𝑅(, … , 𝑅V	(structural	facts	about)	whose	application	
this	act	of	implicit	definition	is	committed	to	keeping	fixed219.	

• A	specification	of	whether	the	stipulation	is	permitted	to	change	the	meaning	of	∃	and	
∀	(e.g.,	0	or	a	1	coding	this	fact).	

Clearly	not	all	such	attempted	stipulations	can	succeed.	I	will	say	

	

216	That	is,	it’s	logically	necessary	(fixing	the	facts	about	the	sets	and	𝑃(…𝑃)	a	list	of	all	the	
kinds	of	non-set	objects	we	are	currently	talking	in	terms	of,	as	per	the	next	paragraph),	
that	if	some	otherwise	unused	predicate	P	applies	to	only	non-sets,	there’s	there’s	a	set	that	
collects	all	and	only	the	objects	that	P	applies	to.	

217	I	assume	that	the	only	logical	operators	in	𝐿@	are	the	truth-functional	connectives,	
quantifiers	from	first-order	logic	and	the	logical	possibility	operators.	

218	Here	I	will	only	consider	stipulations	made	in	and	using	interpreted	versions	of	the	
language	of	logical	possibility.	

219	Note	I	don’t	make	any	assumption	that	this	amounts	to	keeping	the	meaning	of	these	
terms	fixed.	C.f.	the	discussion	of	rich	meanings	in	§5.6.2.2	



Definition	7.1.		An	act	of	attempted	stipulation	⟨𝑆, 𝑅(…𝑅), 1⟩	made	in	language	𝐿@	is	viable	
if	and	only	if	◊ 𝑆4"…4# 	expresses	a	metaphysically	necessary	truth	in	𝐿@.	

Intuitively,	the	idea	here	is	that	if	a	stipulation	is	to	succeed,	then	for	each	metaphysically	
possible	world,	it	must	be	logically	possible	for	the	sentence	S	it	attempts	to	stipulate	to	be	
true	at	that	world,	while	holding	fixed	(structural	facts	about)	how	the	relations	𝑅(…𝑅)	
apply220.	For	example,	a	stipulation	that	attempted	to	secure	the	truth	of	a	logical	
contradiction	like	“(∃𝑥);𝑏𝑎𝑐ℎ𝑒𝑙𝑜𝑟(𝑥) ∧ ¬𝑏𝑎𝑐ℎ𝑒𝑙𝑜𝑟(𝑥)D	would	not	be	viable.	Neither	would	
a	stipulation	that	attempted	to	secure	the	truth	of	“(∀𝑥)(∀𝑦)(𝑥 = 𝑦),”	while	holding	fixed	
the	current	structural	pattern	of	application	of	‘cat.’221	Metaphorically	speaking,	the	fact	
that	a	stipulation	is	viable	ensures	that	it’s	possible	to	change	how	our	language	carves	
each	metaphysically	possible	world	up	into	objects	in	such	a	way	as	to	make	our	stipulated	
sentence	S	come	out	true	at	all	possible	worlds	(while	not	changing	the	application	of	any	
relations	𝑅(…𝑅)	whose	applications	at	these	worlds	are	supposed	to	be	held	fixed).	

As	the	definition	above	makes	clear,	in	principle	whether	an	attempted	stipulative	
definition	is	viable	can	depend	on	metaphysical	possibility	facts.	However,	we	can	very	
often	recognize	a	stipulation	is	viable	by	a	priori	logical	reasoning	alone222.	In	this	case	I	
will	say	that	the	relevant	stipulation	is	logically	viable.	That	is	a	stipulation	⟨𝑆, 𝑅(…𝑅), 1⟩	is	
logically	viable	iff	◊ 𝑆4"…4# 	comes	out	true	in	𝐿@.	

Now	I	propose	theory	about	the	kinds	of	acts	of	attempted	explicit	stipulative	definition	
considered	above.	Making	a	viable	stipulative	definition	⟨𝑆, 𝑅(…𝑅), 1⟩	while	speaking	𝐿@	
would	shift	one	to	speaking	a	different	language	𝐿(	where	the	following	conditional	holds.	

The	sentence	‘𝜙’	expresses	a	truth	in	𝐿(	if	the	sentence	‘□ (4"…4# 𝑆 → 𝜙)’	is	true	in	
𝐿@	

Furthermore,	the	above	translation	preserves	(coarse	grained	aka	possible	worlds)	truth	
conditions223.	We	might	also	say	that	it	preserves	truth	making	or	grounding	facts,	in	the	

	

220	That	is,	it’s	metaphysically	necessary	that	one	can	do	this	while	holding	fixed	(the	
structural	facts	about)	the	application	of	all	terms	which	are	not	being	stipluatively	
redefined	

221	For	there	are	metaphysically	possible	worlds	where	there	are	two	distinct	cats,	so	it’s	
not	logically	possible,	holding	fixed	the	facts	about	how	‘cat’	applies	that	(∀𝑥)(∀𝑦)(𝑥 = 𝑦).	

222	That	is,	there’s	no	metaphysically	possible	way	the	old	relations	𝑅(…𝑅)	could	apply	
that	would	prevent	𝑆	from	being	satisfied,	because	it’s	logically	impossible	that	𝑅(…𝑅)	
could	apply	that	would	prevent	𝑆	from	being	satisfied.	

223	That	is,	it’s	metaphysical	necessary	that	the	proposition	expressed	by	𝜙	in	𝐿(	is	true	if	
the	proposition	expressed	by	‘□ (4"…4# 𝐹𝑂𝑂 → 𝜙)’	𝐿@	is	true.	



sense	that	whatever	suffices	to	ground	the	fact	expressed	by	‘□ (4"…4# 𝑆 → 𝜙)’	in	𝐿@	would	
suffice	to	ground	the	truth	of	the	fact	expressed	by	𝜙	in	𝐼	in	𝐿(.	

If	we	make	certain	further	assumptions	—	that	our	stipulation	is	particularly	explicit	and	
complete	and	that	our	original	language	𝐿@	only	talks	about	objects	falling	under	a	certain	
list	of	kind	terms	—	we	can	turn	the	above	conditional	into	a	biconditional	and	provide	a	
translation	strategy	as	promised	above	(for	stipulations	of	this	kind).	

So,	first	suppose	our	original	language	𝐿@	contains	a	list	of	atomic	predicates	
𝑃((𝑥), 𝑃&(𝑥)…𝑃)	which	behave	like	an	exhaustive	list	of	kind	terms,	in	the	following	sense:	
‘∀𝑥;𝑃((𝑥) ∨ 𝑃&(𝑥)…𝑃)(𝑥)D’	expresses	a	metaphysically	necessary	truth	in	𝐿@.	One	way	for	
this	assumption	to	be	satisfied	would	be	for	the	relevant	language	𝐿@	to	include	a	certain	
list	of	kind	terms	such	that,	(necessarily)	all	the	objects	it	carves	the	world	up	into	belong	
to	one	of	these	kinds224.	

Now	I	will	say	a	stipulation	of	the	form	⟨𝑆, 𝑅(…𝑅), 1⟩	is	categorical	when	two	conditions	
are	satisfied.	

First,	it	attempts	to	secure	the	truth	of	a	sentence	S	which	categorically	describes225	the	
structure	of	whatever	relations	are	not	being	held	fixed	over	the	relations	𝑅(, …𝑅)	that	are	
being	held	fixed.	This	condition	ensures	that	a	categorical	stipulative	definition	pins	down,	
for	each	metaphysically	possible	world,	a	precise	pattern	for	how	all	these	relations	
𝑁(…𝑁V	(e.g.,	number,	successor,	city,	hole)	are	to	apply—	given	the	pattern	of	how	the	
relations	𝑅(…𝑅)	apply	at	that	world226.	

Second,	the	sentence	S	being	stipulated	must	have	a	conjunct	asserting	that	all	objects	are	
related	by	at	least	one	of	the	finitely	many	relations	in	𝐿(227.	Thus,	viable	stipulations	will	
attempt	to	take	us	from	𝐿@	to	a	new	language	𝐿(	which	also	talks	in	terms	of	objects	falling	
under	some	finite	list	of	kind	terms	𝑃((𝑥), 𝑃&(𝑥), …𝑃Q(𝑥)	(though	the	list	of	kind	terms	for	
𝐿(	may	be	different	from	those	for	𝐿@).	

Putting	this	together	we	have	the	following	condition:	

	

224	Note	that	this	assumption	is	trivially	satisfied	for	any	language	like	ours	which	has	a	
predicate	expressing	a	concept	‘object&@&@’	which	applies	to	all	objects	belonging	to	kinds	
I’m	currently	talking	in	terms	of’.	

225	Recall	the	definition	of	categorical	over	in	§12.1	

226	Such	a	stipulation	might	say	that	no	number	is	a	person,	every	number	is	a	
mathematical	objects	etc.,	as	well	as	just	stipulating	that	𝑃𝐴◊.	

227	I	restrict	myself	to	considering	stipulations	which	satisfy	the	latter	two	conditions	
purely	for	simplicity.	Ultimately	one	would	want	to	provide	a	fuller	theory	of	the	effects	of	
stipulative	(re)definition	that	described	the	effects	of	stipulative	definitions	which	are	not	
categorical	in	this	sense.	



Definition	7.2.		A	stipulation	⟨𝑆, 𝑅(…𝑅), 1⟩	made	in	language	𝐿@	(satisfying	the	assumption	
about	an	exhaustive	list	of	kind	terms	above)	is	categorical	if	and	only	if	

• ◊ 𝑆4"…4# 	expresses	a	metaphysically	necessary	truth	in	𝐿@.	

• The	sentence	S	being	stipulated	is	a	categorical	description	of	the	intended	application	
all	relations	𝑁(…𝑁V	being	stiputlatively	redefined	over	the	relations	𝑅(…𝑅)	being	held	
fixed.	

• The	sentence	S	being	stipulated	includes	a	conjunct	of	the	form228	(∀𝑥);𝑃((𝑥) ∨
𝑃&(𝑥)…𝑃V(𝑥)D	

I	propose	the	following	rule	for	translating	sentences	in	𝐿(	back	into	sentences	in	𝐼@	.	For	
any	viable	stipulation	⟨𝑆, 𝑅(…𝑅), 1⟩	made	by	speakers	of	𝐿@	will	take	us	to	a	language	𝐿@	
with	the	following	property.	

The	sentence	‘𝜙’	expresses	a	truth	in	𝐿(	if	and	only	if	the	sentence	‘□ (4"…4# 𝑆 →
𝜙)’	is	true	in	𝐿@	

In	this	way	speakers	of	𝐿@	can	translate	sentences	of	𝐿@	into	sentences	of	𝐿(.	We	can	also	
describe	the	effect	of	𝐿@-speakers	making	such	stipulations	while	working	in	a	
metalanguage.	Note	that	when	doing	this	we	take	ourselves	to	have	truth	predicate	for	𝐿@	
and	(in	effect)	each	language	you	would	get	by	starting	in	𝐿@	and	making	a	viable	
stipulation	of	the	kind	above,	but	a	speakers	need	not	have	a	truth	predicate	to	make	a	
stipulation	and	start	speaking	a	new	language.	A	truth	predicate	is	only	needed	(as	it	is	for	
anyone)	to	describe	truth	conditions	in	a	language.229	

Note	that,	unlike	some	set-theoretic	approaches	to	neo-Carnapian	language	change	
(Chalmers	2009;	Warren	2014)	that	describe	truth	conditions	for	variant	languages	by	set-
theoretically	modeling	them,	the	above	story	can	describe	truth	conditions	for	languages	𝐿(	
that	talk	in	terms	of	more	objects	than	either	𝐿@	or	our	current	metalanguage.	Thus,	this	
technique	lets	us	state	a	Weak	Quantifier	Variance	thesis	without	paradox.	

	

228	Here	I	require	the	𝑃< 	to	be	atomic	predicates	

229	You	might	worry	that,	by	analogy	with	the	fact	that	ZFC	can	define	truth	in	N,	by	
stipulatively	introducing	some	new	objects	(perhaps	a	hierarchy	of	sets	𝑉, 	up	to	some	
ordinal	I	can	define	in	the	language	of	conditional	logical	possibility)	I	somehow	must	
increase	the	power	of	my	language	so	drastically	that	I	could	define	a	truth	for	my	old	
language	in	terms	of	my	new	language	and	thus,	via	my	translation,	a	definition	of	truth	in	
𝐿@	of	itself.	However,	this	can’t	be	so.	For,	if	there	were	some	stipulation	of	the	kind	
considered	above	that	(while	keeping	the	natural	number	vocabulary	fixed)	let	one	define	a	
truth	predicate	for	𝐿@	then	we	could	paradoxically	define	a	formula	in	𝐿@	itself	that	defines	
truth	in	𝐿@.	



16.1.3 Access Worries 

In	Chapter	15	we	wanted	to	use	Weak	Quantifier	Variance	to	solve	certain	access	worries.	
Can	the	kind	of	limited	claims	about	language	change	above	suffice	to	do	this?	Specifically,	
can	I	answer/dissolve	access	worries	about	knowledge	that	I	have	by	considering	how	
speakers	of	a	language,	𝐿@,	could	reliably	form	true	beliefs	by	making	stipulative	
definitions?	

Independent	work	on	access	worries	(S.	Berry	2020a.)	suggests	that	I	can.	Recall	that	
access	worries	can	be	seen	as	involving	a	kind	of	coincidence	avoidance	reasoning	and	
asking	a	‘how	possibly?’	question.	A	realist	about	some	domain	(mathematics,	morals	etc.)	
faces	an	access	problem	when	they	seem	committed	to	positing	‘extra’	inexplicable	
coincidences,	that	could	be	avoided	by	switching	to	a	comparably	attractive	less	realist	
rival	view.	Specifically,	there	seems	to	be	a	kind	of	match	between	facts	about	us	(e.g.,	
human	psychology)	and	facts	about	the	domain	of	knowledge	in	question	(as	the	realist	
understands	it)	of	a	kind	that	intuitively	out	for	explanation.	Satisfactory	explanation	for	
this	match230	seems	inconceivable.	And	we	can	think	of	the	access	worrier	as	pressing	the	
realist	with	the	following	‘how	possibly	question’:	how	could	we	(possibly)	have	gotten	the	
kind	of	knowledge	you	take	us	to	have	other	than	by	a	lucky	coincidence?	

A	common	idea	from	the	literature	on	‘how	possibly’	questions,	is	that	we	can	solve	them	
by	providing	a	certain	kind	of	toy	model.	This	model	must	include	all	the	facts	about	the	
actual	state	of	affairs	that	make	the	fact	whose	possibility	is	to	be	explained	seem	
impossible	but	can	simplify	and	idealize	away	from	other	aspects	of	reality.	

Thus,	we	can	plausibly	answer	access	worries	by	providing	a	kind	of	toy	model	for	what	
seems	inconceivable:	how	someone	could	have	acquired	the	knowledge	we	take	ourselves	
to	have	(as	the	realist	understands	it)	without	benefiting	from	some	spooky	coincidence	
(which	the	less	realist	philosopher	posing	this	access	worry	could	avoid).	Because	of	the	
point	in	the	prior	paragraph,	the	relevant	model	doesn’t	need	to	involve	someone	speaking	
exactly	our	language	or	having	exactly	our	knowledge.	It	just	needs	to	explain	how	
someone	could	wind	up	with	knowledge	that’s	similar	to	ours	in	all	the	ways	that	seem	to	
raise	an	access	worry.	

In	the	previous	subsection	I	have	proposed	a	tool	for	creating	such	toy	models.	I	have	tried	
to	provide	an	attractive	picture	of	how	sentences	in	new	languages	can	systematically	
inherit	truth	(and	perhaps	grounding)	conditions	from	sentences	in	old	languages	(and	
how	speakers	could	go	from	understanding	the	original	language	to	the	new	one)	(which	
doesn’t	require	viewing	all	quantifier	senses	as	mere	restrictions	of	some	preexisting	
maximal	quantifier	sense).	

I	submit	that	merely	considering	such	a	model	has	the	power	to	dispel	a	bad	philosophical	
picture	which	motivates	rejection	of	the	neo-Carnapian	explanations	advocated	in	§F.2.1.	

	

230	By	‘satisfactory	explanation’	I	mean	explanation	that	banishes	apparent	realist	
commitment	to	an	extra	coincidence.	



We	dispel	a	bad	picture	on	which	reliably	forming	true	beliefs	by	making	ontologically	
inflationary	stipulative	definitions	is	impossible	or	implausible,	and	knowledge	of	which	
objects	exist	is	correspondingly	much	more	difficult	to	explain	than	knowledge	of	how	
predicates	apply231.	

If	we	can	do	this	then,	dialectically	speaking,	we	don’t	need	to	make	any	claim	about	all	
possible	languages,	or	give	non-trivial	meaning	to	claims	about	an	‘absolutely	general	
quantifier	sense’	(even	to	deny	that	there	is	one)	in	order	to	do	the	work	we	want	accepting	
weak	quantifier	variance	to	do.232233	

16.2 When are Meta-semantic Explanations Plausible? 

16.2.2.1  A problem for everyone 

This	brings	us	to	the	second	worry	I	want	to	consider	in	this	chapter.	One	might	also	object	
to	the	Quantifier	Variance	thesis	above	as	follows.	If	our	use	can	change	the	meaning	of	our	
quantifiers	in	the	way	suggested	above	(allowing	for	a	metasemantic	answer	to	access	
worries	about	our	knowledge	of	minimum	hole	indentation),	then	why	doesn’t	fairy	
believers’	talk	of	fairies	change	the	meaning	of	our	quantifiers	so	‘there	are	fairies’	is	true?	

I	first	want	to	note	that	this	worry	is	merely	a	special	case	of	a	problem	that	everyone	faces.	
For,	even	philosophers	who	reject	quantifier	variance	will	allow	that	we	can	
metasemantically	account	for	(i.e.,	dispel	access	worries	about)	our	access	to	some	facts	

	

231	For	example,	a	priori	knowledge	of	which	logically	coherent	pure	mathematical	objects	
exist/minimum	hole	steepness	seems	far	more	mysterious	than	knowledge	of	shades	of	red	
qualify	as	pink	(and	similarly	knowledge	which	everyone	agrees	can	be	attractively	
metasemantically	explained).	

232	Note	that	the	neo-Carnapian	has	no	problem	allowing	that	we	can	(and	do)	quantify	
over	everything.	

233	One	might	object	to	the	above	argument	as	follows.	The	neo-Carnapian	is	willing	to	
actually	make	ontologically	inflationary	stipulative	definitions.	They	in	effect	take	
themselves	to	have	a	reliable	faculty	of	knowledge	gain/preservation	where	(making	
ontologically	inflationary	stipulative	definition	and	leads	to	knowing	that	the	stipulated	
sentence	is	true,	and	that	certain	sentences	from	ones	old	language	must	continue	to	
express	truths).	Doesn’t	this	commit	us	to	thinking	something	about	our	own	language,	not	
any	toy	model?	

Briefly	put,	my	answer	to	the	latter	challenge	is	this.	Merely	accepting	neo-
Carnapianism/quantifier	variance	(and/or	using	the	interpretational	possibility	operator	
to	state	it)	can’t	create	any	new	problems	with	the	Liar	in	this	way.	For	everyone	is	
committed	to	our	being	able	to	gain/preserve	knowledge	via	some	faculty	of	stipulative	
definition.	Everyone	acts	as	though	we	have	a	faculty	of	reliably	accepting	true	sentences	by	
making	categorical	stipulative	(re)	definitions	like	‘For	all	x,	x	is	a	bachelor	iff	x	is	an	
unmarried	man.’	



about	how	properties	apply.	But	the	same	kind	of	reasoning	used	to	raise	the	worry	above	
would	equally	well	call	into	question	uncontroversial	metasemantic	explanations.	For	
example,	presumably,	the	correct	explanation	of	our	accuracy	regarding	what	colors	qualify	
as	pink	(in	the	sense	relevant	to	banishing	access	worries)	involves	the	following	fact:	if	we	
were	inclined	to	differentiate	colors	in	another	way	then	the	meaning	of	pink’	would	have	
been	different.	(I	take	the	acceptability	of	such	metasemantic	explanations	to	be	fairly	
uncontroversial	in	cases	where	no	quantifier	variance	is	required	to	deploy	them.)	But	one	
could	just	as	well	ask:	if	our	use	of	“red”	can	change	what	predicate	this	word	expresses	(as	
above)	then	why	doesn’t	antivaxxers’’	use	of	“autism-causing”	change	the	meaning	of	that	
predicate,	so	their	beliefs	come	out	true?	

For	this	reason,	I	think	the	problem	of	providing	a	principled	theory	of	when	access	
worries	can	be	metasemantically	answered	is	a	problem	for	everyone.	To	my	knowledge,	
no	complete	and	satisfying	story	about	how	use	determines	meaning	in	either	case	has	yet	
been	developed.	But	it	seems	to	me	that	essentially	the	same	tools	(appeal	to	a	distinction	
between	more	and	less	definitional/would	be	analytic	aspects	of	our	use,	appeal	to	more	
vs.	less	joint	carving/natural	kinds	ways	of	conceptualizing	the	world	in	the	Siderian	sense	
discussed	in	§11.4.2)	seem	available	in	both	cases.	

Despite	the	above	dialectical	point,	I	will	close	this	chapter	by	proposing	a	tentative	
account	of	when	access	worries	can	be	metasemantically	answered.	I	do	this	because	I	
think	it	provides	a	nice	case	study	for	the	usefulness	of	the	logical	possibility	operator	
outside	philosophy	of	math	and	logic.	However,	it	should	be	noted	that	my	aim	in	these	
sections	is	to	more	to	advocate	a	research	program	than	to	make	a	final	proposal	and	that	
none	of	my	claims	or	arguments	elsewhere	in	this	book	will	depend	on	accepting	the	
particular	proposal	I’ll	make	below.	

16.3 Evaluating Metasemantic Answers to Access Worries 

Roughly	speaking,	I	propose	that	a	philosopher	can	solve	an	access	worry	
metasemantically	when	the	bundle	of	good	epistemic	states	(including	but	not	limited	to	
having	certain	true	beliefs)	they	claim	to	have	that	generates	this	access	worry	can	be	
rationally	reconstructed	in	a	certain	way.	They	can	answer	access	worries	by	showing	that	
the	controversial	knowledge	and	other	good	statuses	they	claim	to	have	could	be	gotten	via	
a	certain	kind	of	process	involving	stipulative	definition	—	whether	or	not	they	ever	
actually	made	such	a	stipulation.	

So,	for	example,	Arthur	Conan	Doyle	can	metasemantically	answer	access	worries	about	his	
claimed	knowledge	of	fairies,	if	he	can	produce	a	certain	kind	of	rational	reconstruction.	
Specifically,	we	imagine	someone	starting	from	an	uncontroversial	ground	language	body	
of	knowledge	and	epistemic	faculties234.	And	we	ask	whether	this	person	could	acquire	

	

234	By	uncontroversial	knowledge,	faculties	etc.	here	I	mean	knowledge	which	the	person	
pressing	an	access	worry	doesn’t	dispute.	The	initial	state	I	invoke	here	is	simply	that	of	a	
person	whose	language	faculties	and	knowledge	all	parties	agree	doesn’t	create	an	access	
problem	(of	the	kind	at	issue).	



Doyle’s	total	collection	of	controversial	claimed	epistemic	good	statuses	via	making	
stipulative	definitions	(and	perhaps	deploying	some	of	their	other	uncontroversial	good	
faculties).	

But	what	do	I	mean	by	rationally	reconstructing	someone’s	controversial	epistemically	
good	relationships	to	language?	

Crucially	(as	I	will	understand	the	term),	it	isn’t	enough	to	rationally	reconstruct	someone’s	
(relevant	controversial)	epistemic	state	to	tell	a	story	about	how	they	could	have	come	to	
rationally	accept	that	certain	sentences	express	true	propositions.	We	must	tell	a	story	
which	simultaneously	rationalizes	a	number	of	other	things,	like	their	dispositions	to	reach	
certain	conclusions	in	response	to	observations	or	to	apply	induction	in	certain	ways.	That	
is,	we	can’t	answer	access	worries	about	Conan-Doyle’s	fairy	knowledge	merely	by	noting	
that	someone	started	from	uncontroversial	assumptions	could	have	made	a	series	of	viable	
stipulative	definitions	which	would	ensure	that	all	the	sentences	involving	the	world	
“fairies”	Doyle	eccentrically	accepts	would	express	truths	(in	their	personal	idiolect).	We	
also	need	to	justify	(enough	of)	Doyle’s	dispositions	to	infer	between	accepting	claims	
about	“fairies”	and	observations	of	fluttering	lights	in	gardens	etc.	And,	additionally,	our	
reconstruction	must	allow	for	(enough	of)	Doyle’s	dispositions	to	make	inductive	
inferences	to	be	justified.235	Recall	Goodman’s	point	that	we	take	certain	predicates	but	not	
others	(‘green’	green	but	not	‘grue’)	to	be	projectable	(Goodman	1955))	and	that	
stipulatively	redefining	‘green’	could	diminish	or	destroy	our	warrant	to	make	abductive	
arguments	using	it.236	

So,	there	are	two	questions	we	need	to	answer	to	fill	in	the	above	rational	reconstruction	
framework.	First,	what	kind	of	claimed	epistemically	good	states	do	we	need	to	
reconstruct?	Second,	how	does	making	stipulations	change	these	states?	

16.3.1 Sketch of Epistemic Dynamics of Stipulative Definition 

I’ll	only	give	a	partial	answer	to	the	above	questions	here.	But	the	key	idea	behind	my	
proposal	is	simple.	

Acts	of	stipulative	definition	can	(so	to	speak)	both	create	and	destroy.	A	person	who	
stipulates	gains	warrant	to	accept	the	stipulated	sentence	S,	and	knowledge	of	whatever	
proposition	it	expresses	in	their	new	language.	However,	stipulating	can	also	destroy	
valuable	relations	to	one’s	old	language	such	as	warrant	to	accept	certain	sentences	that	
expressed	truths	in	one’s	old	language,	deploy	certain	observation	procedures	or	

	

235	This	requirement	blocks	tricks	which	redefine	‘fairies’	into	existence	while	justifying	the	
preservation	of	ordinary	observational	practices	where,	e.g.,	meaning	changes	where	‘fairy’	
is	defined	to	apply	to	one	kind	of	thing	within	my	future	light	cone	and	another	kind	of	
thing	outside	of	it	(where	you	are	guaranteed	not	to	observe	it).	

236	Within	the	Siderian	framework	of	§11.4.2,	all	these	claims	are	associated	with	taking	
notions	to	be	metaphysically	joint	carving	



abductively	project	certain	predicates	etc.	Accordingly,	we	need	to	keep	an	eye	on	these	
things	when	evaluating	rational	reconstructions	that	attempt	to	answer	access	worries.	

Consider	someone	who	makes	(what	they	know	to	be)	a	viable	stipulative	redefinition	
⟨𝑆, 𝑅(…𝑅), 1⟩	of	the	form	modeled	in	§G.1.2	above.	What	effects	does	this	have?	Most	
obviously,	(as	we	said)	the	stipulator	can	gain	knowledge	of	𝑆,	the	sentence	whose	truth	
the	stipulation	attempts	to	secure.	Plausibly	they	can	get	warrant	for	accepting	S237	
comparable	to	their	warrant	for	thinking	this	stipulation	was	viable.	

More	generally,	after	making	a	categorical	viable	stipulation	⟨𝑆, 𝑅(…𝑅), 1⟩,	(roughly	
speaking)	someone	will	have238	at	least	as	much	warrant	to	accept	a	sentence	𝜙	in	their	
new	language	𝐿(	as	they	had	to	accept	both	the	claim	that	the	above	stipulation	was	viable	
and	the	translation	of	𝜙	back	into	your	ground	language	𝐿@.	

Thus,	someone	who	makes	a	categorical	stipulative	definition	of	the	kind	I’ve	modeled	
above	will	be	able	to	carry	over	some	(but	not	all)	of	their	dispositions	to	accept	(and	
reason	to	or	from)	sentences	in	their	old	language.239	

Obviously,	stipulations	that	redefine	our	terms	or	quantifiers	can	change	the	truth	value	of	
sentences.	So	we	can’t	always	homophonically	translate	between	our	initial	language	and	
the	language	we	speak	after	making	a	stipulation.	However,	we	usually	expect	stipulations	
to	preserve	homophonic	translation	for	most	sentences	in	our	language.	And	my	story	
accounts	for	this	by	allowing	us	to	specify	a	list	of	relations	whose	application	is	to	be	held	
fixed.	It	is	easy	to	see	that	any	sentence	which	is	content	restricted	to	the	fixed	relations	(in	
the	sense	defined	in	Chapter	7)	has	the	same	truth	value	in	both	languages.240	

	

237	That	is,	they	can	get	justification	for	believing	what	it	expresses	in	your	post-stipulation	
language.	

238	See	the	important	caveat	in	the	discussion	of	Williamson	on	analyticity	below.	

239	I	say	‘at	least’	(rather	than	just	roughly)	for	the	following	reason.	Consider	someone	
who	makes	a	plausible	but	dicey	(i.e.,	not	clearly	viable)	stipulation	attempting	to	secure	
the	truth	of	some	sentence	𝑆.	Perhaps,	for	example,	they	attempt	to	introduce	a	pure	
mathematical	structure	satisfying	axioms	that	are	logically	coherent,	but	whose	logical	
coherence	they	are	only	justified	in	being	moderately	confident	in.	They	should	be	
somewhat	cautious	about	whether	the	stipulation	succeeded	or	failed.	Thus,	they	will	only	
have	modest	justification	for	accepting	S.	But	a	natural	thought	is	that	(though	alternative	
accounts	are	surely	possible)	if	a	stipulation	fails,	then	𝐿(	will	just	be	𝐿@.	So	they	should	
continue	to	be	very	confident	in	simple	logical	truths	like,	‘If	a	ball	is	red	and	round	then	it	
is	red’	(much	more	confident	than	they	are	in	the	viability	of	their	attempted	stipulation),	
as	these	sentences	express	truths	in	both	languages	and	are	hence	guaranteed	to	express	
truths	whether	or	not	the	stipulation	succeeds.	

240	For	example,	(basic	logical	possibility	reasoning	involving	my	stipulation	makes	clear	
that)	viable	stipulative	definitions	that	aren’t	empowered	to	change	the	application	of	the	
	



Also	note	that	(intuitively	and	in	terms	of	the	picture	above)	stipulations	have	an	effect	on	
things	we	do	with	words	besides	accepting	sentences.	It	can	disrupt	our	warrant	for	using	
observation	procedures,	abduction	and	homophonic	translation.	For	example,	if	I	
stipulatively	redefine	‘more	massive	than,’	I	can’t	assume	that	

• Old	observation	procedures	for	applying	‘x	is	more	massive	than	y’	will	remain	
reliable.	

• Syntactically	simple	predicates	stated	using	this	phrase	will	continue	to	express	
something	projectable/abduction	friendly.	

• I	can	continue	to	translate	certain	people’s	talk	of	“massiveness”	(my	past	self,	and	
people	she	would	have	translated	homophonically)	homophonically	

Overall,	we	see	to	face	a	kind	of	trade	off	when	considering	what	kinds	of	powers	to	give	
the	acts	of	stipulative	definitions	in	our	rational	reconstruction.	The	more	words’	
applications	a	stipulative	definition	is	empowered	to	change,	the	easier	it	is	for	that	
stipulation	to	succeed	(and	for	a	person	to	have	warrant	for	assuming	that	stipulation	is	
viable).241	On	the	other	hand,	the	more	words’	applications	a	stipulation	is	empowered	to	
change,	the	greater	change	it	can	make	in	what	observation	procedures,	inductive	
inferences	etc.	are	warranted	(and	thus	the	more	potential	problems	it	raises	for	rationally	
reconstructing	the	aspects	of	someone’s	overall	epistemic	state	that	generate	access	
worries).	

16.3.2 Examples 

In	the	case	above,	Arthur	Conan	Doyle	couldn’t	explain	the	total	epistemic	state	he	
(presumably	incorrectly)	takes	himself	to	be	in,	by	some	act	of	stipulative	definition	
(together	with	deployment	of	faculties	not	currently	being	called	into	question),	for	the	
following	reason.	

Imagine	a	person	who	starts	out	with	an	uncontroversial	good	epistemic	state.	Such	a	
person	could,	certainly,	come	to	rationally	accept	all	the	sentences	of	Doyle’s	controversial	
theory	about	fairies,	by	making	a	suitably	empowered	act	of	stipulative	definition.	For	an	
act	of	stipulative	redefinition	that	was	empowered	to	change	the	application	of	sufficiently	

	

terms	‘person’	and	‘child	of,’	can’t	change	the	truth	value	of	‘Some	person	has	more	than	
one	child.’	As	few	sentences	we	use	in	daily	life	truly	quantify	over	all	objects,	as	long	as	we	
make	stipulations	that	keep	fixed	the	vast	majority	of	our	vocabulary,	we	will	be	able	to	
homophonically	translate	the	vast	majority	of	sentences	from	our	old	language.	

241	For	example,	it	might	be	unclear	whether	you	could	make	all	the	sentences	of	some	
formalization	of	an	essay	by	Leibnitz	come	out	true	with	a	stipulation	only	empowered	to	
change	quantifier	meanings	and	the	application	of	the	term	‘substance’	but	obvious	that	
one	could	do	so	if	one	were	allowed	to	change	the	meaning	of	all	non-logical	vocabulary.	



many	terms	in	the	theory	(wing,	fly,	fairy,	see	etc.)	could	easily	be	viable,	and	could	easily	
be	known	to	be	viable	the	protagonist	of	our	thought	experiment.	

However,	someone	who	did	this	would	lack	many	epistemically	valuable	relationships	to	
their	own	language	which	Doyle	takes	himself	to	have.	

• They	wouldn’t	be	justified	in	treating	the	observation	procedures	they	used	to	
associate	terms	like	“wing”	that	have	been	stipulatively	re-defined	as	continuing	to	be	
reliable.	

• And	they	(ceteris	paribus)	wouldn’t	be	justified	in	translating	sentences	uttered	by	
certain	kinds	of	people	who	don’t	accept	key	tenants	in	Doyle’s	theory	of	fairies	as	
meaning	something	that’s	true	if	and	only	if	Doyle’s	orthographically	identical	
sentence	would	be	true.	

• They	would	have	no	reason	to	think	their	new	terms	would	continue	to	express	
concepts	that	are	particularly	abduction	friendly,	in	the	way	that	green	is	but	
(famously)	grue	isn’t.	So	they	wouldn’t	be	justified	in	making	the	abductive	inferences	
about	wings	and	seeing	etc.	Doyle	does.	

As	Conan-Doyle	takes	himself	to	be	justified	in	doing	all	these	things,	he	cannot	rationally	
reconstruct	the	controversial	parts	of	his	own	situation	in	this	way.	

Contrast	this	with	the	metasemantic	answer	to	access	worries	about	our	knowledge	of	
which	logically	coherent	pure	mathematical	structures	exist	advocated	in	Chapter	6242.	
Philosophers	plausibly	can	rationally	reconstruct	the	kind	of	knowledge	and	epistemically	
valuable	relationships	to	language	they	take	us	to	have.	

Consider	someone	who	started	out	speaking	a	language	𝐿@,	that	didn’t	talk	in	terms	of	
anything	like	mathematical	objects	(but	had	good	methods	of	reasoning	about	logical	
possibility).	They	could	gain	knowledge	that	some	axiomatic	principles	like	𝑃𝐴◊	are	true	by	
making	logically	viable	stipulative	definitions	and	then	(unlike	in	the	case	above)	plausibly	
acquire	all	the	other	epistemically	valuable	statuses	we	take	ourselves	ourselves	to	have	
via	processes	that	are	taken	for	granted	by	all	parties	pressing	this	access	problem.	

• We	don’t	tend	to	have	observation	procedures	associated	with	mathematical	objects	
(except	perhaps	for	counting	procedures	associated	with	the	natural	numbers)243.	

	

242	Note	that	I	take	solving	this	access	problem	to	be	the	only	part	of	what’s	required	to	
answer	general	access	worries	about	our	access	to	mathematical	objects.	The	harder	part	is	
accounting	for	our	knowledge	of	logical	possibility	facts.	See	(S.	Berry	2018b)	for	proposals	
regarding	that.	

243	I	suspect	that	these	can	be	rationally	reconstructed	from	logical	possibility	reasoning	in	
a	broadly	Fregean	manner,	but	I	won’t	say	more	about	that	here.	



• As	regards	homophonic	translation	dispositions	and	reference	magnetism,	
contemporary	mathematicians	don’t	seem	to	take	their	choice	of	which	logically	
coherent	pure	mathematical	structures	talk	in	terms	of	to	be	strongly	reference	
magnetic.	They	treat	communities	that	(seem	to)	assert	the	existence	of	different	kinds	
of	pure	mathematical	objects	are	interpreted	as	speaking	truly	nonetheless,	rather	
than	translating	them	homophonically	as	disagreeing	with	each	other	and	us.	

• The	stipulation	wouldn’t	be	empowered	to	change	the	meaning	of	‘wing’	and	so	forth,	
so	they	wouldn’t	have	any	problem	preserving	permission	to	treat	these	notions	as	
joint	carving.	As	for	the	terms	which	they	are	redefining	(those	playing	the	role	of	
number	and	successor),	they	could	then	gain	knowledge	that	these	notions	are	joint	
carving	and	abduction	friendly	(e.g.,	useful	for	stating	physical	and	mathematical	laws)	
to	the	extent	that	we	think	they	are,	by	noting	how	simple	a	description	these	
properties	and	mathematical	structures	have	in	terms	of	conditional	logical	
possibility244.	

Accordingly,	I	think	this	kind	of	rational-reconstruction-based	framework	is	worth	
developing.	But,	as	noted	above,	all	this	is	just	a	preliminary	sketch.	I’ll	end	with	two	areas	
where	I	think	more	work	is	needed.	

The	first	area	concerns	how	far	removed	our	rational	reconstruction	can	be	from	what	
actually	occurred.	Presumably,	rational	reconstructions	shouldn’t	involve	long	inference	
chains	which	that	bear	very	little	relation	to	anything	the	person	being	rationally	
reconstructed	actually	did.	For	example,	imagine	a	normal	person	with	an	ordinary	lifespan	
and	no	access	to	computers	who	claims	to	be	able	to	know,	for	all	strings	of	50	numbers,	
whether	that	exact	string	occurs	in	the	decimal	expansion	of	𝜋.	This	claim	would	generate	
access	worries	that	couldn’t	be	answered	by	pointing	out	that	one	could	in	principle	get	
this	knowledge	by	deploying	ordinary	mathematical	abilities	over	a	long	time.245	

Secondly,	some	kinds	of	metasemantic	explanations	might	require	stipulations	directly	
phrased	in	terms	of	observation	procedures.	For	instance,	consider	stipulative	definitions	
of	(phenomenological)	color	terms,	or	the	hole	example	above.	Adequately	rationally	
reconstructing	the	kind	of	knowledge	at	issue	here	might	require	appeal	to	stipulative	
definitions	that	attempt	to	secure	the	reliability	of	observation	procedures	rather	than	the	
truth	of	sentences.	I	think	the	story	about	stipulative	definitions	above	could	plausibly	be	

	

244	A	different	way	to	think	of	this	point	is:	they	could	gain	justification	for	treating	certain	
hypotheses	in	their	new	language	as	elegant,	a	priori	attractive,	and	supportable	by	
induction	via	the	fact	that	they	had	warrant	for	finding	the	translation	of	these	hypotheses	
in	their	old	language	similarly	attractive.	Note	that	saying	this	doesn’t	require	us	to	take	
there	to	be	principled	facts	about	whether	the	objects	or	predicates	a	person	talks	in	terms	
of	after	neo-Carnapian	language	change	are	literally	the	same	as	those	they	talked	in	terms	
of	prior	to	this	language	change.	C.f.	§5,6.2.2.	

245	Note:	I	take	this	to	be	a	general	issue	for	everyone	who	accepts	the	idea	of	rational	
reconstruction,	not	something	that	depends	on	any	specific	worries	I’ve	raised	here.	



generalized	to	account	for	such	knowledge	(though	see	(S.	E.	Berry	2019)	for	a	paradox	
about	notions	of	solidity	that	arises	on	route	to	doing	so).	But	filling	in	all	that	is	a	task	for	
another	book.	

16.4  Contrast with Other Answers to this Challenge 

Let	me	conclude	by	discussing	three	ways	this	approach	to	evaluating	metasemantic	
answers	to	access	worries	promises	to	be	helpful.	

First	neo-Carnapians	(myself	included)	sometimes	informally	say	that	one	can	
metasemantically	explain	our	knowledge	of	which	mathematical	structures	exist	because	
‘all	logically	coherent	choices	of	mathematical	structures	are	‘equally	good’246.	I	think	such	
remarks	are	evocative	and	helpful.	But	this	isn’t	exactly	true	(if	understood	literally	and	
straightforwardly).	For	surely	the	mathematical	structures	mathematicians	posit	and	use	
are	especially	good	in	various	ways:	with	regard	to	beauty,	letting	one	state	or	prove	
general	principles	that	illuminatingly	explain	other	mathematical	phenomena	and	the	like.	
Indeed,	these	structures	might	well	be	especially	joint	carving	in	something	like	Sider’s	
sense.	

The	rational	reconstruction	framework	above	lets	us	avoid	this	awkwardness	by	cashing	
out	arguments	for	and	against	metasemantic	explicability	without	appealing	to	this	obscure	
notion	of	being	‘equally	good.’	

Second,	it	is	sometimes	suggested247	that	the	mere	fact	that	pure	mathematical	theories	
‘conservatively	extend’	our	non-mathematical	talk248	in	the	way	Field	defines	below	(H.	
Field	1980),	explains	why	we	can	give	a	Quantifier	Variance	explanation	for	our	knowledge	
of	pure	math	theories	(given	knowledge	of	logical	coherence).	

But	this	can’t	be	a	complete	explanation	as	it	stands.	For,	in	general,	showing	that	your	
beliefs	about	Fs	conservatively	extend	your	beliefs	about	non-Fs	is	not	enough	to	dispel	
access	worries	about	your	knowledge	of	Fs.	For	example,	noting	that	your	moral	beliefs	
conservatively	extend	your	physical	beliefs	(in	the	sense	of	not	letting	you	prove	any	new	
claims	stated	in	purely	physicalist	language)	is	not	sufficient	to	show	that	no	access	worries	
arise	with	regard	to	moral	knowledge	–	pace	certain	readings	of	Scanlon	(Scanlon	2014).	

	

246	See	(Clarke-Doane	2020)	and	§F.3	above.	

247	One	might	read	(Agustín	Rayo	2015)	as	saying	this.	

248	

Introduce	a	1-place	predicate	‘M(𝑥()’	meaning	intuitively	𝑥(	is	a	mathematical	
object.	For	any	assertion	A,	let	A*	be	the	assertion	that	results	from	restricting	
each	quantifier	of	A	with	the	formula	‘not	M(𝑥().’[Then	our	mathematical	theories	
seem	to	‘obviously’	satisfy	the	follow	conservativity	condition:]	Let	A	be	any	
nominalistcally	stateable	assertion.	Then	A*	isn’t	a	consequence	of	S	unless	it	is	
logically	true(H.	Field	1980).	



Thirdly,	other	popular	neo-Carnapian	theories	like	Thomasson’s	influential	(Thomasson	
2015)	appeal	to	(epistemically)	analytic	truths,	while	my	proposal	avoids	controversial	
commitment.	As	I’ll	now	clarify,	it	lets	us	metasemantically	explain	our	knowledge	of	
certain	facts	without	any	suggestion	that	the	relevant	facts	are	analytic	or	impossible	for	
anyone	who	possesses	the	relevant	concept	to	rationally	doubt.	

This	lets	us	better	accommodate	Quine’s	thought	that,	“The	lore	of	our	fathers	is...a	pale	
grey	lore,	black	with	fact	and	white	with	convention.”	(W.	V.	Quine	1960)	and	Williamson’s	
(Williamson	2008)	more	recent	arguments	against	there	being	(in	any	interesting	sense)	
conceptual	truths.	Williamson	argues	that	although	claims	like	‘vixens	are	foxes’	are	
conceptually	central,	even	these	claims	aren’t	epistemically	analytic	or	unreasonable	to	
doubt.	He	points	out	that	philosophers	do	seem	to	be	able	to	intelligibly	and	rationally	
doubt	even	the	most	basic	and	conceptually	central	principles	and	inference	rules	for	
philosophical	reasons	(e.g.,	McGee	has	seemingly	argued	against	modus	ponens	being	
exceptionlessly	a	legitimate	inference).	And	he	argues	that	even	the	most	conceptually	
central	principles	associated	with	a	term	(in	the	sense	of	constraining	our	interpretation	of	
that	term)	principles	are	dubitable	for	the	following	reason.	Even	the	most	seemingly	
conceptually	core	principles	associated	with	a	given	term	can	fail	to	express	truths	if	they	
fail	to	harmonize	with	one	another	in	the	way	that	the	inferences	associated	with	the	
spurious	concept	‘tonk’	do249.	Indeed	(as	he	further	suggests)	maybe	our	naive	concept	of	
truth	is	an	example	of	a	natural	language	concept	whose	core	inference	rules	fail	to	
harmonize	with	one	another	in	this	way250.	Thus,	even	in	cases	where	ones	principles	are	
actually	harmonious,	it	can	be	rational	to	entertain	some	doubts	corresponding	to	the	
possibility	that	these	principles	aren’t	harmonious.	

To	see	why	the	proposal,	I’ve	sketched	doesn’t	require	appeal	to	indubitable	conceptual	
truths	or	(epistemic	or	metaphysical251)	analyticities,	first	consider	cases	where	an	explicit	
stipulative	definition	has	been	made.	

	

249	Recall	that	‘tonk’	(A.	N.	Prior	1960)	has	the	introduction	rules	for	or	and	the	elimination	
rules	for	and	thus	lets	you	reason	from	any	sentence	A	in	your	language	to	any	sentence	B.	

250	I	think	Williamson’s	other	example	of	such	conceptually	core	truths	being	rationally	
dubitable	and	indeed	sometimes	false	–‘phlogiston	has	role	R’	–	is	less	satisfactory,	because	
(along	the	lines	of	Boghossian)	the	friend	of	conceptual	truths	will	presumably	say	that’s	
what’s	a	conceptual	truth	is	‘if	there’s	phlogiston	then	it	plays	role	R,’	for	obviously	people	
can	understand	the	concepts	oxygen	and	phlogiston	and	debate	which	one	explains	the	
behavior	of	fires	etc.,	without	having	confidence	either	hypothesized	substance	plays	the	
relevant	role.	)	

251	It	may	also	be	worth	noting	that,	like	most	contemporary	neo-Carnapians	I	don’t	take	
metasemantically	explicable	knowledge	to	involve	relevant	being	metaphysically	analytic	
in	the	sense	Boghossian	criticizes	in	(Boghossian	1996).	I	don’t	take	it	to	follow	from	the	
idea	that	considering	the	results	of	stipulative	definition	can	help	solve	or	reduce	certain	
access	worries	about	our	knowledge	of	which	pure	mathematical	objects	exist	to	suggest	
	



The	theory	of	stipulative	definitions	in	§G.1.2	doesn’t	imply	(and	I	would	positively	deny)	
that	acts	of	successful	stipulative	definition	yield	knowledge	that’s	completely	certain	and	
indubitable.	For	one	thing	(in	line	with	Williamson’s	point	that	we	can	rationally	worry	that	
our	concepts	are	tonk-like(A.	Prior	1960))	note	that	my	‘epistemic	dynamics’	say	that	acts	
of	stipulative	definition	merely	transform	warrant	for	accepting	that	a	certain	stipulation	is	
viable	(as	defined	in	§G.1)	into	comparable	(perhaps	slightly	lesser)	justification	for	
accepting	the	stipulated	sentence	S.252.	Leaving	this	room	for	rational	doubt	about	whether	
a	stipulation	is	viable	(in	cases	where	it	actually	is	viable)	reflects	exactly	the	kind	of	
concern	Williamson	presses	in	regard	to	tonk	(that	things	that	seem	like	conceptually	
central	truths	involving	some	notion	might	not	be	suitably	coherent/harmonious	with	each	
other),	as	they	arise	in	the	case	where	we	are	attempting	to	introduce	a	new	concept	by	
stipulating	some	relevant	conceptually	central	principles.	What	about	conditional	claims	
like,	‘If	such-and-such	a	stipulation	is	viable	then	S	is	true?’	I’m	only	advocating	the	theory	
of	stipulative	definitions	in	G.1	as	a	truth	of	philosophy	of	language,	not	an	indubitable	
truth.	So,	I’m	not	committed	to	these	principles	being	analytic	or	indubitable.	

The	fact	that	we	are	merely	reconstructing	our	knowledge	as	if	we	had	made	certain	
stipulations	rather	than	actually	making	them	allows	for	additional	possibilities	for	doubt.	
And	I	think	some	of	these	additional	possibilities	are	worth	highlighting,	because	they	
show	how	the	type	of	metasemantic	response	to	access	worries	I’m	advocating	has	
resources	to	handle	certain	apparent	problem	cases	more	traditional	and	aggressive	neo-
Carnapian	answers	to	access	worries	which	claim	that	some	existence	principles	involving	
mathematical	objects	are	indubitable.	

For	example,	we	might	rationally	reconstruct	someone’s	knowledge	of	Turing	degrees	by	
considering	a	suitable	abstraction	principle	involving	either	Turing	machines	or	partial	
recursive	functions.	Someone	whose	knowledge	of	Turing	degrees	is	being	rationally	
reconstructed	needn’t	have	exactly	the	knowledge	that	someone	who	literally	stipulated	
either	one	might	have.	They	need	not	have	great	confidence	that	facts	about	Turing	degrees	
reflect	one	possible	stipulative	definition	rather	than	other	if	evidence	suggested	that	
(proofs	of	the	equivalence	of	the	two	definitions	of	computability	were	some	kind	of	
massive	illusion	and)	these	notions	could	actually	come	apart,	they	might	rather	unsure	
what	to	say.	

	

that	any	interesting	pure	mathematical	existence	facts	are	constituted	by	or	grounded	in	
more	made	true	by	facts	about	how	humans	use	language.	Indeed,	the	story	about	
grounding	inheritance	during	acts	of	stipulative	re-definition	proposed	above	suggests	
quite	the	opposite	conclusion.	

252	Perhaps	the	appearance	that	stipulative	definition	gives	rise	to	knowledge	of	
indubitable	claims	comes	from	considering	a	limited	diet	of	examples.	We	consider	
stipulative	definitions	whose	form	makes	it	particularly	transparent	that	they	are	viable	:	
specifically	categorical	definition,	which	define	some	new	term	N	by	stipulating	that	
(∀𝑥)(𝑁(𝑥) ↔ 𝜙(𝑥))	where	𝜙	only	contains	old	vocabulary	whose	meaning	the	stipulation	
is	licensed	to	change.	



Relatedly,	a	speaker	may	not	know	that	a	particular	act	of	explicit	stipulation	is	enough	to	
reconstruct	their	epistemic	state.	Thus,	they	can	(intuitively	reasonably)	worry	they	are	
overlooking	some	further	aspect	of	their	linguistic	practice	which	makes	the	obviously	
viable	stipulation	they	have	in	mind	insufficient.	For	example,	the	inference	dispositions	
you	have	regarding	bachelorhood	aren’t	transparent.	Considering	new	cases	(like	the	
question	of	whether	the	Pope	is	a	bachelor)	can	surprise	you	by	revealing	new	inference	
dispositions	you	didn’t	realize	you	had	lurking253	For	this	reason,	even	in	cases	where	the	
viability	of	a	stipulation	seems	obvious	as	a	logico-mathematical	claim,	a	natural	language	
speaker	whose	knowledge	can	be	rationally	reconstructed	(for	the	purposes	of	solving	
access	worries)	by	considering	such	a	stipulation	can	reasonably	doubt	the	truth	of	the	
sentences	stipulated	in	this	reconstruction.	

Chapter 17 Logicism and Structuralism 

In	this	chapter	I	will	briefly	discuss	how	the	broader	approach	to	philosophy	of	
mathematics	sketched	above	relates	to	two	big	ideas	in	the	philosophy	of	mathematics:	
Logicism	and	Structuralism.	I	will	suggest	that	my	proposals	qualify	as	(at	least	broadly)	
Logicist	and	Structuralist	and	offer	some	advantages	over	certain	existing	forms	of	
Logicism	and	Structuralism.	However,	I’ll	note	that	they	certainly	don’t	vindicate	some	
more	ambitious	key	ideas	which	have	traditionally	been	associated	with	Logicism.	

17.1 Logicism 

17.1.1 Arguably a kind of logicism 

Let’s	start	with	Logicism.	In	a	Stanford	Encyclopedia	article	(Tennant	2017)	Tennant	
characterizes	strong	and	weak	logicism	about	a	given	branch	of	mathematics	in	terms	of	
acceptance	of	the	following	pair	of	theses.	

• “Logic	—	in	some	suitably	general	and	powerful	sense	that	the	logicist	will	have	to	
define	—	is	capable	of	furnishing	definitions	of	the	primitive	concepts	of	these	
branches	of	mathematics,	allowing	one	to	derive	the	mathematician’s	‘first	principles’	
therein	as	results	within	Logic	itself.	(The	branch	of	mathematics	in	question	is	
thereby	said	to	have	been	reduced	to	Logic.)”	

• “All	the	objects	forming	the	subject	matter	of	those	branches	of	mathematics	are	
logical	objects”	

• All	truths	(strong	logicism)	or	all	theorems	(weak	logicism)	are	logical	truths.	
(Tennant	2017)	

The	Nominalist	and	Quantifier	Variance	realist	approaches	to	the	philosophy	of	
mathematics	developed	here	fairly	clearly	satisfy	the	first	requirement	above.	For	we’ve	

	

253	You	might	think	when	you	infer	from	learning	that	John	is	single	and	an	adult	man	to	the	
conclusion	that	he’s	a	bachelor	nothing	would	change	your	mind,	and	then	be	surprised	to	
find	that	learning	that	John	is	a	religious	celibate	does	change	your	mind.	



shown	how	to	categorically	describe	(or,	in	the	case	of	set	theory,	otherwise	pin	down	
definite	truth	values	for	sentences	about)	pure	structures	using	only	logical	vocabulary	in	
the	language	of	logical	possibility.	

The	Nominalism	proposal	trivially	satisfies	the	second	requirement	(though	not	positing	
any	mathematical	objects),	and	clearly	satisfies	the	third	(one	can	prove	𝜙 ↔ 𝜙,	for	each	
nominalistic	logical	regimentation	of	a	pure	mathematical	claims).	

What	about	the	neo-Carnapian	realism	about	mathematical	objects	outside	set	theory	I	
ultimately	advocate	in	Chapter	15?	Admittedly	it	doesn’t	satisfy	the	letter	of	the	second	and	
third	requirements	above.	For	my	neo-Carnapian	realist	takes	it	to	be	logically	contingent	
(though	metaphysically	necessary)	that	any	mathematical	objects	exist,	and	hence	that	
various	existence	claims	about	mathematical	objects	are	true.	

However,	I	will	argue	that	my	favored	neo-Carnapian	realist	view	satisfies	the	spirit	of	the	
requirement	that	all	mathematical	objects	are	logical	objects	and	mathematical	truths	are	
logical	truths	insofar	as	it	endorses	the	following	claims.	

• Apparent	quantification	over	the	sets	is	to	be	understood	as	making	pure	claims	about	
logical	possibility	

• Knowledge	of	other	mathematical	objects	(i.e.,	objects	in	other	mathematical	
structures	which	don’t	give	rise	to	paradox)	can	be	gained	by	logical	knowledge	and	
stipulative	definition	alone.	

• Although	mathematical	objects	are	logically	contingent,	in	some	sense	(which	I	don’t	
claim	to	have	made	precise	here)	the	‘job’	of	pure	mathematical	objects	is	to	help	us	
explore	facts	about	logical	possibility	and	necessity	which	are	logical	necessary	truths.	
Facts	about	mathematical	objects	are	facts	about	logically	necessary	truths	concerning	
what	structures	are	logically	possible/impossible	in	something	like	the	way	that	facts	
about	mountains	could	be	said	to	be	facts	about	rock	distribution.	

I’d	also	suggest	that	differing	from	traditional	logicism	by	saying	mathematical	objects’	
existence	is	merely	metaphysically	(rather	than	logically)	necessary	is	an	advantage.	For	it	
lets	us	agree	with	contemporary	mathematical	practice	which	takes	all	set-theoretic	
models	to	represent	genuine	logical	possibility.	We	don’t	say	its	logically	necessary	that	
math	objects	exist,	but	rather	that	all	the	knowledge	that	we	need	to	reliably	come	to	
believe	true	quantified	claims	involving	mathematical	objects	is	logical	knowledge	and	
(something	like)	knowledge	by	stipulative	definition254.	

	

254	We	also	avoid	traditional	Logicism’s	famous	bad	company	problems,	about	how	to	say,	
without	arbitrariness,	which	of	the	various	possible	internally	coherent	but	jointly	
incompatible	hypotheses	describing	of	existence	and	identity	conditions	for	supposed	
mathematical	objects	(like	Hume’s	principle)	are	true.	For	the	quantifier	variantist	will	say	
mathematicians	are	free	to	choose	any	internally	coherent	(suitably	quantifier	restricted)	
posits	characterizing	pure	mathematical	objects	they	like.	



17.1.2 Traditional Benefits of Logicism 

I	submit	that	the	approaches	above	also	satisfy	some	traditional	motivations	for	Logicism.	
For	example,	both	support	Frege’s	claim	that	(contra	Kant)	mathematical	truths	and	
knowledge	are	independent	of	any	intuitions	about	space	and	time	(Frege	1980).	Both	also	
connect	mathematical	investigation	to	general	subject	matter	neutral	laws	in	a	way	that	
helps	explain	the	widespread	usefulness	of	mathematics.	Much	more	could	be	said	about	
the	various	ways	the	investigation	of	logical	possibility	(which	I	take	to	be	the	core	project	
of	mathematics)	is	useful,	but	I	won’t	say	so	here.	

What	about	showing	that	mathematics	is	analytic?	Arguably	this	is	a	desideratum	which	
motivates	(or	has	motivated)	many	traditional	forms	of	logicism.	Suppose	we	take	analytic	
truths	to	be	those	which	(in	some	sense)	‘follow	from	logical	laws	and	definitions	alone’	
(following	Frege).	Then	(at	least)	the	modal	nominalist	proposals	of	Chapter	10	which	say	
mathematical	truths	all	are	logical	truths	clearly	imply	that	mathematics	is	analytic.255	

However,	showing	that	all	pure	mathematical	truths	technically	qualify	as	analytic	winds	
up	doing	little	of	the	work	philosophers	have	traditionally	associated	with	this	thesis.	

For	example,	it	doesn’t	show	that	all	mathematical	truths	can	be	arrived	at	via	indubitable	
deductions	from	indubitable	premises	–	or	even	that	they	are	accessible	to	us	at	all.	For	
familiar	Gödelian	considerations	still	show	that	many	mathematical	truths	will	be	
cognitively	inaccessible	to	us.	Switching	from	thinking	about	mathematics	as	investigating	
abstract	objects,	with	no	special	relationship	to	logic,	to	thinking	of	mathematics	as	
investigating	abstract,	objective,	necessary	truths	about	logical	possibility	and	extendibility	
makes	no	difference	to	those	arguments.256	

	

255	Perhaps	versions	of	the	neo-Carnapian	realism	about	ordinary	mathematical	objects	
could	be	argued	to	imply	the	same	conclusion	(via	more	substantive	assumptions	about	
definitional	truth	and	knowledge	by	stipulation).	Although	I	personally	have	tried	to	show	
that	this	view	can	be	developed	without	endorsing	the	existence	of	any	analytic	truths	at	
all,	fans	of	analytic	truths	might	argue	as	follows.	Suppose	I	attempt	to	introduce	the	
natural	numbers	by	a	stipulative	definition	that	attempts	to	secure	the	truth	of	𝑃𝐴◊	by	the	
kind	of	stipulation	considered	in	§G.1.	Then	(one	might	say,	although	I	don’t	personally	say	
for	the	reasons	discussed	in	§G.4)	that	the	following	conditional	is	analytic:	if	this	
stipulation	is	viable	then	𝑃𝐴◇.	And	we	can	choose	parameters	for	this	stipulation	such	that	
it’s	a	truth	of	logic	alone,	knowable	without	appeal	to	any	non-logical	constraints	on	the	
application	of	vocabulary	we	are	holding	fixed,	that	this	stipulation	is	viable	(as	per	the	
definition	of	logical	viability	in	§G.1).	For	on,	this	view,	pure	mathematical	truths	are	
known	by	a	combination	of	logical	insight	and	access	to	something	like	stipulative	
definitions.	

256	In	both	cases,	we	have	reason	to	think	our	axioms	are	recursively	enumerable	and	
sufficiently	strong	to	prove	a	version	of	PA,	and	hence	incomplete.	



Accepting	that	all	mathematical	truths	are	analytic	for	the	reasons	above	also	doesn’t	
immediately	vanquish	access	worries	for	traditional	Platonism.	For	if	it’s	mysterious	how	
we	can	get	knowledge	of	platonic	objects,	it	can	seem	equally	(or	almost	equally)	
mysterious	how	we	could	get	knowledge	of	the	powerful	and	far	from	cognitively	non-
trivial	logical	truths	that	are	identical	to,	or	required	to	recognize,	mathematical	truths	on	
the	views	just	mentioned.	

This	is	not	to	say	that	adopting	the	kind	of	logicism	I’ve	advocated	here	has	no	epistemic	
benefits.	All	versions	of	the	logical-possibility-centric	approach	to	mathematics	I’ve	
advocated	here	do	reduce	the	problem	of	pure	mathematical	knowledge	to	a	problem	of	
accounting	for	knowledge	of	general	logical	laws	that	constrain	all	objects	and	relations	
(much	as	the	laws	of	physical	possibility	do).	And	I	think	making	the	latter	reduction	can	
provide	help	in	dispelling	access	worries,	(for	reasons	we	will	briefly	discuss	in	§7.3	
below).	

17.2  Structuralism 

Now	let’s	turn	to	structuralism.	

In	this	section	I	will	review	what	I	take	to	be	the	central	structuralist	intuitions	and	note	
how	my	proposals	largely	satisfy	them.	Insofar	as	much	of	this	book	can	be	seen	as	
philosophically	and	mathematically	developing	Hellman’s	Modal	Structuralist	development	
of	Putnam’s	modal	perspective	on	mathematics,	this	won’t	be	surprising.	

In	his	massively	influential	‘On	What	the	Numbers	Could	Not	Be,’	Benacerraf	quotes	R.	M.	
Martin	(Benacerraf	1965)	to	the	effect	that	mathematicians	are	mostly	interested	in	
‘mathematical	structures,’	their	possibility	and	how	they	can	relate	to	one	another,	rather	
than	the	nature	of	the	objects	which	form	these	structures,	and	how	they	relate	to	other	
objects	(topics	which	tend	to	interest	philosophers).	He	writes	as	follows.	

‘The	attention	of	the	mathematician	focuses	primarily	upon	mathematical	
structure,	and	his	intellectual	delight	arises	(in	part)	from	seeing	that	a	given	
theory	exhibits	such	and	such	a	structure,	from	seeing	how	one	structure	is	
“modelled”	in	another,	or	in	exhibiting	some	new	structure	and	showing	how	it	
relates	to	previously	studied	ones	...	But	...	the	mathematician	is	satisfied	so	long	
as	he	has	some	“entities”	or	“objects”	(or	“sets”	or	“numbers”	or	“functions”	or	
’’spaces”	or	“points”)	to	work	with.	He	does	not	inquire	into	their	inner	structure	
or	ontological	status.	

Since	then,	structuralism,	the	idea	that	mathematics	is	(in	some	important	sense)	‘the	
science	of	structure,’	has	enjoyed	great	popularity	in	philosophy	of	mathematics	and	been	
developed	in	various	ways.	I’ll	highlight	how	the	philosophies	of	mathematics	developed	in	
this	book	qualify	as	structuralist,	by	considering	three	enduringly	central	and	popular	
structuralist	themes	in	the	quote	above.	



First	there’s	a	kind	of	‘mathematicians’	freedom’	intuition:	mathematicians	are	free	to	
study	any	logically	coherent	pure	mathematical	structure	they	like257	–	whether	this	
structure	is	instantiated	or	not.	The	nominalist	and	quantifier	variantist	proposals	
developed	above	clearly	vindicate	this	intuition,	by	allowing	that	mathematicians	are	free	
to	study	pure	mathematical	structures	characterized	by	arbitrary	logically	coherent	
axioms.	

Second,	there’s	the	idea	that	all	possible	instantiations	of	a	given	mathematical	structure	
(e.g.,	“the	strings	on	a	finite	alphabet	in	lexical	order,	an	infinite	sequence	of	strokes,	an	
infinite	sequence	of	distinct	moments	of	time,	and	so	on."	mentioned	above)	are	equally	
relevant	to	the	mathematical	study	of	that	structure.	My	Nominalist	and	Quantifier	
Variance	Platonist	proposals	both	reflect	this	by	saying	that	mathematicians	(directly	or	
indirectly,	via	witnessing	mathematical	objects	whose	job	is	to	help	us	investigate	such	
facts)	study	pure	logical	possibility.	That	is,	they	study	facts	about	logically	possible	or	
necessary	simpliciter,	what’s	allowed	or	precluded	by	the	most	general	laws	of	how	any	
objects	could	be	related.	Note	that	Axiom	8.5	if	it’s	logically	possible	that	phi,	then	the	same	
goes	for	every	sentence	you	get	by	replacing	relations	in	phi	with	other	relations	of	same	
arity.	Thus,	for	example	nominalist	version	of	a	statement	about	number	theory	will	
immediately	imply	the	corresponding	claim	about	each	of	the	instances	of	this	structure	
described	above.	In	this	way	the	facts	about	logical	possibility	studied	in,	say,	number	
theory	are	ones	that	constrain	the	behavior	of	other	instances	of	the	natural	number	
structure	(e.g.,	structures	of	stroke	sequences	in	which	to	‘the	right	of’	play	the	role	of	
successor	and	sequences	of	clock	chimes	in	which	‘after’	plays	the	role	of	successor)	
without	assigning	any	particular	choice	of	relations	metaphysical	special	status	or	much	
conceptual	priority258.	

Third	there’s	Benacerraf’s	point	that	it	would	be	odd	to	suppose	that	there	are	deep	or	
interesting	facts	about	which	objects	in	different	mathematical	structures	are	identical	to	
each	other,	e.g.,	deep	facts	about	which	set	(if	any)	is	identical	to	the	number	one	(given	the	

	

257	In	(Stuart	Shapiro	1997)	Shapiro	approvingly	quotes	Resnick	(Resnik	1981)	to	similar	
effect,	as	saying	“Take	the	case	of	linguistics.	Let	us	imagine	that	by	using	the	abstractive	
process	.	.	.	a	grammarian	arrives	at	a	complex	structure	which	he	calls	English.	Now	
suppose	that	it	later	turns	out	that	the	English	corpus	fails	in	significant	ways	to	instantiate	
this	pattern,	so	that	many	of	the	claims	which	our	linguist	made	concerning	his	structure	
will	be	falsified.	Derisively,	linguists	rename	the	structure	Tenglish.	Nonetheless,	much	of	
our	linguist’s	knowledge	about	Tenglish	qua	pattern	stands;	for	he	has	managed	to	
describe	some	pattern	and	to	discuss	some	of	its	properties.	Similarly,	I	claim	that	we	know	
much	about	Euclidean	space	despite	its	failure	to	be	instantiated	physically.”	

258	Admittedly	when	stating	the	nominalist	version	of	a	given	number	theoretic	sentence	
you	will	pick	arbitrary	non-mathematical	relations	of	the	right	arity.	However,	this	choice	is	
clearly	superficial	as,	e.g.,	the	claim	you	get	by	picking	one	choice	of	non-mathematical	
vocabulary	is	obviously	and	immediate	logically	equivalent	to	the	claim	you	get	by	making	
any	other	choice	



different	ways	of	reducing	number	theory	to	set	theory	which	have	been	employed	by	
different	mathematicians).	My	Nominalist	and	Quantifier	variantist	can	both	honor	this	
point	by	saying	that	such	facts	reflects	something	like	a	stipulative	definition	(what	kind	of	
logically	coherent	total	mathematical	universe	do	we	want	to	talk	in	terms	of?)	rather	than	
any	non-trivial	facts	about	logical	possibility259.	

17.2.1 Advantages over Ante-Rem Structuralism 

Let	me	close	this	chapter	by	noting	that,	like	Hellman’s	modal	structuralism,	the	views	
developed	here	enjoy	some	advantages	over	Stuart	Shapiro’s	ante	rem	structuralism	
(which	honors	the	structuralist	intuitions	above	in	a	very	different	way).	

According	to	Shapiro’s	ante	rem	structuralism	there	are	such	abstract	platonic	objects	
called	structures,	and	these	are	what	mathematicians	study.	For	example,	there	is	a	natural	
number	structure	which	all	𝜔	sequences	instantiate.	There	are	other	objects	called	
‘positions’	which	belong	to	a	given	structure	(for	example,	the	natural	number	structure	
will	have	a	countable	infinity	of	different	positions	belonging	to	it).	And	each	structure	will	
also	include	or	specify	some	way	for	some	finite	collection	of	relations	to	apply	to	these	
positions.	Roughly	speaking,	the	idea	is	that	the	natural	number	structure	abstractly	
represents	what	it	is	that	the	things	we	described	as	instances	of	the	natural	number	
structure	above	(isomorphic	collections	of	strokes,	spatial	points	etc.)	have	in	common.	
Furthermore,	there’s	no	fact	about	whether	two	positions	within	two	such	different	
mathematical	structures	(like	the	sets	and	the	natural	numbers)	are	distinct.	In	this	way	we	
avoid	the	dilemma	above.	

Three	problems	naturally	arise	for	this	reifying	structuralism.	

First,	there’s	an	immediate	metaphysical	oddness	to	saying	that	there’s	no	fact	about	
whether	positions	within	distinct	structures	are	identical	to	one	another	as	a	matter	of	
metaphysics	not	mere	ambiguity	in	which	objects	the	terms	number	and	set	denote.	
Second,	there’s	a	much-discussed	problem	about	how	to	account	for	the	fact	that	𝑖	and	−𝑖	
are	distinct	if	we	say	(as	Shapiro	does)	that	positions	in	structures	only	have	relational	
features,	since	(in	a	sense)	𝑖	and	−𝑖	have	all	the	same	relational	features.	Adopting	the	

	

259	There	might	be	determinate	facts	about	whether	the	numbers	are	identical	to	various	
other	kinds	of	mathematical	structures	(though	presumably	not	to	the	sets	considered	in	
higher	set	theory,	as	I’ve	argued	that	the	latter	is	better	explicated	potentialistically).	But	
such	identity	facts	between	different	mathematical	structures	are	not	taken	to	outrun	the	
logical	consequences	of	things	we	explicitly	believe	and	treat	as	conceptually	central	about	
the	relevant	mathematical	objects	and	their	intended	relationship	to	one	another.	Like	
knowledge	of	which	pure	mathematical	objects	(outside	higher	set	theory)	exist,	our	
knowledge	of	identity	claims	relating	objects	in	distinct	mathematical	structures	is	taken	to	
be	the	kind	of	knowledge	one	could	get	by	stipulative	definition.	For	example,	these	
identity	facts	aren’t	taken	to	be	reference	magnetic,	relevant	to	the	statement	of	abduction	
friendly	natural	laws.	



nominalist	or	neo-Carnapian	realist	version	of	structuralism	I’ve	developed	above	(or	
Hellman’s	original	modal	structuralism)	avoids	both	problems.	

Admittedly,	on	the	neo-Carnapian	realism	about	mathematics	I	ultimately	favor	there	are	
special	objects,	the	natural	numbers,	which	mathematicians	consider.	But	these	
mathematical	objects	only	have	a	special	relationship	to	number	theory	in	the	sense	that	
their	‘core	job’	is	to	help	us	study	logical	possibility	and	necessity	facts	which	equally	
constrain	how	all	objects	can	be	related	by	all	relations.	And	all	pure	mathematical	
questions	can	be	formulated	in	ways	that	capture	everything	mathematicians	care	about	(if	
not	everything	philosophers	care	about).	

Third,	I	think	there’s	some	awkwardness	in	the	fact	that	Shapiro’s	articulation	of	
structuralism	would	seem	to	allow	that	studying	the	weird	metaphysical	properties	of	his	
special	objects	called	structures	would	count	as	mathematics.	

In	contrast,	I’ve	suggested	a	different	way	of	formulating	Shapiro’s	structuralist	thesis:	that	
mathematical	questions	can	all	be	formulated	as	questions	pure	logical	possibility260.	This	
yields	what	I	take	to	be	a	more	intuitive	verdict:	that	studying	the	metaphysical	properties	
of	either	Shapiro’s	structures	qua	exotic	abstract	objects	or	my	primitive	modal	notion	of	
conditional	logical	possibility	(e.g.,	is	it	a	reference	magnet?	does	taking	conditional	logical	
possibility	to	be	a	metaphysical	primitive	commit	us	to	Tractarian/Russellian	ideas	about	
there	being	a	preferred	carving	of	the	world?	)	does	not	count	as	mathematics.	For	the	
above	claims	about	the	nature	of	logical	possibility	cannot	themselves	be	formulated	as	
pure	logical	possibility	claims	(sentences	of	the	form	𝛷	or	◊ 𝛷	in	 	and	◇	are	
unsubscriped	and	𝛷	us	a	sentence	in	the	language	of	logical	possibility.	

Chapter 18 Anti-Objectivism About Set Theory 

So	far,	we	have	discussed	Actualist	and	Potentialist	approaches	to	set	theory.	In	this	
chapter	I	will	discuss	a	third	major	family	of	approaches	to	set	theory:	anti-objectivist	
views	on	which	some	questions	in	the	language	of	set	theory	lack	determinate	right	
answers.	Such	views	are	fairly	popular.	For	example,	many	philosophers	and	
mathematicians	find	it	plausible	that	there’s	no	fact	of	the	matter	about	the	Continuum	
Hypothesis	(the	claim	that	there	is	no	set	whose	cardinality	is	strictly	between	that	of	the	
integers	and	the	real	numbers),	which	has	famously	been	shown	not	to	be	provable	or	
refutable	from	the	ZFC	axioms	of	set	theory.	

In	this	chapter,	I	will	discuss	some	major	examples	of	anti-objectivist	philosophies	of	
mathematics,	and	some	concerns	that	arise	for	them.	After	reviewing	a	useful	distinction	
between	Strong	and	Weak	Anti-Objectivism	about	set	theory,	I’ll	discuss	Field’s	remarks	
about	Weak	Anti-Objectivism,	Feferman’s	Social	Constructivism	(a	form	of	weak	anti-
objectivism)	and	Hamkins’	Multiverse	Program	(possibly	a	form	of	strong	anti-
objectivism).	In	doing	this,	I	hope	to	offer	some	support	(or	at	least	explanation)	for	my	

	

260	See	Chapter	10.	



choice	to	handle	arbitrariness	worries	in	Chapter	2	by	embracing	Potentialist	set	theory	
rather	than	some	anti-Objectivist	option.	

18.1  Strong vs. Weak Anti-Objectivism 

We	can	distinguish	two	different	types	of	anti-objectivism	about	set	theory.	

• Strong	Anti-Objectivist	approaches	to	set	theory	hold	that	all	undecidable	sentences	in	
set	theory	(i.e.,	sentences	which	can’t	be	proved	or	refuted	using	our	best	total	
mathematical	theory)	are	neither	determinately	true	nor	determinately	false.	

• Weak	Anti-Objectivist	approaches	to	set	theory	hold	that	typical	undecidable	
sentences	in	set	theory	are	neither	determinately	true	nor	determinately	false.	

So,	for	example,	if	CH	qualifies	as	a	‘typical’	undecidable	sentence,	then	both	types	of	anti-
Objectivist	theories	will	say	neither	CH	nor	¬	CH	will	be	determinately	true.	

As	Field	(H.	Field	1998)	usefully	notes,	being	an	anti-Objectivist	doesn’t	prevent	you	from	
using	classical	logic.	For	example,	even	strong	anti-Objectivists	can	still	say	that	𝐶𝐻 ∨ ¬𝐶𝐻	
is	determinately	true,	since	this	disjunction	is	provable	in	our	best	mathematical	theories.	

Also,	anti-Objectivism	about	set	theory	can	be	combined	with	either	realism	(i.e.,	
Platonism)	or	anti-realism	about	mathematical	objects.	For	example,	a	philosopher	who	
combines	Platonism	and	anti-Objectivism	might	say	there’s	a	large	mathematical	universe	
containing	many	different	hierarchy-of-sets	like	structures.	All	of	these	structures	satisfy	
all	our	principles	of	first	order	set	theory.	However,	for	any	undecidable	sentence	of	set	
theory	𝜙,	there	will	be	a	hierarchy	of	sets	𝑉(	in	this	mathematical	universe	which	makes	𝜙	
true	and	another	hierarchy	of	sets	𝑉&	which	makes	it	false.	A	set-theoretic	sentence	will	be	
determinately	true	if	and	only	if	it	is	true	on	all	of	these	models	(which	all	provide	equally	
legitimate	interpretations	of	our	set-theoretic	concepts).	Thus,	undecidable	sentences	
won’t	be	determinately	true	or	false.	However,	sentences	of	the	form	𝜙 ∨ ¬𝜙	will	be	
determinately	true,	since	it	is	true	in	all	the	relevant	structures261.	

Some	versions	of	anti-objectivism	(at	least)	promise	to	let	us	avoid	the	arbitrariness	
worries	discussed	in	Chapter	2262.	For	the	Nominalist	Anti-Objectivist	can	deny	that	there	is	

	

261	In	comparison,	a	nominalist	anti-objectivist	might	say	that	(if	T	is	an	axiomatization	of	
all	our	first-order	beliefs	about	set	theory)	an	arbitrary	set-theoretic	sentence	𝜙	is	

• determinately	true	iff	𝜙	is	provable	(using	standard	first-order	logic)	from	T	

• is	determinately	false	iff	¬𝜙	is	provable	from	T	

and	otherwise,	indeterminate.	

262	It’s	not	clear	that	Platonist	anti-objectivist	theories	help	with	arbitrariness.	For	although	
they’re	not	committed	to	any	single	height,	they	do	seem	to	be	committed	to	a	stopping	
point	in	a	different	sense.	It	is	appealing	to	think	that	for	any	plurality	of	objects,	it	would	
	



a	single	hierarchy	of	sets	(or	a	plurality	of	hierarchies	of	sets)	which	happens	to	stop	at	
some	point	which	is	not	determined	by	our	conception	of	the	hierarchy	of	sets	(and	thus	
qualify	as	rivals	to	the	Potentialist	set	theory	advocated	in	this	book).	

18.1.1 Problems for Strong Anti-Objectivism 

Field	notes	that	we	can	use	Putnamian	model	theoretic	reference	skepticism	to	motivate	
Strong	Anti-Objectivism.	Crudely	speaking,	one	might	argue	that	since	we	lack	causal	
contact	with	mathematical	objects,	the	only	thing	which	can	constrain	the	reference	of	our	
terms	like	‘set’	is	our	best	first	order	mathematical	theory	about	the	sets.	Thus,	there’s	a	
prima	facie	question	of	how	any	sentence	𝜙	such	that	both	𝜙	and	¬𝜙	are	compatible	with	
our	best	first-order	theory	of	the	sets	could	be	determinately	true	or	false.	

However,	Field	then	plausibly	argues	that	Strong-Anti-Objectivism	faces	problems	about	
what	to	say	concerning	mathematical	consistency	facts,	as	follows.	

There’s	compelling	reason	to	believe	that	our	best	total	first	order	theory	of	set	theory	is	
recursively	enumerable.	Thus,	by	Gödel’s	famous	theorem	(Gödel	1931)	there	will	be	some	
number	theoretic	sentences	that	aren’t	decidable	by	our	best	total	theory.	So,	the	strong	
anti-Objectivist	will	say	that	some	number	theoretic	sentences	aren’t	determinately	true	or	
determinately	false.	

But	this	can	seem	unintuitive.	For	one	thing,	many	people	have	the	intuition	that	there	
should	be	determinate	right	answers	to	all	questions	of	number	theory.	More	worryingly	
however,	even	if	we	are	willing	to	bite	this	bullet,	saying	that	there	aren’t	facts	about	what	
con	sentences	(i.e.,	number	theoretic	statements	corresponding	the	claim	that	no	number	
Gödel	codes	a	proof	of	‘0=1’	from	some	certain	mathematical	axioms)	are	true	has	powerful	
effects	on	how	we	can	understand	the	rest	of	the	strong	view.	

The	issue	is	that	saying	some	con	sentences	are	indeterminate	creates	pressure	to	say	
there	aren’t	always	determinate	facts	about	what	sentences	are	provable	(i.e.,	provable	by	a	
finite	series	of	applications	of	the	first	order	logical	inferences	to	our	best	theory).	For	
suppose	there	are	determinate	facts	about	provability,	i.e.,	for	every	first-order	theory	T	
either	“⌜0 = 1⌝	is	provable	from	T”	is	determinately	true	or	it	is	determinately	false.	But	
Con(𝑇)	is	simply	a	formalization	of	the	claim	that	it’s	not	the	case	that	“⌜0 = 1⌝	is	provable	
from	T”263	and	most	people	treat	the	biconditional	claim	connecting	provability	and	the	

	

be	logically	possible	for	there	to	be	a	hierarchy	of	sets	like	structure	which	contains	a	set	of	
this	plurality	(and	thus	adds	to	it).	And,	in	this	case,	the	Platonic	anti-Objectivist	is	
committed	to	positing	an	arbitrary	stopping	point	(a	logically	possible	upper	bound	past	
which	none	of	our	hierarchy	of	sets	goes)	just	as	much	as	the	standard	Platonist	set	theorist	
is.	

263	That	is,	Con(𝑇) ↔
def
¬(∃𝑛)Proves(0 = 1, 𝑇, 𝑛)	where	Proves(0 = 1, 𝑇, 𝑛)	asserts	that	𝑛	

doesn’t	code	a	proof	from	T.	Though,	formally	speaking,	the	predicate	would	accept	a	code	
for	a	computable	axiomatization	of	𝑇	in	those	cases	𝑇	is	infinite	like	the	ZFC	axioms.	



existence	of	a	natural	number	coding	for	a	proof	as	clearly	true	(and	perhaps	even	
something	like	analytic)264.	So,	one	might	think	that	these	biconditionals	must	come	out	
true	on	all	acceptable	interpretations	of	our	mathematical	talk.	Thus,	from	the	assumption	
that	all	claims	about	provability	are	determinately	true	or	false	it	plausibly	follows	that	the	
corresponding	con	sentences	must	be	determinately	true	or	false	(i.e.,	it’s	true	if	0 = 1	is	
provable	and	false	if	not).	

But	then	saying	that	there	aren’t	determinate	facts	about	what’s	provable	undermines	our	
grip	on	the	stated	definition	of	strong	anti-objectivism:	the	claim	that	set-theoretic	
sentences	are	determinately	true	iff	they	are	provable	from	our	best	physical	theory	T.	Are	
we	now	to	say	that,	not	only	is	there	no	determinate	fact	about	certain	mathematical	
claims,	but	there	isn’t	even	a	determinate	fact	about	what	claims	have	a	determinate	right	
answer	(i.e.,	are	provable)?	

Field	notes	that	we	can	fix	this	problem	by	replacing	strong	anti-objectivism	with	an	even	
more	extreme	anti-objectivism,	which	says	that	only	sentences	provable	in	less	than	𝑛	
stages	(for	some	𝑛	larger	than	any	number	of	stages	a	proof	could	actually	contain)	are	
determinately	true.	But,	of	course,	this	is	a	very	radical	move	and	any	particular	choice	of	𝑛	
looks	unmotivated.	

18.2  Weak Anti-Objectivism 

Weak	Anti-Objectivism	lets	us	avoid	the	problem	above.	For	the	Weak	Anti-Objectivist	can	
say	there	are	determinate	facts	about	provability	and	right	answers	regarding	
mathematical	Con	sentences,	but	more	typical/complex	set-theoretic	questions	that	can’t	
be	settled	by	proof	lack	right	answers.	

The	Weak	Anti-Objectivist	can	even	keep	the	Putnamian	model	theoretic	motivations	
invoked	above,	if	they	can	find	a	way	to	say	that	something	(e.g.,	physical	reality)	pins	
down	a	unique	interpretation	for	talk	of	the	natural	numbers	(and	hence	determinate	right	
answers	to	all	Con	sentences	above),	but	there	are	still	different	equally	good	
interpretations	for	the	rest	of	set	theory,	so	typical	set-theoretic	claims	not	decidable	from	
our	axioms	don’t	have	definite	right	answers.	

And	Field	cautiously	proposes	a	specific	way	of	implementing	these	ideas	—	pinning	down	
determinate	reference	to	a	natural	number	structure	(up	to	isomorphism)	—	in	(H.	Field	
1998).	In	a	nutshell,	he	is	using	determinate	physical	reference	and	facts	about	space	to	pin	
down	a	definite	notion	of	finitude	(which	lets	us	rule	out	nonstandard	models	of	PA,	pin	

	

264	If	pressed	to	explicate	when	we	should	say	that	a	particular	statement	is	provable	we	
would	cash	that	out	in	something	like	the	existence	of	a	finite	number	of	steps,	each	of	
which	follows	from	the	next	according	to	some	finite	list	of	rules,	and	we’d	agree	that	such	
a	sequence	exists	just	if	there	is	an	integer	appropriately	coding	it.	



down	a	determinate	truth	value	for	all	number	theoretic	sentences	and	hence	all	claims	
about	provability)265.	

The	resulting	view	about	set	theory,	which	I	will	provisionally	call	Field’s	weak	anti-
objectivism,	has	significant	attractions.	For	example,	it	provides	clear	answers	to	certain	
Putnamian	questions	about	how	we	can	refer	to	mathematical	structures.	Additionally	(as	
noted	above)	nominalist	implementations	of	this	anti-objectivism	promise	to	avoid	the	
arbitrariness	worries	for	actualism	discussed	in	Chapter	2,	while	(as	noted	above)	still	
vindicating	set	theorists’	use	of	classical	logic.	

18.1.1.1  Objections to Field’s Weak Anti-Objectivism 

I	will	now	explain	why	I	take	my	Potentialist	approach	to	be	preferable.	

My	main	objection	to	Field’s	proposal	concerns	his	Putnamian	motivation	for	anti-
Objectivism.	It	is	beyond	the	scope	of	this	book	to	try	to	refute	Putnamian	reference	
skepticism.	However,	it	should	be	noted	that	Putnam’s	arguments	for	reference	skepticism	
are	very	general,	also	blocking	determinate	reference	to	physical	objects	and	suggesting	
that	(in	a	certain	sense)	we	can’t	be	undetectably	wrong	about	the	sciences.	So	those	who	
accept	scientific	realism	are	already	committed	to	something’s	being	wrong	with	Putnam’s	
argument266.	

Second,	one	might	note	that	in	Saving	Truth	from	Paradox	(H.	H.	Field	2008a)	Field	himself	
argues	that	we	should	accept	a	notion	of	logical	possibility	as	a	conceptually	primitive	and	
seems	to	allow	determinate	reference	to	it.	But	if	we	can	somehow	secure	determinate	
reference	to	logical	possibility	simpliciter,	it	seems	natural	that	we	should	also	have	
determinate	reference	to	the	notion	of	conditional	logical	possibility	which	generalizes	it.	
And	we	have	seen	the	latter	to	suffices	to	pin	down	a	unique	intended	width	to	the	
hierarchy	of	sets	—	and	determinate	right	answers	to	all	set-theoretic	claims	in	a	
Potentialist	framework.	

	

265	I	raise	some	issues	with	this	and	propose	my	own	argument	for	a	relevant	conditional	
claim	in	(S.	Berry	2020b):	if	we	can	somehow	secure	determinate	realist	reference	to	
physical	notions	plus	notions	of	physical	possibility,	we	can	pin	down	a	unique	natural	
number	structure.	Though,	I	only	argue	for	the	conditional	claim,	not	that	we	can	secure	
such	definite	reference.	

266	One	might	argue	that	causal	contact	with	some	physical	objects	can	pin	down	
determinate	reference	to	them	in	a	way	that	it	could	not	pin	down	reference	to	
mathematical	objects	or	a	preferred	notion	of	logical	possibility.	But	if	you	accept	that	we	
can	refer	to	(and	ideal	science	can	be	wrong	about)	determinate	non-Humean	facts	about	
physical	possibility	or	objective	physical	probability,	this	line	is	difficult	to	take.	For	it	
doesn’t	seem	like	causal	contact	can	play	a	very	different	role	in	explaining	determinate	
reference	to	these	modal	notions	than	it	can	in	explaining	determinate	reference	to	logical	
possibility.	



18.3  Feferman’s Conceptual Structuralism 

Next	let	us	turn	to	Feferman.	In	works	like	(Feferman,	n.d.)	Feferman	advocates	a	view	
called	Conceptual	Structuralism.	On	this	view	mathematics	studies	mental	conceptions.	
These	are	socially	constructed	objects,	like	marriages,	bank	balances	and	contracts.	And	
their	properties	can	change	as	mathematicians	refine	their	way	of	thinking	about,	e.g.,	the	
real	numbers.	He	writes:	

The	basic	objects	of	mathematical	thought	exist	only	as	mental	conceptions,	
though	the	source	of	these	conceptions	lies	in	everyday	experience	in	manifold	
ways,	in	the	processes	of	counting,	ordering,	matching,	combining,	separating,	and	
locating	in	space	and	time.	(Feferman,	n.d.)	

Mental	conceptions	are	world	pictures	which	describe	structures,	that	is,	“coherently	
conceived	groups	of	objects	interconnected	by	a	few	simple	relations	and	operations”	
(Feferman,	n.d.)	and	exist	prior	to	any	choice	of	axioms	or	logical	development.	

According	to	Feferman	the	aim	of	mathematics	is	to	start	with	some	features	of	these	
structures	which	our	conceptions	make	obvious	and	then	work	out	further	features.	
Importantly,	conceptions	of	mathematical	structures	can	be	more	or	less	clear,	and	when	
they	are	not	fully	clear	there	can	be	failures	of	determinate	truth-value.	

In	particular,	Feferman	suggests	that	our	conception	of	the	natural	numbers	via	thinking	
about	stroke	sequences	is	fully	clear.	On	the	other	hand,	our	conception	of	the	real	
numbers	(particularly	our	set-theoretic	conception	of	the	real	numbers)	is	not	fully	clear.	
And	indeed,	it	cannot	be	made	clear	without	violating	the	kinds	of	plenitude	intuitions	
which	belong	to	the	conception	right	now	(for	example	we	can’t	just	stipulate	that	all	
subsets	of	the	natural	numbers	are	definable/constructable	in	certain	ways).	Thus,	there	is	
no	fact	of	the	matter	about	questions	like	the	Continuum	Hypothesis,	because	there	are	no	
determinate	facts	about	how	many	sets	something	containing	‘all	possible	subsets’	of	the	
natural	numbers	would	have	to	have.	

I	take	Feferman’s	proposal	to	be	a	form	of	Weak	Anti-Realism.	For	it	allows	there	to	be	
definite	right	answers	to	all	sentences	in	the	language	of	arithmetic.	But	it	denies	that	there	
are	definite	right	answers	to	some	other	questions	stated	in	the	language	of	set	theory.	

Accepting	Feferman’s	social	constructive	approach	to	set	theory	would	let	us	avoid	the	
arbitrariness	problems	for	actualism	noted	in	Chapter	2.	For	Feferman	could	(and	would)	
say	that	our	conception	of	the	hierarchy	of	sets	is	not	fully	clear	with	regard	to	the	intended	
height	of	the	sets.	And,	unlike	the	Platonist,	he	does	not	take	there	to	be	Platonic	objects	
forming	a	hierarchy	of	sets	which	extend	up	a	certain	height	but	no	further.	

So	why	do	I	favor	my	Potentialist	approach	to	set	theory	over	Feferman’s?	

First,	Feferman’s	main	cited	reason	for	preferring	his	view	to	Platonism	is	the	Benacerraf	
problem.	He	writes,	“The	assumption	of	all	these	definite	totalities	[(namely	the	powerset	
of	the	natural	numbers	and	the	powerset	of	that)]	is	only	justified	by	Platonic	realism”	and	
then	notes	that	realism	faces	the	Benacerraf	problem.	So,	it	won’t	apply	if	you’re	optimistic	



about	the	account	of	possible	human	access	to	logical	possibility	facts	discussed	in	§10.3	
and	(S.	Berry	2018b).	

Second,	as	Peter	Koellner	crisply	puts	it	in	(Koellner	2016),	Feferman’s	conception	of	
‘adequate	clarity’	can	itself	seem	troublingly	unclear.	Feferman	seems	interested	in	the	
possibility	of	forming	various	mental	pictures,	like	the	stroke	sequence	associated	with	our	
conception	of	the	natural	numbers.	And	he	writes	that	our	conception	of	the	continuum	in	
terms	of	a	line	is	clearer	than	the	set-theoretic	conception	of	it	in	terms	of	arbitrary	subsets	
of	the	integers.	He	writes,	“we	have	a	much	clearer	conception	of	arbitrary	sequences	of	
points	on	the	Hilbert	(or	Dedekind,	or	Cauchy-Cantor)	line,	or	at	least	of	bounded	strictly	
monotone	sequence,	than	we	do	of	arbitrary	subsets	of	the	line.	And	...	we	have	a	clearer	
conception	of	what	it	means	to	be	an	arbitrary	infinite	path	through	the	full	binary	tree	
than	of	what	it	means	to	be	an	arbitrary	subset	of	N,	but	in	neither	case	do	we	have	a	clear	
conception	of	the	totality	of	such	paths,	resp.	sets.”	(Feferman,	n.d.)	

But	having	a	clear	conception	doesn’t	just	mean	being	able	to	have	some	mental	picture	of	
that	structure,	e.g.,	imagining	the	hierarchy	of	sets	by	mentally	picturing	a	𝑉-shaped	
expanding	column.	For	Feferman	suggests	that	there’s	a	way	in	which	this	picture	
represents	itself	as	being	fully	determinate	yet	fails	to	be	so	determinate.	He	writes,	“There	
is	no	problem	to	put	oneself	in	the	mental	frame	of	mind	of	‘this	is	what	the	cumulative	
hierarchy	looks	like,’	for	which	one	can	see	that	such	and	such	propositions	including	the	
axioms	of	ZFC	are	(more	or	less)	obviously	true.	I	have	taught	set	theory	many	times	and	
have	presented	it	in	terms	of	this	ideal-world	picture	with	only	the	caveat	that	this	is	what	
things	are	supposed	to	be	like	in	that	world,	rather	than	to	assert	that’s	the	way	the	world	
actually	is.”	(Feferman,	n.d.)	

Additionally,	note	that	Feferman’s	notion	of	having	a	fully	definite	conception	of	a	
mathematical	structure	cannot	be	identified	with	being	able	to	prove	or	refute	all	
statements	about	that	mathematical	structure.	And,	more	generally	he	can’t	mean	that	a	
conception	is	definite	about	whether	𝜙	iff	we	can	prove	or	refute	𝜙	by	contemplating	our	
conception	of	the	structure.	For	Feferman	says	that	our	conception	of	the	natural	numbers	
is	fully	determinate,	and	by	standard	points	about	the	incompleteness	theorem	(and	the	
plausibly	computable	nature	of	the	human	mind)	there	are	questions	about	the	numbers	
we	won’t	be	able	to	decide	by	eliciting	them	from	this	conception.	

Third,	I	wonder	whether	Feferman’s	view	can	make	sense	of	certain	applications	of	
mathematics.	He	can	make	sense	of	the	applications	of	number	theory	to	what	physical	
structures	exist,	by	saying	that	these	instantiate	the	number	structure	we	can	conceive	by	
imagining	strokes.	But	suppose	that	we	had	such	a	physical	structure.	And	suppose	that	our	
conception	of	subsets	of	the	natural	numbers	structure	left	it	indefinite	whether	there	is	
any	subset	of	the	numbers	with	some	property	𝜙.	Now	suppose	some	physical	property,	
like	being	purple,	applied	to	the	objects	in	this	stroke	sequence	in	such	a	way	that	the	
physical	strokes	which	were	purple	had	this	property.	In	this	case,	intuitively,	the	claim	
that	there	is	a	subset	of	the	numbers	that	satisfies	𝜙	would	have	to	be	determinately	true,	
despite	not	being	adequately	pinned	down	by	our	conception.	



18.4  Hamkins 

Set	theorist	Joel	Hamkins	has	developed	an	influential267	multiverse	approach	to	set	theory,	
on	which	there	are	many	different	hierarchies	of	sets,	and	there’s	no	fact	of	the	matter	
about	whether	certain	set-theoretic	statements	are	true,	beyond	the	fact	that	they	are	true	
of	some	hierarchies	of	sets	within	the	multiverse	and	false	in	others.	On	this	view	there	is	
no	full	intended	hierarchy	of	sets	which	contains	all	subsets	of	sets	it	contains	—	or	even	all	
subsets	of	the	natural	numbers.	Rather,	for	every	set-theoretic	universe	𝑉	in	the	multiverse,	
there’s	an	extending	‘fatter’	hierarchy	of	sets	𝑉[𝐺]	that	includes	all	sets	in	𝑉	but	also	an	
extra	‘missing	subset’	of	the	set	of	natural	numbers	in	𝑉.	

I	will	only	have	time	to	scratch	the	surface	of	responding	to	this	program	here268.	I	will	
discuss	the	motivations	for	the	Multiverse	view	Hamkins	provides	in	(J.	Hamkins	2013).	
And	I’ll	suggest	that	despite	Hamkins	central	use	of	an	analogy	between	set	theory	and	
geometry	to	motivate	his	set-theoretic	multiverse	program,	there	are	important	limits	to	
this	analogy	which	raise	a	(prima	facie)	explanatory	indispensability	worry	for	his	view.	

18.4.1.1  Hamkins’ Multiverse 

18.4.1.1.1  Forcing Fundamentals 

Before	describing	Hamkins’	multiverse,	I	will	first	review	some	very	basic	mathematical	
facts	about	forcing,	as	this	technique	plays	a	central	role	in	Hamkins’	program	(and	some	of	
these	mathematical	facts	will	play	an	important	role	in	my	argument).	In	particular,	
Hamkins’	main	motivation	for	the	multiverse,	aside	from	the	analogy	with	geometry,	arises	
from	the	idea	that	we	should	understand	mathematical	arguments	by	forcing	in	a	certain	
unconventional	way.	

Set-theoretic	forcing	was,	famously,	developed	by	Paul	Cohen	to	prove	the	independence	of	
the	Continuum	Hypothesis	(i.e.,	the	claim	that	there	is	no	set	intermediate	in	size	between	
the	real	numbers	and	the	natural	numbers).	However,	this	method	has	been	generalized	to	
prove	a	broad	range	of	meta-mathematical	results.	

As	standardly	presented,	forcing	is	a	technique	which	lets	one	produce	a	new	model	of	set	
theory	from	an	original	countable	well-founded269	model	𝑀	of	set	theory.	

	

267	See,	for	example,	(Button	and	Walsh	2016;	Jonas	2020;	Gaifman	2012;	Clarke-Doane	
2020;	Koellner,	n.d.;	Pruss	2019)	

268	Many	thanks	to	Peter	Gerdes	for	help	with	this	section,	and	thanks	Peter	Koellner	for	
much	relevant	lecture	and	informal	conversation.	

269	More	specifically,	forcing	lets	you	produce	a	new	model	of	set	theory	extending	every	
countable	transitive	model	of	set	theory.	A	model	𝑀	of	set	theory	is	transitive	iff	the	
membership	relation	in	𝑀	is	∈,	i.e.	𝑥 ∈j 𝑦 ↔ 𝑥 ∈ 𝑦.	However,	by	the	Mostowski	collapse	
lemma	(Jech	1981),	any	well-founded	countable	model	is	isomorphic	to	a	transitive	model.	



We	work	in	the	total	hierarchy	of	sets	𝑉	which	we	assume	to	satisfy	the	ZFC	(Zermelo-
Fraenkel	plus	Choice)	axioms	of	set	theory.	And	we	consider	an	infinite	partial	order	ℙ	that	
is	a	set	in	our	countable	model	𝑀.	Because	𝑀	is	countable,	it	has	to	be	missing	some	
subsets	of	any	infinite	set	ℙ	it	contains,	by	Cantor’s	diagonal	argument.	Our	strategy	will	be	
to	expand	𝑀	by	adding	a	missing	subset	of	this	set	ℙ	to	𝑀.	

Specifically,	we	can	use	the	fact	that	𝑀	is	countable	to	prove	that	there’s	an	‘𝑀-Generic’	set	
𝐺 ⊂ ℙ,	(where	being	𝑀-generic	implies	not	a	being	set	in	𝑀)270.	

Next,	we	consider	a	fatter	model	of	set	theory	𝑀[𝐺]	which	expands	𝑀	by	adding	𝐺	to	it	
(along	with	other	sets,	as	needed	to	satisfy	the	ZFC	axioms271.	And	finally,	we	show	that	any	
such	𝑀[𝐺]	must	satisfy	some	desired	claim	𝜙.	In	this	way	we	prove	the	relative	consistency	
of	ZFC+ 𝜙.	

But	now	the	key	point	about	forcing	arguments	that	opens	the	door	to	Hamkins’	multiverse	
is	this.	The	mechanics	of	forcing	allow	us	to	make	claims	that	only	quantify	over	sets	in	
original	countable	model	of	set	theory272	𝑀	but	can	be	seen	as	implicitly	telling	us	about	this	
larger	model	of	set	theory	𝑀[𝐺]273	in	the	following	sense.	

We	can	define	a	relation	⊩	(called	a	forcing	relation)	such	that	the	claim	that	⊩ 𝜙	only	
involves	sets	in	𝑀	but	we	can	prove	the	following	biconditional	(without	appeal	to	the	fact	
that	𝑀	is	countable).	If	there	is	any	𝑀-generic	subset	of	ℙ:	

⊩ 𝜙	if	and	only	if	𝑀[𝐺] ⊨ 𝜙	for	every	generic	𝐺 ⊂ ℙ.	

That	is,	a	sentence	𝜙	is	forced	(⊩ 𝜙)	if	and	only	if	for	any	generic	set	G	of	the	kind	
mentioned	above,	𝜙	is	true	in	the	expanded	model	of	ZFC	𝑀[𝐺]	we	get	by	adding	𝐺.	

A	specific	forcing	argument	proceeds	by	picking	an	infinite	partial	order	ℙ	which	we	will	
add	a	subset	of,	and	then	proving	that	⊩ 𝜙	holds	when	𝜙	is	some	claim	we	wish	to	show	is	
consistent	with	the	ZFC	axioms.	

So,	for	instance,	Cohen	proved	in	ZFC	that	there	is	a	partial	order	ℙ	such	that	⊩ ¬CH	
(where	CH	is	the	continuum	hypothesis).	Thus,	if	𝑀	is	a	countable	transitive	model	of	ZFC	

	

270	Specific,	a	generic,	i.e.,	a	generic	filter	𝐺	is	a	filter	which	intersects	every	dense	subset	of	
ℙ	included	in	𝑀.	

271	𝑀[𝐺]	winds	up	being	the	smallest	transitive	model	of	ZFC	extending	𝑀	and	containing	𝐺	
as	a	set.	

272	i.e.	model	of	ZFC	

273	While	𝑀	can’t	define	truth	in	𝑀[𝐺]	in	𝑀	one	can	define	a	class	of	names	for	objects	in	
𝑀[𝐺]	(some	of	which	may	refer	to	the	same	object)	and	a	forcing	relation	𝑝 ⊩ 𝜙	(where	𝜙	
is	a	sentence	in	the	language	of	set	theory	and	𝑝	an	element	of	the	forcing	partial	order	ℙ	
supplemented	with	the	aforementioned	class	of	names)	which	holds	just	if	𝑀[𝐺] ⊨ 𝜙	for	
every	generic	object	𝐺	containing	𝑝.	



then	(if	𝐺	is	a	generic	object	for	ℙ),	𝑀[𝐺]	is	a	countable	transitive	model	of	ZFC+¬CH	in	
𝑀[𝐺].	Of	course,	speaking	formally,	we	can’t	assume	that	there	are	any	models	of	ZFC,	but	
this	is	enough	to	establish	the	consistency	of	ZFC+¬CH	provided	we	think	ZFC	is	consistent	
(and	hence	has	a	countable	model).	

18.4.1.1.2  Hamkins’ Proposal 

Hamkins	describes	his	multiverse	proposal	as	a	form	of	Platonism.	

The	multiverse	view	is	one	of	higher-order	realism—Platonism	about	universes—	
and	I	defend	it	as	a	realist	position	asserting	actual	existence	of	the	alternative	
set-theoretic	universes	into	which	our	mathematical	tools	have	allowed	us	to	
glimpse.	(J.	D.	Hamkins	2012)	

However,	rather	than	accepting	a	single	platonic	hierarchy	of	sets,	he	proposes	that	there	
are	many	different	hierarchies	of	sets.	The	set-theoretic	multiverse	is	the	space	of	all	such	
set-theoretic	hierarchies.	And	certain	set-theoretic	statements,	like	the	Continuum	
Hypothesis	are	not	true	or	false	simpliciter,	but	merely	true	in	some	parts	of	the	multiverse	
and	false	in	others.	

As	Hamkins	vividly	argues	in	the	passage	below,	𝐶𝐻	cannot	be	settled	by	finding	intuitively	
compelling	new	axioms	from	which	it	can	be	proved	or	refuted,	because	mathematicians’	
experience	reveals	there	are	parts	of	the	multiverse	in	which	𝐶𝐻	holds	and	parts	in	which	
¬𝐶𝐻	holds.	

“[If	some	obviously	true	seeming	mathematical	axiom]	𝜙	were	proved	to	imply	
𝐶𝐻,	then	we	would	not	accept	it	as	obviously	true,	since	this	would	negate	our	
experiences	in	the	worlds	having	¬𝐶𝐻.	The	situation	would	be	like	having	a	
purported	‘obviously	true’	principle	that	implied	that	midtown	Manhattan	doesn’t	
exist.	But	I	know	it	exists;	I	live	there.	Please	come	visit!	Similarly,	both	the	CH	
and	¬𝐶𝐻	worlds	in	which	we	have	lived	and	worked	seem	perfectly	legitimate	
and	fully	set-theoretic	to	us,	and	because	of	this,	any	proof	from	𝜙	that	CH	or	that	
¬𝐶𝐻	casts	doubt	to	us	on	the	naturality	of	𝜙	(J.	D.	Hamkins	2012).	

Hamkins’	view	of	the	multiverse	is	heavily	influenced	by	the	set-theoretic	technique	of	
forcing	just	described.	In	particular,	he	suggests	that	for	any	set-theoretic	hierarchy	𝑉	we	
should	accept	that	(for	an	appropriate	partial	order	ℙ	in	𝑉)	there	is	another	set-theoretic	
hierarchy	𝑉[𝐺]	corresponding	to	the	forcing	extension	of	𝑉	with	respect	to	the	partial	order	
ℙ.	As	we	saw	in	the	previous	section,	this	claim	is	straightforwardly	true	if	we	work	in	
some	background	notion	of	set	theory	and	take	𝑉	to	be	a	countable	model	of	set	theory.	But	
Hamkins	suggests	that	we	should	assume	that	any	(forcing	appropriate)	partial	order	
admits	a	generic	filter,	so	that	even	whatever	total	set-theoretic	hierarchy	𝑉	we	are	
currently	working	in	has	a	forcing	extension.	He	writes	as	follows.	

[A]	set	theorist	with	the	universe	view	can	insist	on	an	absolute	background	
universe	𝑉,	regarding	all	forcing	extensions	and	other	models	as	curious	complex	
simulations	within	it.	(I	have	personally	witnessed	the	necessary	contortions	for	
class	forcing.)	Such	a	perspective	may	be	entirely	self-consistent,	and	I	am	not	



arguing	that	the	universe	view	is	incoherent,	but	rather,	my	point	is	that	if	one	
regards	all	outer	models	of	the	universe	as	merely	simulated	inside	it	via	complex	
formalisms,	one	may	miss	out	on	insights	that	could	arise	from	the	simpler	
philosophical	attitude	taking	them	as	fully	real	(J.	D.	Hamkins	2012).	

This	claim	that	we	can	extend	every	set-theoretic	structure	by	taking	a	forcing	extension	is	
a	crucial	and	deeply	controversial	aspect	of	Hamkins	view.	For	it	directly	conflicts	with	the	
standard	realist	intuition	that	it’s	possible	to	build	a	set-theoretic	hierarchy	that	already	
contains	‘all	possible	subsets’	of	any	set	in	that	hierarchy	(c.f.	IHW	in	§2.2).	For	any	such	
set-theoretic	hierarchy	𝑉	must	already	contain	all	subsets	of	every	partial	order	ℙ	it	
contains.	Thus,	there	should	not	be	any	generic	𝐺 ⊂ ℙ	which	isn’t	a	member	of	𝑉,	i.e.,	𝑉	and	
𝑉[𝐺]	should	always	be	the	same.	For	instance,	if	one	thinks	that	a	set-theoretic	hierarchy	
already	contains	all	possible	subsets	of	the	integers,	it	would	be	impossible	to	extend	that	
hierarchy	via	a	forcing	extension	which	adds	another	subset	of	the	integers.	

While	Hamkins’	proposal	seems	to	take	significant	motivation	from	the	example	of	forcing	
extensions,	this	isn’t	the	only	closure	principle	about	the	multiverse	which	he	accepts.	It	
isn’t	even	the	most	controversial.	He	also	suggests	that	every	set-theoretic	hierarchy	𝑉	is	
countable	from	the	perspective	of	some	other	hierarchy	𝑉-	(J.	D.	Hamkins	2012).	Indeed,	he	
suggests	that	---	although	“this	principle	appears	to	be	abhorrent	to	most	set	theorists”	---	
every	set-theoretic	hierarchy	𝑉	is	ill-founded	from	the	‘perspective’	of	another	set-theoretic	
hierarchy	𝑉-.	

18.4.1.2  Motivating the Multiverse 

Why	should	one	accept	this	radical	approach	to	set	theory?	In	this	section,	I’ll	discuss	two	
motivations	Hamkins	gives	in	his	philosophical	overview	‘The	Multiverse	Perspective	in	Set	
Theory’	(J.	Hamkins	2013)	and	suggest	that	we	can	more	attractively	accommodate	these	
motivations	by	giving	a	hyperintensional	modal	twist	to	Hamkins’	existing	Plenitudinous	
Platonist	formulation	of	his	multiverse	program.	

18.4.1.2.1   Mathematical Practice and Phenomenology 

First,	Hamkins	appeals	to	the	practice	and	phenomenology	of	set	theory	(in	particular	
forcing	arguments).	He	notes	that	now,	rather	than	stating	results	proved	by	forcing	as	
consistency	claims	of	the	form	𝐶𝑜𝑛(ZFC+ 𝜙) → 𝐶𝑜𝑛(ZFC+ 𝜓),		“contemporary	work	
would	state	the	theorem	as:	If	𝜙,	then	there	is	a	forcing	extension	that	satisfies	𝜓.”	The	
latter	claim	could	be	read	as	asserting	the	existence	of	a	forcing	extension	of	the	total	set-
theoretic	hierarchy	𝑉	you	are	working	in,	rather	than	any	mere	countable	model	𝑀	
satisfying	ZFC+ 𝜙.	Hamkins’	Multiverse	hypothesis	takes	this	appearance	at	face	value.	

Hamkins	also	appeals	to	the	phenomenology	of	making	forcing	arguments,	which	he	
describes	as	follows	(emphasis	mine),	and	suggests	that	his	multiverse	proposal	takes	at	
face	value.	

[The	multiverse	proposal]	makes	sense	of	our	experience—in	a	way	that	the	
universe	view	does	not—simply	by	filling	in	the	gaps,	by	positing	as	a	
philosophical	claim	the	actual	existence	of	the	generic	objects	which	forcing	



comes	so	close	to	grasping,	without	actually	grasping.	With	forcing,	we	seem	to	
have	discovered	the	existence	of	other	mathematical	universes,	outside	our	own	
universe,	and	the	multiverse	view	asserts	that	yes,	indeed,	this	is	the	case.	We	
have	access	to	these	extensions	via	names	and	the	forcing	relation,	even	though	
this	access	is	imperfect.	Like	Galileo,	peering	through	his	telescope	at	the	moons	
of	Jupiter	and	inferring	the	existence	of	other	worlds,	catching	a	glimpse	of	what	it	
would	be	like	to	live	on	them,	set	theorists	have	seen	via	forcing	that	divergent	
concepts	of	set	lead	to	new	set-theoretic	worlds,	extending	our	previous	
universe,	and	many	are	now	busy	studying	what	it	would	be	like	to	live	in	them.	
(J.	Hamkins	2013)	pg.	11	

Equally	eminent	set	theorists	who	reject	the	multiverse	program	(D.	A.	Martin	2001)	might	
give	a	different	description	of	the	phenomenology.	And	even	if	one	grants	this	point,	one	
it’s	disputable	whether	the	multiverse	better	fits	mathematical	practice	and	
phenomenology	than	conventional	realist	approach	to	set	theory	(paired	with	the	
conventional	interpretation	of	forcing	described	above)	overall.	

Admittedly	Hamkins’	proposal	accords	better	with	intuitions	that	forcing	arguments	reveal,	
“new	set-theoretic	worlds,	extending	our	previous	universe.”	However,	one	might	argue	
that	traditional	realist	approaches	to	set	theory	account	for	many	more	aspects	of	
mathematical	intuition	and	practice	overall	than	Hamkins’	theory	does.	For	(as	we	saw	
above)	Hamkins	admits	that	his	own	principles	about	what	hierarchies	exist	in	the	
multiverse	will	be	“abhorrent	to	many	set	theorists.”	

18.4.1.2.2  An Analogy Between Set Theory and Geometry 

However,	perhaps	a	second	kind	of	motivation	which	more	clearly	supports	the	multiverse	
perspective	over	more	traditional	realism	can	be	found	later	in	(J.	D.	Hamkins	2012).	For	
Hamkins	dramatizes	the	kind	of	view	that	he	takes	set-theoretic	practice	to	support	(and	
the	subsequent	change	in	mathematical	attitudes	he	implicitly	advocates)	by	drawing	an	
analogy	between	set	theory	and	geometry.	If	the	multiverse	view	could	be	shown	fall	out	of	
treating	set	theory	and	geometry	similarly,	this	could	powerfully	motivate	accepting	it.	

I	will	quote	Hamkins’	specific	and	somewhat	unusual	development	of	this	familiar	
comparison	at	some	length	because	of	its	importance	to	the	argument	below.	He	writes,	

There	is	a	very	strong	analogy	between	the	multiverse	view	in	set	theory	and	the	
most	commonly	held	views	about	the	nature	of	geometry.	For	two	thousand	
years,	mathematicians	studied	geometry,	proving	theorems	about	and	making	
constructions	in	what	seemed	to	be	the	unique	background	geometrical	universe.	
In	the	late	nineteenth	century,	however,	geometers	were	shocked	to	discover	
non-Euclidean	geometries.	At	first,	these	alternative	geometries	were	presented	
merely	as	simulations	within	Euclidean	geometry,	as	a	kind	of	playful	or	
temporary	re-interpretation	of	the	basic	geometric	concepts.	For	example,	by	
temporarily	regarding	‘line’	to	mean	a	great	circle	on	the	unit	sphere,	one	arrives	
at	spherical	geometry,	where	all	lines	intersect;	by	next	regarding	‘line’	to	mean	a	
circle	perpendicular	to	the	unit	circle,	one	arrives	at	one	of	the	hyperbolic	
geometries,	where	there	are	many	parallels	to	a	given	line	through	a	given	point.	



At	first,	these	alternative	geometries	were	considered	as	curiosities,	useful	
perhaps	for	independence	results,	for	with	them	one	can	prove	that	the	parallel	
postulate	is	not	provable	from	the	other	axioms.	In	time,	however,	geometers	
gained	experience	in	the	alternative	geometries,	developing	intuitions	about	what	
it	is	like	to	live	in	them,	and	gradually	they	accepted	the	alternatives	as	
geometrically	meaningful.	Today,	geometers	have	a	deep	understanding	of	the	
alternative	geometries,	which	are	regarded	as	fully	real	and	geometrical	(J.	
Hamkins	2013).	

In	this	quote,	Hamkins	compares	set	theorists	who	approach	forcing	conventionally	(as	
studying	countable	models	inside	the	true	intended	hierarchy	of	sets	V)	to	old	geometers	
who	took	studying	non-Euclidean	geometries	to	be	legitimate	mathematics	but	only	to	
reveal	syntactic	facts	about	provability	and	consistency,	plus	what	would	be	true	under	
some	“playful	reinterpretations”	of	the	terms	“point”	and	‘line’’	in	these	axioms.	

Hamkins	suggests	that	set	theorists	should	mirror	geometers’	eventual	adoption	of	
alternate	axiom	systems	as	“geometrically	meaningful”	and	“alternate	geometries	...	as	fully	
real”	and	that	adopting	the	Multiverse	theory	corresponds	to	doing	this.	Rather	than	seeing	
alternative	set-theoretic	axiom	systems	as	having	mere	countable	toy	models	within	a	
larger	system,	we	should	(as	per	the	change	in	attitude	to	forcing	Hamkins	advocates)	see	
alternative	axiom	systems	as	describing	something	more	fully	real	and	genuinely	set-
theoretic	by	seeing	them	as	genuine	extensions	of	whatever	hierarchy	of	sets	we	are	
currently	working	in.	

18.4.1.3  Questions and Concerns 

With	this	overview	of	Hamkins’	multiverse	and	his	motivations	for	it	in	mind,	I	want	to	
raise	a	worry.	

In	the	case	of	geometry,	in	addition	to	the	questions	about	various	geometries	which	can	be	
studied	in	pure	mathematics	(as	Hamkins	mentions),	one	might	say	there’s	a	further	
question:	what’s	the	geometry	of	the	physical	space	we	live	in?274	The	change	of	opinions	
about	geometry	alluded	to	above	didn’t	deny	the	existence	of	robust	metaphysically	joint	
carving	laws	with	essentially	the	same	physical	consequences	naive	geometry	had	claimed.	
It	just	downgraded	these	laws	from	metaphysical	necessities	to	mere	physical	necessities.	
Appeal	to	physical	geometry	provides	an	important	sense	in	which,	e.g.,	the	parallel	
postulate	is	definitely	false	(which	is	not	relative	to	a	choice	of	axioms	to	work	in).	In	
contrast,	Hamkins	doesn’t	seem	to	allow	that	there’s	a	physically	preferred	set	theory	–	a	
set	theory	that	takes	over	the	traditional	a	priori	applications	of	naive	set	theory.		

So,	in	the	case	of	geometry,	we	have	two	things:	a	range	of	different	geometries	which	
constitute	equally	legitimate	objects	for	(non-formalist)	mathematical	study	and	(fairly)	

	

274	That	is,	there	are	facts	constraining	the	behavior	of	all	actual	spatial	points	and	lines	
etc.,	as	well	as	facts	about	what’s	possible	within	various	alternate	geometries	we	can	
metaphorically	visit	and	imagine	living	in	by	doing	mathematics	with	different	axioms.	



determinate	facts	about	which	geometry	corresponds	to	our	physical	reality.	Hamkins’	
multiverse	proposal	nicely	mirrors	the	former	idea,	but	he	does	not	seem	to	accept	
anything	corresponding	to	the	latter.	

This	raises	a	potential	explanatory	indispensability	problem.	In	the	case	of	geometry,	we	
say	there’s	an	important	joint-carving	notion	(physical	geometry),	that	can	take	over	the	
scientific-explanatory	work	done	by	appeals	to	naive	geometry	(explaining	physical	facts	
by	appeal	to	some	kind	of	genuine	counterfactual-supporting	laws)	and	explain	the	
attraction	of	naive	geometry.	But	what	can	Hamkins	say	about	the	analogous	phenomenon	
of	apparent	scientific-explanatory	appeals	to	set	theory?	That	is,	what	can	he	say	about	
scientific	explanations	that	seemingly	appeal	to	a	preferred	notion	of	‘all	possible	ways	of	
choosing’	from	a	given	plurality	of	objects/conditional	logical	possibility	facts	to	explain	
physical	regularities	(like	those	three	colorability	example	and	others	discussed	in	Chapter	
13)?	

When	explaining	why	the	infinite	map	considered	in	my	toy	explanation	isn’t	three	colored,	
the	naive	set	theorist	appeals	to	a	hierarchy	of	sets	with	ur-elements,	and	the	idea	that	it	
contains	sets	corresponding	to	‘all	possible	ways	of	choosing’	elements	of	the	sets	it	
contains.	Since	there	is	a	set	of	all	ordered	pairs	of	countries	and	colors,	if	there	were	a	
three	coloring,	there	would	have	to	be	a	set	witnessing	it.	But	in	Hamkins’	multiverse	there	
can	be	no	such	set-theoretic	hierarchy	(each	hierarchy	sits	within	a	larger	one	that	adds	
extra	subsets).	The	appearance	that	there’s	a	distinguished	notion	of	all	possible	
subsets/all	possible	ways	of	choosing	some	colors	on	the	map	is	an	illusion.	

Thus,	Hamkins	faces	a	kind	of	prima	facie	(not	to	say	insolvable)	explanatory	
indispensability	problem.	And,	interestingly,	this	problem	is	raised	by	his	mathematical	
anti-objectivism	/	truth	value	anti-realism	(his	rejection	of	an	intrinsically	preferred	notion	
of	all	possible	subsets)	rather	than	the	rejection	of	mathematical	objects	which	traditional	
mathematical	indispensability	arguments	target.	

Additionally,	even	if	Hamkins	can	answer	the	above	explanatory	indispensability	problem,	I	
take	this	point	about	the	a	priori	intended	physical	applications	of	current	(`naïve’)	set	
theory	to	show	that	Hamkins	is	advocating	more	radical	change	in	attitudes	to	set	theory	
than	the	change	in	attitudes	to	geometry	he	invokes	to	motivate	it.	He	can’t	say	that	the	
multiverse	proposal	is	just	what	falls	out	when	we	treat	set	theory	the	way	that	we’ve	
learned	to	treat	geometry.	In	the	geometrical	case	we	allowed	that	there	was	a	legitimate	
notion	of	spatial	possibility	and	there	are	genuine	important	(perhaps	even	very	precisely	
determinate)	facts	about	what’s	allowed	by	the	geometry	of	space.	The	useful	explanatory	
distinctions	and	counterfactual-supporting	laws	invoked	by	naive	geometry	just	turned	out	
to	be	out	more	parochial	and	less	a	priori	than	had	been	thought275	and	no	longer	seemed	
to	deserve	the	unique	mathematical	status	they’d	previously	been	accorded.	In	contrast,	
Hamkins’	multiverse	program	seems	to	suggest	that	the	appearance	that	there’s	a	joint	

	

275	That	is,	it	turned	out	that	we	were	appealing	to	physically	necessary	laws	of	space	not	
mathematically	necessary	ones.	



carving	distinction	in	the	neighborhood	of	our	naive	talk	about	‘all	possible	ways	of	
choosing’	(and	thence	the	intended	model	of	set	theory,	up	to	width)	is	an	illusion.	

Additionally,	why	does	Hamkins	take	understanding	forcing	as	telling	us	about	𝑉[𝐺]	to	
correspond	to	regarding	variant	axiom	systems	as	describing	something	‘fully	real’	and	
‘set-theoretic’	in	a	way	that	treating	forcing	as	merely	telling	us	about	some	countable	
model	𝑀[𝐺]	would	not?	After	all,	both	structures	are	made	of	sets	that	literally	exist,	and	
satisfy	the	ZFC	axioms.			

Chapter 19 Conclusion 

19.1  Summary 

The	idea	that	there’s	some	intimate	connection	between	mathematics	and	logic	has	been	a	
central	focus	of	attention	within	analytic	philosophy	since	Frege.	In	this	book	I	have	
developed	a	specific	version	of	this	idea,	suggesting	we	can	solve	certain	philosophical	
problems	by	thinking	about	set-theoretic	statements	in	potentialist	terms,	i.e.,	as	
abbreviating	certain	modal	claims	about	logical	possibility	and	extensibility.	

In	Part	I,	we	saw	that	actualist	approaches	to	set	theory	faced	an	arbitrariness	problem	
arising	from	the	Burali-Forti	paradox,	concerning	our	conception	of	the	height	of	the	
hierarchy	of	sets.	Potentialist	approaches	to	set	theory	would	let	us	avoid	this	problem,	but	
raise	their	own	worries	concerning,	e.g.,	how	the	notion	of	possibility	which	is	used	to	
paraphrase	claims	of	set	theory	should	be	used.	Both	actualist	and	potentialist	theories	
faced	a	problem	about	how	to	justify	acceptance	of	the	ZFC	axioms,	particularly	the	axiom	
of	Replacement.	

I	tried	to	point	out	an	intuitive	notion	of	conditional	logical	possibility	and	argued	that	it	
could	be	attractively	taken	as	a	conceptual	primitive.	I	formulated	a	version	of	potentialist	
set	theory	which	employed	this	modal	notion	and	(unlike	existing	versions	of	Potentialism)	
avoided	quantifying	in	to	the	◊	of	logical	possibility.	I	then	argued	that	this	formulation	
simplified	existing	formulations	of	potentialist	set	theory	and	solved	the	some	of	the	above-
mentioned	philosophical	problems	for	them.	

In	Part	II,	I	proposed	a	formal	inference	system	for	reasoning	about	conditional	logical	
possibility.	I	then	showed	this	interference	system	can	be	used	to	justify	potentialist	
acceptance	of	all	theorems	in	ZFC	on	the	basis	of	general	methods	of	reasoning	about	
logical	possibility	which	feel	as	intuitively	obvious	(once	one	understands	them),	as	we	
would	naively	hope	the	building	blocks	of	mathematical	arguments	to	be.	

In	this	way,	I	have	suggested	that	we	could	usefully	sharpen	our	thinking	about	pure	set	
theory	(in	contexts	where	potential	philosophical	confusions	matter)	by	thinking	about	set-
theoretic	expressions	as	abbreviating	potentialist	claims	of	the	kind	above.	I	have	also	
argued	that	if	we	do	so	it	is	harmless	for	mathematicians	to	simply	reason	from	ZFC	using	
first-order	logic	(without	considering	or	expanding	out	potentialist	logical	analyses	of	these	
claims).	



In	Part	III	I	discussed	how	the	understanding	of	set	theory	defended	in	the	bulk	of	this	book	
might	be	extended	to	a	more	general	philosophy	of	mathematics	(specifically,	what	we	
might	say	about	mathematical	objects	other	than	the	sets).	On	route,	I	tried	to	highlight	
some	interesting	heterogeneity	in	the	role	of	mathematics	in	the	sciences	and	show	how	
philosophical	analyses	using	the	logical	possibility	operator	might	be	useful	to	philosophy	
of	language	and	general	epistemology.	

In	this	chapter	I	will	conclude	by	making	some	very	brief	suggestions	about	what	larger	
consequences	all	this	could	have.	

19.2 Truth-value realism 

The	first	consequence	concerns	the	commonplace	questions	about	mathematical	truth	
value	realism:	are	definite	right	answers	to	mathematical	questions	which	have	been	
shown	to	be	independent	of	the	ZFC	axioms	of	set	theory	(or	questions	we	could	never	
settle	by	proof)?	

It	is	controversial	whether	statements	like	the	Continuum	Hypothesis	and	the	generalized	
Continuum	Hypothesis276	(which	have	been	shown	to	be	independent	of	the	ZFC	axioms	
(Cohen	1963))	have	determinate	truth	values.	By	reducing	these	statements	to	claims	
stated	purely	in	terms	of	first-order	logic	and	logical	possibility	I	provide,	at	least	for	those	
who	accept	there	are	definite	facts	about	logical	possibility,	reason	to	accept	these	
statements	have	a	definite	truth	value.	

Accepting	the	version	of	potentialist	set	theory	I	have	advocated	in	this	book	motivates	a	
blanket	positive	answer	to	all	questions	about	whether	statements	in	the	language	of	first-
order	set	theory	have	determinate	truth	values.	For	my	potentialist	translation	transforms	
these	mathematical	puzzles	into	pure	questions	in	the	language	of	logical	possibility.	And	it	
is	appealing	to	think	that	we	can	refer	to	a	unique	intended	notion	of	logical	possibility	
such	that	there	are	definite	right	answers	to	these	questions	of	pure	logical	possibility.	

Of	course,	Hellman	and	Linnebo	also	provide	a	reduction	of	these	set-theoretic	claims	to	
statements	about	their	respective	notions	of	logical	possibility.	Similarly,	if	one	takes	
potentialist	set	theory	to	appeal	to	a	sui	generis	notion	of	constructability	or	
interpretational	possibility	(as	Linnebo	does)	there	is	(arguably)	less	reason	to	assume	that	
facts	about	this	modal	notion	will	behave	classically.	Also,	insofar	as	Hellman’s	or	Linnebo’s	
potentialist	paraphrases	use	quantifying	in,	one	might	accept	a	potentialist	understanding	
of	set	theory	but	take	failures	of	determinacy	to	trace	back	to	these.	That	is,	if	you	doubt	(as	
some	do	(W.	V.	Quine	1953a))	that	there	are	clear	truth-conditions	for	quantifying-in	you	
would	similarly	doubt	that	the	potentialist	translations	given	by	Hellman	and	Linnebo	
suffice	to	give	truth-values	to	these	claims.	

	

276	The	Continuum	Hypothesis	says	that	nothing	can	have	a	size	between	that	of	the	natural	
numbers	and	the	real	numbers.	The	Generalized	Continuum	Hypothesis	says	that	for	each	
cardinality	𝛼	there	is	no	possible	cardinality	𝛽	between	𝛼	and	2, .	



19.3  The access problem 

The	second	larger	consequence	I’d	like	to	draw	attention	to	concerns	a	classic	challenge	to	
mathematical	realism	which	is	sometimes	called	the	access	problem	or	the	Benacerraf	
problem	(Benacerraf	1965).	In	general,	the	access	problem	asks	how,	if	realist	philosophies	
of	mathematics	are	correct,	human	accuracy	about	mathematics	can	be	anything	but	a	
miracle	or	a	mystery	(given	that,	e.g.,	we	cannot	see	or	touch	or	taste	or	otherwise	causally	
interact	with	mathematical	objects).	

So,	in	the	specific	case	of	set	theory,	we	can	ask:	If	set	theorists	are	really	getting	at	
objective	(but	abstract	and	causally	inert)	proof	transcendent	facts	in	the	way	that	you,	the	
realist,	say	that	it	is,	how	can	this	match	between	objective	reality	and	human	psychology	
be	anything	but	a	miracle	or	a	mystery?	If	one	accepts	my	version	of	the	objective	reality	
which	the	human	practice	of	set	theory	lets	us	get	at,	then	this	challenge	becomes	a	
challenge	to	understand	how	human	beings	can	have	accurate	methods	of	reasoning	about	
logical	possibility	and	extensibility.	

And	if	one	accepts	the	story	about	mathematical	objects	other	than	the	sets	developed	in	
Chapters		6	and	7,	then	access	worries	about	all	of	mathematical	knowledge	can	be	reduced	
to	access	worries	about	knowledge	of	logical	possibility.	

Note	that,	as	I	have	emphasized	at	various	points	in	this	book,	the	laws	of	logical	possibility	
are	supposed	to	be	‘subject	matter	neutral,’	constraining	the	behavior	of	all	objects	and	
relations	-	from	numbers	to	apples	to	ghosts	or	genres	of	novels.	So,	there’s	some	hope	that	
we	could	learn	(in	effect)	abductively	learn	general	laws	of	logical	possibility	from	dealing	
with	non-mathematical	objects,	and	then	apply	them	to	deduce	possibility	claims	about	the	
very	large	and	complex	structures	studied	in	(actualist	or	potentialist)	set	theory	–	much	as	
one	could	learn	laws	of	physical	possibility	from	experiments	on	the	earth	with	pendulums	
etc.	and	then	apply	them	in	space.	

Thus,	overall,	one	might	hope	the	access	problem	for	(pure)	facts	in	the	language	of	logical	
possibility	is	relatively	tractable,	and	continuous	with	analogous	access	worries/questions	
we	might	ask	about	human	knowledge	of	physical,	psychological	or	chemical	possibility.	
However,	telling	that	story	is	a	project	for	another	book.	

A. Logico-Structural Potentialism 

In	this	appendix	I	will	fill	in	the	formal	details	of	the	potentialist	translation	strategy	
described	in	Chapter	6.4.	

In	section	A.2	I’ll	define	the	core	kind	of	structures	(standard	width	initial	segments	of	the	
hierarchy	of	sets)	which	my	potentialist	set	theory	considers	the	possibility	of	extending.	In	
sections	A.3	and	A.4	and	I	will	show	how	to	cash	out	claims	about	it	being	possible	to	
extend	one	initial	segment	𝑉	(and	choice	of	some	objects	𝑥,	𝑦,	𝑧	within	that	𝑉)	to	a	larger	𝑉-	
containing	an	object	𝑤,	without	quantifying	in.	



A.1 Functional Notation 

To	avoid	overwhelming	complexity,	we	will	occasionally	resort	to	functional	notation.	We	
now	explain	how	to	understand	this	notation	in	terms	of	the	language	of	logical	possibility	
described	above.	

Definition	A.1.		𝑅	is	a	function	if	(∀𝑥)(∀𝑦)(∀𝑧)(𝑅(𝑥, 𝑦) ∧ 𝑅(𝑥, 𝑧) → 𝑦 = 𝑧)	

So,	for	example,	I	would	say	that	admiration	is	a	function	(in	the	actual	world)	if	and	only	if	
no	one	admires	two	different	people.	For	further	notational	convenience	we	will	write	
𝑓(𝑥@, … , 𝑥)) = 𝑦	to	abbreviate	the	claim	𝑓(𝑥@, … , 𝑥), 𝑦).	When	written	informally	we	will	
understand	𝑓(𝑥@, … , 𝑥))	to	stand	in	for	some	𝑦	such	that	𝑓(𝑥@, … , 𝑥), 𝑦).	

Finally,	given	two	predicates	𝐷	and	𝑅,	I	will	say	𝑓	is	a	function	from	𝐷	to	𝑅	just	if	𝑓	is	a	
function	and	(∀𝑥);𝐷(𝑥) → (∃𝑦)𝑓(𝑥, 𝑦)D ∧ ;∀𝑥 ∣∣ 𝐷(𝑥) D(∀𝑦);𝑓(𝑥, 𝑦) → 𝑅(𝑦)D	and	take	the	
notions	‘surjective,’	‘injective,’	‘domain’	and	‘range’	to	have	their	usual	meaning.	

 A.2 Describing Standard-Width Initial Segments 

So,	let	us	begin	by	describing	our	intended	initial	segments.	Recall	the	iterative	hierarchy	
conception	of	sets	from	Chapter	2.	Following	Boolos	(Boolos	1971b)	we	imagined	a	
hierarchy	of	sets	consisting	of	a	two	sorted	structure	consisting	of	

• a	well-ordered	series	of	stages,	with	no	last	element,	and	

• a	collection	of	sets	formed	at	these	stages,	such	that	a	set	is	formed	at	a	stage	iff	its	
members	are	all	formed	at	earlier	stages.	

And	we	can	say	that	something	counts	as	a	standard	width	initial	segment	if	it	satisfies	all	
the	requirements	above	except	for	the	height	requirement	(that	there	is	no	last/highest	
stage).	

I	will	define	a	formula	𝒱(set,ord, <, ∈,@)	in	the	language	of	logical	possibility	which	
expresses	the	fact	that	the	objects	satisfying	‘ord’	are	well-ordered	by	<	(giving	the	well-
ordered	series	of	stages),	the	objects	satisfying	‘set’	act	like	sets	under	∈	and	that	the	
relation	@	relates	sets	to	the	stages	at	which	they	are	formed,	so	that	@(𝑥, 𝑜)	holds	just	if	
the	members	of	𝑥	are	all	available	at	stages	before	𝑜.	Note	that	I	will	sometimes	write	the	
relations	<	and	@	in	infix	notation,	e.g.,	𝑥 < 𝑦	rather	than	< (𝑥, 𝑦).	Also,	I	will	refer	to	the	
elements	satisfying	‘ord’	as	ordinals	and	the	elements	satisfying	‘set’	as	sets.	

Remember	that	here	that	I	am	using	the	terms	`set’,	`ord’	and	`∈-for	menmonic	and	
readability	purposes	alone.	As	per	the	Putnamian	strategy	discussed	in	chapter	2,	my	
official	potentialist	translation	of	set	theory	will	employ	only	logical	vocabulary	and	non-
mathematical	relations	like	‘is	a	penciled	point,’	and	‘there	is	an	arrow	from...	to...’	

Definition	A.2	(Initial	Segment).		The	tuple	(set,ord, <, ∈,@)	forms	an	initial	segment	just	if	
all	of	the	following	hold	



1. (ord, <)	is	a	well-order277	

2. 	(∀𝑥)(∀𝑦)[𝑥 ∈ 𝑦 → set(𝑥) ∧ set(𝑦)]	

3. (∀𝑥)(∀𝑦)[@(𝑥, 𝑦) → set(𝑥) ∧ ord(𝑦)]	

4. (∀𝑥)(∀𝑦)[𝑥 < 𝑦 → ord(𝑥) ∧ ord(𝑦)]	

5. 	(Fatness)	For	each	𝑜	satisfying	ord	and	each	way	of	choosing	some	elements	satisfying	
set	from	the	sets	(i.e.,	elements	satisfying	set)	available	at	stages	𝑜- < 𝑜	there	is	a	set	
with	exactly	those	elements	as	members.	

	 
□ (set,ord,G,∈,@ ∀𝑜)[ ord(𝑜) →

(∀𝑥)𝑃(𝑥) → set(𝑥);(∃𝑜
-) ∧ ord(𝑜-) ∧ 𝑜- < 𝑜 ∧ (𝑥, 𝑜-)D →

(∃𝑦)(set(𝑦) ∧ @(𝑦, 𝑜) ∧ (∀𝑧)(𝑃(𝑧) ↔ 𝑧 ∈ 𝑦))]
	

6. 	Every	set	is	available	at	some	ordinal	level.	(∀𝑥)set(𝑥) → (∃𝑜)ord(𝑜) ∧ (𝑥, 𝑜)	

7. All	sets	available	at	some	𝑜	such	that	ord(𝑜)	can	only	have	elements	which	occur	at	some	
level	below	as	elements.	(∀𝑥)(∀𝑜)(𝑥, 𝑜) → (∀𝑧)[𝑧 ∈ 𝑥(∃𝑜-) → 𝑜- < 𝑜 ∧ (𝑧, 𝑜-)]	

8. 	(Extensionality)	No	two	distinct	elements	satisfying	set	have	exactly	the	same	elements.	
(∀𝑥)(∀𝑦)[set(𝑥) ∧ set(𝑦) → 𝑥 = 𝑦 ∨ (∃𝑧)(set(𝑧) ∧ ¬(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦)]	

9. The	ordinals	are	disjoint	from	the	sets	(∀𝑥)¬;ord(𝑥) ∧ set(𝑥)D	

Note	that	we	can	think	of	𝑉, 	from	the	standard	set-theoretic	hierarchy	as	corresponding	to	
an	initial	segment	⟨set,ord, <, ∈,@⟩	where	ord, <	has	the	same	order	type	as	𝛼.	Speaking	
loosely,	this	means	if	@(𝑥, 𝑢)	then	𝑥	would	be	in	𝑉|_|+(	where	|𝑢|	indicates	the	ordinal	
corresponding	to	𝑢.	

I	will	use	𝒱(𝑉<)	to	abbreviate	the	claim	that	set< , ∈< 	etc.	satisfy	the	sentence	𝒱(𝑠𝑒𝑡, 𝑜𝑟𝑑, <, ∈
@⟩)	defined	above.	I	will	also	use	𝑉(𝑥)	to	abbreviate	ord(𝑥) ∨ set(𝑥)	and	◊E 	abbreviates	
◊ord,set,G,∈,@ 	

A.3 Extensibility  

Next,	we	need	to	cash	out	claims	about	one	initial	segment	extending	another.	

Definition	A.3	(Initial	Segment	Extension).		𝑉7	extends	𝑉9	just	if	all	the	following	hold.	

• 𝒱(𝑉7)	

• 𝒱(𝑉9)	

• (∀𝑥)[set9(𝑥) → set7(𝑥)]	

	

277	See		Definition	E.2	in	section	E	of	the	online	appendix	for	formal	definition.	



• (∀𝑥)(∀𝑦)[set9(𝑦) → (𝑥 ∈9 𝑦 ↔ 𝑥 ∈7 𝑦)]	

• (∀𝑥)[ord9(𝑥) → ord7(𝑥)]	

• (∀𝑥)(∀𝑦)[ord9(𝑦) → (𝑥 <9 𝑦 ↔ 𝑥 <7 𝑦)]	

• (∀𝑥)(∀𝑦)[ord9(𝑦) → (𝑥@9𝑦 ↔ 𝑥@7𝑦)]	

I	will	use	𝑉7 ≥ 𝑉9	to	abbreviate	the	claim	that	𝑉7	(i.e.,	set7 , ord7 , ∈7 , @7 , ≤7)	extends	𝑉9	(i.e.,	
set9 , ord9 , ∈9 , @9 , <9).	

If	we	followed	Putnam	and	Hellman	in	quantifying	in	to	the	◊	of	logical	possibility,	this	
would	suffice	to	let	us	write	potentialist	translations.	We	would	translate	the	set	theoretic	
utterance	(∃𝑥)(∀𝑦)[¬𝑥 = 𝑦 ∨ ¬𝑦 ∈ 𝑥]	as	follows:	

◊ ((∃𝑥)𝒱(𝑉() ∧ set((𝑥) ∧ □ (E" ∀𝑦)[𝑉& ≥ 𝑉( ∧ set&(𝑦) →
¬𝑥 = 𝑦 ∨ ¬𝑦 ∈

&
𝑥)]) 	

In	words,	it’s	logically	possible	there	is	an	initial	segment	(of	the	hierarchy	of	sets)	𝑉(	
containing	a	set	𝑥	(i.e.,	set((𝑥))	such	that	its	necessary,	holding	fixed	𝑉(	(i.e.,	
set(, ord(, ∈(, <(, @(),	that	any	choice	of	an	element	𝑦	from	a	model	of	set	theory	𝑉&	
extending	𝑉(	must	satisfy	𝑥 = 𝑦 ∨ ¬𝑦 ∈& 𝑥.	

However,	once	we	embrace	the	notion	of	conditional	logical	possibility,	we	can	banish	
quantifying-in	from	our	translations	and	thus	avoid	certain	philosophical	controversies.	

A.4 Eliminating quantifying in 

The	key	‘trick’	which	lets	us	eliminate	quantifying	in	from	our	potentialist	paraphrases,	will	
be	to	supplement	out	initial	segments	𝑉< 	with	a	copy	of	the	natural	numbers	(representing	
formal	variables	from	the	language	of	set	theory)	and	an	assignment	function	𝜌< 	which	
assigns	each	formal	variable	(i.e.	natural	number)	to	a	set	(objects	satisfying	set<)	from	𝑉< .	
Note	that	my	only	reason	for	using	ℕ	is	that	the	natural	numbers	(under	successor)	contain	
infinitely	many	definable	objects,	which	we	can	use	to	represent	variables.	

Specifically,	we	represent	the	natural	numbers	with	the	predicate	ℕ	and	the	function	𝑆	and	
identify	the	formal	variable	𝑥)	with	the	natural	number	𝑛	(i.e.,	𝑆(…𝑆(0)

⏟
)

).	Rather	than	use	

clunky	formal	variables	𝑥< 	everywhere	we	instead	use	normal	letter	variables	𝑥, 𝑦, 𝑧	etc...	to	
stand	in	for	particular	formal	variables	and	denote	the	number	𝑦	stands	in	for	by	⌜𝑦⌝,	i.e.,	
if	𝑦	stands	in	for	𝑥)	then	⌜𝑦⌝ = 𝑛	.	We	formalize	this	as	follows.	

Definition	A.4	(Interpreted	Initial	Segment).		Say	that	the	relations	in	the	pair	(𝑉, 𝜌)	apply	
to	an	interpreted	initial	segment	(written	𝒱 ⃗ (𝑉, 𝜌))	just	if	set, ∈ ,ord, <,@	satisfy	
𝒱(set, ∈ ,ord, <,@)	and	𝜌	is	a	function	from	those	objects	satisfying	ℕ	to	those	satisfying	set.	
More	concretely,	this	amounts	to	the	conjunction	of	the	following	three	claims:	

• 𝒱(𝑉)	



• ℕ, 𝑆	satisfy	PA◊	(the	categorical	description	of	the	numbers	given	in	J.3	of	the	online	
appendix).	

• 𝜌	is	a	function	from	ℕ	to	set	

Note	that	we	prove	in	Lemma	J.11	in	section	J.3	of	the	online	appendix	that	it’s	logically	
possible	to	have	ℕ, 𝑆	satisfy	PA◊.	

I	will	often	use	the	𝑉 ⃗7	notation	to	denote	the	pair	𝑉7 , 𝜌7 .	And	I	will	use	◊EII⃗# 	to	abbreviate	
claims	of	the	form	◊set#,∈#,ord#,@#,P#,m#,ℕ,>	(and	similarly	for	□EII⃗# .	Note	that	we	use	the	same	
relations	ℕ, 𝑆	for	every	𝑉 ⃗ < .	

We	can	now	define	a	notion	of	extension	for	interpreted	initial	segment.	

Definition	A.5	(Interpreted	Initial	Segment	Extension).		The	interpreted	initial	segment	𝑉 ⃗9	
extends	𝑉 ⃗7	while	assigning	𝑥	written	𝑉 ⃗7 ≤/ 𝑉 ⃗ 9	just	if	

• 𝑉7 ≤ 𝑉9	

• 𝒱 ⃗ ;𝑉 ⃗7D ∧ 𝒱 ⃗ ;𝑉 ⃗9D	

• ;∀𝑛 ∣ ℕ(𝑛)D(𝜌7(𝑛) = 𝜌9(𝑛) ∨ 𝑛 = ⌜𝑥⌝)	

	

B. Notation and Some Example Arguments 

In	this	appendix	I’ll	prove	some	lemmas	using	only	the	basic	inference	rules	in	Chapter	3278.	
Most	importantly	I’ll	introduce	a	useful	and	intuitive	way	of	reasoning	about	conditional		
logical	possibility:	inner	◊	arguments.	

	

278	Before	beginning	let	me	note	a	technical	point	about	how	I	will	talk	about	lemmas.	
Consider	the	trivial	lemma	whose	content	is	(∃𝑥)𝑅(𝑥) → (∃𝑥)𝑅(𝑥).	We	don’t	regard	the	
proof	of	this	lemma	as	merely	establishing	the	fact	that	for	some	particular	relation,	e.g.,	
redness,	if	there	is	some	red	thing	then	there	is	some	red	thing.	Rather,	we	regard	the	
lemma	as	standing	in	for	the	fact	that	this	result	is	provable	for	any	one	place	relation	or,	
alternately,	as	proving	that	the	claim	in	the	lemma	is	logically	necessary.	

And,	indeed,	we	will	see	shortly	if	we	can	prove	(∃𝑥)𝑅(𝑥) → (∃𝑥)𝑅(𝑥)	without	any	
premises	we	can	infer	□[(∃𝑥)𝑅(𝑥) → (∃𝑥)𝑅(𝑥)]	and	then	(as	we	will	also	see	below)	
substitute	the	relations	under	the	□	and	then	eliminate	it.	

Thus,	we	allow	deducing	the	fact	that	(∃𝑥)𝐺(𝑥) → (∃𝑥)𝐺(𝑥)	from	the	trivial	lemma	
asserting	that	(∃𝑥)𝑅(𝑥) → (∃𝑥)𝑅(𝑥).	This	resembles	the	situation	in	first-order	logic	where	
we	prove	that	substitution	of	bound	variables	preserves	truth-value,	and	then	don’t	pay	
much	attention	to	the	particular	bound	variables	used	to	express	results.	



	

	

	

B.1 Inner Diamond 

Let	us	start	with	the	Inner	Diamond	(Proposition	B.1)	lemma,	which	will	help	us	capture	
natural	reasoning	about	conditional	logical	possibility	in	a	more	intuitive	manner.	
Specifically,	while	the	Importing	(Axiom	8.6)	and	Logical	Closure	(Axiom	8.7)	axioms	
capture	the	intuition	that	we	can	deploy	our	normal	tools	of	reasoning	to	infer	what	further	
facts	must	be	true	in	some	particular	logically	possible	context,	using	them	directly	would	
force	us	to	carry	unwieldy	long	conjunctions	of	all	facts	we’ve	derived	are	logically	possible	
through	our	proofs.	The	Inner	Diamond	lemma	justifies	our	use	of	more	natural	
mathematical	reasoning.	

The	intuition	behind	the	Inner	Diamond		lemma	is	that	reasoning	like	the	following	is	valid.	

Suppose	we	know	the	following.	There	are	at	least	three	cats.	And	it’s	logically	
possible,	given	what	cats	there	are,	that	every	cat	is	sleeping	on	a	distinct	blanket.	
What	else	must	be	true	in	this	logically	possible	scenario?	We	can	‘import’	the	fact	
that	there	are	at	least	three	cats	(since	any	scenario	which	preserves	the	
structural	facts	about	how	cathood	applies	must	preserve	this	fact).	So,	by	first-
order	logic,	this	possible	scenario	must	be	one	in	which	there	are	at	least	three	
blankets.	Thus,	it	is	logically	possible,	given	the	facts	about	what	cats	there	are,	
that	there	are	at	least	three	blankets.	

Proposition	B.1	(Inner	Diamond).		If	𝛤( ⊢ ◊ 𝛩ℒ 	and	𝛤&, 𝛩 ⊢ 𝛷,	where	every	element	of	𝛤&	is	a	
sentence	content-restricted	to	ℒ,	then	𝛤(, 𝛤& ⊢ ◊ 𝛷ℒ .	

Proof.	Consider	a	scenario	where	the	antecedent	of	the	lemma	is	true.	Assume	that	𝛤(, 𝛤&.	
Then	we	have	◊ 𝛩% 	by	the	first	assumption.	By	successive	applications	Importing	
(Axiom	8.6)	to	each	of	the	sentences	𝛤&(, … , 𝛤&)	in	𝛤&	,	we	have	◊ (𝛩% ∧ 𝛤&( ∧ …∧ 𝛤&)).	Now	by	
Logical	Closure	(Axiom	8.7)	and	the	fact	that	𝛤&, 𝛩 ⊢ 𝛷	we	can	get	◊ 𝛷% .	Thus	𝛤(, 𝛤& ⊢ 𝛷,	as	
desired.	■	

We	note	that	this	lemma	supports	the	following	kind	of	reasoning	(as	illustrated	in	the	
above	example).	

We	derive	some	sentence	of	the	form	◊ 𝛩ℒ 	from	the	assumptions	𝛤(.	For	instance,	in	the	
example	above	𝛩	would	be	the	claim	that	‘every	cat	slept	on	a	distinct	blanket’	and	ℒ	would	
just	be	the	predicate	cat.	We	then	wish	to	reason	about	the	‘world’	whose	possibility	is	
guaranteed	by	the	fact	that	◊ 𝛩ℒ ,	e.g.,	the	possible	world	which	holds	fixed	(the	structure	of)	
the	application	of	cat	and	at	which	every	cat	slept	on	a	distinct	blanket.	In	that	world	𝛩	
(every	cat	slept	on	a	distinct	blanket)	is	true	as	is,	intuitively,	every	fact	content	restricted	
to	cat	true	in	the	actual	world.	For	instance,	in	the	example	above	the	fact	that	there	are	at	
least	three	cats	is	also	true	in	that	world	(we	refer	to	the	act	of	taking	a	sentence	content	
restricted	to	ℒ	and	concluding	it	holds	at	the	world	whose	logical	possibility	is	asserted	by	



◊ 𝛩ℒ 	as	importing).	We	then	use	proof	rules	to	derive	some	desired	conclusion	𝛷	from	𝛩	
and	the	set	of	‘imported’	sentences	𝛤&.	For	instance,	in	the	above	example,	𝛷	is	the	sentence	
asserting	there	are	at	least	3	blankets.	Intuitively,	𝛷	must	also	be	true	in	the	logically	
possible	world	under	consideration	and	thus	◊ 𝛷ℒ 	must	be	actually	true.	In	the	example	
above	𝛤&	would	just	contain	the	sentence	asserting	that	there	are	at	least	three	cats.	Since	
𝛩, 𝛤& ⊢ 𝛷	and	all	sentences	in	𝛤&	are	content	restricted	to	cat	this	intuition	is	born	out	
rigorously	since	the	above	lemma	establishes	that	𝛤(, 𝛤& ⊢ ◊ 𝛷ℒ .	

B.2 Natural Deduction with Inner Diamond Arguments 

Since	the	process	of	entering	◊ℒ 	contexts,	i.e.,	using	Inner	Diamond	(Proposition	B.1)	to	
reason	about	what	else	must	be	true	in	a	particular	logically	possible	scenario,	is	unfamiliar	
and	can	be	a	bit	tricky,	I	will	informally	introduce	a	natural	deduction	system	for	the	notion	
of	proof	defined	in	Chapter	8	together	with	some	notational	conventions	which	make	it	
easier	to	keep	track	of	arguments	like	the	one	above	(especially	in	contexts	where	one	
must	make	multiple	inner	diamond	arguments	within	one	another).	

This	system	is	loosely	based	around	that	used	by	Goldfarb	in	(Goldfarb	2003)	and	I	follow	
his	system	in	citing	the	line	numbers	justifying	each	inference	rule	to	the	left	of	the	name	of	
the	inference	rule,	while	indicating	the	assumptions	a	line	depends	on	by	placing	those	line	
numbers	in	brackets	(line	numbers	not	in	brackets	are	the	lines	cited	as	immediate	
justification	for	the	current	inference).	So,	for	example,	we	write	down	
𝛷 5,6 𝑋 [2,4,5]	on	line	7	of	a	proof	when	rule	𝑋	allows	us	to	conclude	𝛷	from	lines	
5,6	and	the	cumulative	set	of	assumptions	from	which	we’ve	established	𝛷	are	the	
sentences	on	lines	2,4	and	5.	Note	that	this	system	satisfies	the	principle	that	if	𝜓	appears	
on	some	line	of	the	proof	and	𝛤	is	the	set	of	sentences	appearing	on	the	lines	listed	in	
brackets	next	to	𝜓	then	𝛤 ⊢ 𝜓.		

However,	my	system	differs	from	Goldfarb’s	in	two	primary	ways.	

First,	I	will	allow	any	purely	first-order	deduction	to	be	compressed	into	a	single	FOL	rule.	
However,	I	will	still	sometimes	explicitly	make	use	of	→ 𝐼	to	infer	𝜙 → 𝜓	in	cases	where	𝜓	
can	only	be	inferred	from	𝜙	via	modal	reasoning.	I	will	also	use	Ass.	to	indicate	that	a	new	
assumption	is	being	made.	

Second,	all	modal	axioms	and	axiom	schema	proposed	in	Chapter	8	are	taken	to	be	logical	
truths.	So,	any	instance	of	these	axiom	schemata	can	be	written	down	with	no	associated	
citations	or	assumptions.	And,	to	save	time,	any	instance	of	an	axiom	schema	with	the	form	
𝜙 → 𝜓	may	instead	be	regarded	as	an	inference	rule	allowing	us	to	infer	𝜓	from	𝜙	(citing	
the	line	containing	𝜙	as	a	justification).	For	example,	this	is	an	acceptable	deduction	of	◊X
[(∃𝑥)𝑃(𝑥)] → 𝑃(𝑥).	

	

This	is	also	an	acceptable	deduction	of	the	same	fact.	

� ♦ \)Ѵড়* )ড়*^ Ќ  )ড়* ♦ &



	

Third,	and	most	distinctively,	I	will	introduce	a	special	context	called	a	◊	context	(nestable	
to	arbitrary	depth)	corresponding	to	reasoning	via	Inner	Diamond	(Proposition	11.1),	i.e.,	
reasoning	about	what	else	must	be	true	within	some	scenario	which	is	known	to	be	
(conditionally)	logically	possible.	I	will	graphically	indicate	what	sentences	are	being	
asserted	or	assumed	within	this	context	by	indentation	and	a	sideways	T	labeled	with	a	◇	
to	indicate	this	context.	

So,	for	example,	we	can	represent	the	following	extremely	short	inner	diamond	argument	

Given	what	cats	and	hunters	there	are,	it’s	logically	possible	that	something	is	
both	a	cat	and	a	hunter.	Any	possible	situation	in	which	something	is	both	a	cat	
and	a	hunter,	must	be	a	situation	in	which	something	is	either	a	cat	or	a	hunter.	
Therefore,	given	what	cats	and	hunters	there	are,	its	logically	possible	that	
something	is	either	a	cat	or	a	hunter.	

with	a	proof	that	looks	like	this	

	

The	vertical	line	going	from	2-3	above	indicates	those	lines	occur	inside	a	special	context.	I	
call	this	a	◊	context	to	indicate	that	these	lines	contain	reasoning	about	what	must	be	true	
within	a	logically	possible	scenario	in	which	(∃𝑥);𝑐𝑎𝑡(𝑥) ∧ ℎ𝑢𝑛𝑡𝑒𝑟(𝑥)D,	while	all	the	
structural	facts	about,	how	cathood	applies,	are	preserved.	

What	are	the	rules	for	writing	things	down	in	this	context?	Recall	that	the	Inner	Diamond	
(Proposition	B.1)	lemma	says	that	if	we	have	one	conditional	possibility	claim	◊ (ℒ 𝛩),	and	
some	facts	𝛤&	which	are	content	restricted	to	the	relations	being	held	fixed,	then	if	we	can	
show	that	any	such	possible	scenario	where	𝛩	must	also	be	one	where	𝛷	(by	showing	
𝛩, 𝛤& ⊢ 𝛷),	we	can	infer	the	corresponding	conditional	logical	possibility	clam	for	𝛷.	

The	key	idea	will	be	to	use	indentation	and	the	Fitch	style	sidewise	‘T’	to	graphically	
distinguish	a	main	line	of	argument	which	goes	from	𝛤&	(where	the	sentences	𝛤&	are	content	
restricted	to	ℒ)	and	◊ 𝛩ℒ 	and	then	◊ 𝛷ℒ ,	from	a	supporting	subproof	which	shows	that	
𝛤&, 𝛩 ⊢ 𝛷	and	thereby	justifies	the	latter	inference.	
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In	the	latter	subproof	(which	I	indent	and	mark	off	as	a	separate	context)	we	are,	in	
essence,	attempting	to	milk	new	consequences	from	our	knowledge	that	◊ (ℒ 𝛩)	,	by	
thinking	about	what	else	must	be	true	in	a	possible	(◊ℒ )	stuation	where	𝛩.	Thus,	I	will	call	
beginning	such	a	subproof	‘entering	the	◊ℒ 	context’	(associated	with	some	claim	◊ (ℒ 𝛩)	
that	was	established	on	a	previous	line)’,	and	thereby	beginning	an	Inner	Diamond	
(Proposition	B.1)	argument.	

One	will	only	be	permitted	to	import	those	claims	𝛤&	from	the	main	line	of	argument	
(thereby	assuming	they	continue	to	hold	in	the	current	context)	which	are	content	
restricted	to	the	relevant	list	of	relation	ℒ.	And	we	will	only	be	allowed	to	close	the	inner	
diamond	context,	i.e.,	dropping	back	one	level	of	indentation	and	writing	down	◊ (ℒ 𝛷),	if	
we	have	proved	that	𝛷	holds	inside	the	inner	diamond	context,	by	showing	that	it	follows	
from	the	initial	assumption	that	𝛩	and	some	facts	𝛤&	which	we	were	allowed	to	import	
because	they	were	content	restricted	to	ℒ.	

Reasoning	inside	a	◊	context	proceeds	just	as	it	does	normally,	with	the	exception	that	each	
line	in	the	context	must	either	be	our	initial	assumption	that	𝛩	(where	◊ℒ 𝛩	is	the	sentence	
that	opened	the	diamond	context),	an	instance	of	‘importing’	(where	the	sentence	must	be	
imported	from	the	parent	context)	or	be	deducible	from	previous	lines	within	this	exact	◇	
context.	

While	the	operation	of	In◊I	is	rather	straightforward,	I'll	call	attention	to	one	detail.	Note	
that	besides	line	2	we	wrote	[2∗]	rather	than	[1]	as	one	might	expect.	We	do	this	to	
maintain	the	property	that	if	𝛹	is	written	on	a	line	it	is	deducible	from	the	lines	written	in	
brackets	next	to	it279.	

	

279	To	this	end	we	treat	the	initial	line	in	each	◇	context	and	every	line	introduced	via	
importing	(see	below)	as	if	they	were	assumptions	inside	that	context.	However,	we	mark	
these	assumptions	with	an	asterisk	since	they	are	justified	assumptions	(it’s	safe	to	assume	
they	are	true	in	the	◇	context)	and	must	be	replaced	with	the	line	numbers	from	the	parent	
context	when	we	leave	the	◇	context.	

In	accordance	with	this	idea,	a	sentence	𝜌	can	be	written	down	inside	the	“◊ℒ 	context”	
governed	by	the	claim	that	◊ 𝛩ℒ ,	iff	

• 𝜌 = 𝛩	

• 𝜌 = 𝛹	for	some	𝛤	which	is	content-restricted	to	ℒ	and	occurs	on	an	earlier	line	in	the	
proof	which	is	in	the	same	context	as	the	◊ 𝛩ℒ 	statement	used	to	introduce	this	inner	
diamond	context.	(I	will,	as	usual,	sometimes	elide	the	steps	needed	to	transform	
implicitly	content	restricted	sentences	into	first-order	logically	equivalent	explicitly	
content	restricted	sentences.)	

• 𝜌	follows	from	previous	lines	within	this	◊	context	by	one	of	the	axioms	or	inference	
rules	for	reasoning	about	logical	possibility	presented	in	this	book.	



One	can	leave	the	◊ℒ 	context	above	by	going	from	knowledge	that	𝜙	holds	within	this	
context	to	the	conclusion	that	◊ℒ 𝜙		holds	outside	it.	We	indicate	this	inference	pattern	via	
the	rule	In◇E.	This	is	the	only	way	to	introduce	a	sentence	into	the	current	context	based	
on	activity	in	a	child	context280.	

B.3 Example of Inner ◊ with Importing 

We	can	also	capture	the	reasoning	in	the	slightly	more	complicated	argument	below,	where	
we	use	knowledge	of	suitably	content	restricted	claims	about	the	actual	world	to	draw	
consequences	from	a	modal	claim281.	

It’s	logically	possible,	given	what	cats	there	are,	that	each	slept	on	a	distinct	
blanket.	There	are	at	least	three	cats.	Therefore,	it’s	logically	possible,	given	what	
cats	there	are	that	there	are	at	least	three	blankets.	

	

280	Note	that	In◇E	may	not	be	applied	to	any	line	with	uncancelled	(unstarred)	
assumptions	introduced	in	the	context	being	closed.	Moreover,	In◇E	must	take	each	
starred	line	number	𝑗∗	on	the	line	on	which	𝛷	appears	(here	that’s	line	3	and	𝛷	
is(∃𝑥)(𝑐𝑎𝑡(𝑥) ∨ ℎ𝑢𝑛𝑡𝑒𝑟(𝑥)))	and	replace	it	with	the	assumptions	of	the	line	(in	the	current	
context)	used	to	justify	line	𝑗.	For	instance,	in	the	current	case	the	only	(starred)	
assumption	for	line	3	is	line	2.	Looking	at	line	2	we	see	that	it	is	justified	by	reference	to	
line	1	(which	is	in	the	current	context).	So	we	copy	the	line	numbers	in	brackets	on	line	1	
into	the	brackets	on	line	4	(in	this	case	that’s	just	1).	

281	Note	that	the	sentence	on	line	2	‘There	are	at	least	three	cats’	is	content	restricted	to	
{𝑐𝑎𝑡𝑠}	(assuming	that	this	abbreviates	an	FOL	statement	in	the	usual	Fregian	fashion).	This	
fact	allows	us	to	import	it	into	our	reasoning	about	what	the	possible	scenario	where	each	
cat	slept	on	a	different	blanket	must	be	like	on	line	4.	

Also	note	that	on	line	5	we	have	proved	‘there	are	at	least	three	blankets’	with	only	
assumptions	[3∗, 4∗]	(which	are	starred	because	they	were	introduced	by	inner	diamond	
introduction	or	importing).	Thus,	we	have	shown	that	the	conclusion	that	there	are	at	least	
three	cats	follows	from	things	we	are	entitled	to	assume	about	any	logically	possible	
scenario	witnessing	the	truth	of	the	sentence	on	line	1.	So	we	can	apply	In◊	Elimination	to	
complete	our	inner	diamond	argument,	and	conclude	that	◊nop (There	are	at	least	three	
blankets).	

Finally,	note	that	the	assumption	line	numbers	listed	for	our	conclusion	are	[1,2].	For	these	
are	the	assumptions	needed	for	the	claims	about	the	actual	world	(namely	the	sentences	on	
lines	1	and	2),	which	entitle	us	to	assume	that	the	possible	scenario	considered	on	lines	3-5	
satisfy	the	assumptions	on	lines	3	and	4	which	imply	are	more	than	three	blankets.	

See	appendix	G	below	for	an	explicit	formal	statement	of	this	natural	deduction	system,	and	
a	demonstration	that	proofs	in	it	obey	the	notion	of	provability	above.	



	

B.4 Box Inference Rules 

Although	the	□	is	not	an	official	item	in	our	symbolism,	but	merely	an	abbreviation	for	¬ ◊
¬,	it	is	often	helpful	to	reason	in	terms	of	it.	Earlier	we	proved	a	couple	of	rules	regarding	□	
inferences	and	here	we	present	several	more.	

First,	I	present	an	introduction	rule	for	□.	

Lemma	B.2	(□	I).		If	𝛤 ⊢ 𝛩	and	every	𝛾 ∈ 𝛤	is	a	sentence	content-restricted	to	ℒ	then	□ 𝜃ℒ .	

Proof.	Suppose	for	contradiction	that	𝛤, 𝛩	are	as	above,	but	the	lemma	fails,	i.e.,	◊ ¬ℒ 𝛩.	By	
Inner	Diamond	(Proposition	11.1)	with	𝛩( = ◊ ¬ℒ 𝛩	and	𝛩& = 𝛩	,	we	can	infer	◊ 	 ⊥ℒ 	as	
𝛩,¬𝛩 ⊢ 𝛩 ∧ ¬𝛩.	Hence,	by	◇	Elimination	(Axiom	8.2)	we	can	export	the	contradiction.	
Hence,	□ 𝛩ℒ 	as	desired.	■	

Now	I	give	the	corresponding	elimination	rule.	

Lemma	B.3	(□	Elimination).		□ 𝛩ℒ → 𝛩	

Note	that	I	prove	a	stronger	version	of	this	result	in	section	H	of	the	online	appendix	that	
allows	arbitrary	substitution	of	relations	when	eliminating	the	box	and,	for	ease	of	reading,	
I	will	also	refer	to	that	result	as	□	Elimination.	

Proof.	Assume	the	claim	fails.	We	can	derive	contradiction	immediately	by	applying	◊	
Introduction	(Axiom	8.1)	to	¬𝛩	to	derive	◊ℒ ¬𝛩	which	is	¬□ 𝛩ℒ .	We	can	write	this	in	terms	
of	the	natural	deduction	system	presented	above	as	follows.	
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	■	

To	give	a	more	visceral	sense	of	how	proofs	using	this	logical	system	work,	see	B.6	below	
where	I	prove	two	lemmas	which	mirror	results	in	set	theory	(which	can	be	found	in	
elementary	texts	like	(Jech	1978b))	

	

B.5 ◊ Reducing and □ Expansion 

Using	first-order	logic	and	the	basic	principles	in	Chapter	8		we	can	prove	various	useful	
lemmas.	

The	Reducing	Lemma	(Lemma	4.1)	(together	with	→E)	vindicates	intuitive	reasoning	along	
the	following	lines.	Suppose	it’s	logically	possible,	given	the	facts	about	friendship	and	
enmity	in	the	actual	world,	that	something	has	a	frenemy	(i.e.,	there	are	items	𝑥	and	𝑦	such	
that	𝑥	is	the	friend	of	𝑦	and	𝑥	is	the	enemy	of	𝑦).	Then	it’s	logically	possible	given	(just)	the	
facts	about	friendship	in	the	actual	world	that	something	has	a	frenemy.	

Lemma	B.4	(Reducing).		If	ℒ ⊇ ℒ-	then	◊ 𝛩ℒ → ◊ 𝛩ℒ' 	

Proof.	First	note	that	if	ℒ ⊇ ℒ-	then	any	sentence	of	the	form	◊ 𝛩ℒ' 	is	content	restricted	to	ℒ.	

Assume	that	◊ 𝛩ℒ .	We	have	𝛩 ⊢ ◊ 𝛩ℒ' ,	by	◇	Introduction	(Axiom	3.1).	So,	by	Logical	Closure	
(Axiom	3.7),	we	have	◊ℒ (◊ 𝛩ℒ- ).	Then	by	◇	Elimination	(Axiom	3.2)	we	can	conclude	that	
◇ℒ'𝛩		(since	◇ℒ'𝛩	is	content	restricted	to	ℒ).	Thus,	we	have	◊ 𝛩ℒ → ◇ℒ'𝛩	■	

We	note	that	this	immediately	entails	a	corresponding	expansion	property	for	sentences	
under	the	□.	

Lemma	B.5	(Box	Expanding).		If	ℒ- ⊃ ℒ	then	□ 𝛷ℒ → □ 𝛷ℒ' 	

Proof.	Assume	that	□ 𝛷ℒ 	and	suppose	for	contradiction	that	¬□ 𝛷ℒ' 	,	hence	◊ ¬ℒ' 𝛷.	By	the	
Reducing	Lemma	(B.3)	we	can	infer		◊ ¬ℒ 𝛷	which	contradicts	our	assumption	that	□ℒ 𝛷.	■	
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B.6 Lemmas about Well-Orderings 

To	give	a	more	visceral	sense	of	how	proofs	using	my	logical	system	work,	I’ll	now	prove	
two	lemmas	which	mirror	results	in	set	theory	(which	can	be	found	in	elementary	texts	like	
(Jech	1978b)).	In	each	case,	I	will	make	an	argument	verbally,	and	then	follow	it	up	with	an	
argument	using	the	formal	notation	(making	explicit	when	we	enter	and	leave	Inner	
Diamond	contexts).	

Elsewhere	I	will	present	proofs	in	a	more	informal	style.	However,	I	hope	the	completely	
explicit	proofs	in	this	section	will	help	the	reader	understand	how	these	informal	proofs	
can	be	expanded	into	a	formal	argument.	

B.6.1 Reconstructing Well-Ordering Lemma A 

Jech’s	version	of	the	first	lemma	I	am	going	to	prove	says	the	following:	

“If	(𝑊,<)	is	a	well-ordered	set	and	𝑓:𝑊 → 𝑊	is	an	increasing	function,	then	𝑥 <
𝑓(𝑥)	for	each	𝑥 ∈ 𝑊	.”(Jech	1978b)	

We	can	write	a	version	of	Jech’s	Lemma	follows	(see	section	E	of	the	online	appendix	for	
the	definition	of	a	well-order):	

Lemma	B.6.		If	𝑓	is	an	embedding	of	the	well-order	𝑊,<	into	itself	then	;∀𝑥, 𝑦:𝑊(𝑥) ∧
𝑊(𝑦)D;𝑥 < 𝑓(𝑥)D	

where	we	define	

Definition	B.1	(Definition	of	Embedding).		A	two-place	relation	𝑓	is	an	embedding	of	𝑊,<	
into	𝑊-, <-	iff	

• 𝑓	is	a	function	(remember	we	define	what	it	takes	for	a	relation	to	qualify	as	a	function	in	
section	A.1)	

• (∀𝑥)[𝑊(𝑥) → (∃𝑦)(𝑊′(𝑦) ∧ 𝑓(𝑥)]	i.e.,	𝑓	maps	all	of	𝑊	into	𝑊-	

• (∀𝑥)(∀𝑦)(∀𝑥-)(∀𝑦-)[𝑥 < 𝑦 ↔ 𝑓(𝑥) < 𝑓(𝑦)],	i.e.,	𝑓	respects	<	.	

Remember	that	we’ve	defined	function	so	that	the	function	𝑓(𝑥)	is	a	convenient	way	of	
talking	about	the	relation	𝑓(𝑥, 𝑦)	satisfying	𝑓(𝑥, 𝑦) ∧ 𝑓(𝑥-, 𝑦) → 𝑥 = 𝑥-.	

As	usual,	I	will	sometimes	abbreviate	the	claim	that	𝑥 < 𝑦 ∨ 𝑥 = 𝑦	as	𝑥 ≤ 𝑦.	

Proof.	To	prove	this,	we	will	use	essentially	the	same	reasoning	which	Jech	uses	to	prove	
his	set	theoretic	version	of	this	claim.	

Assume	that	𝑓	is	an	embedding	of	(𝑊,<)	into	itself,	as	per	the	statement	of	the	lemma.	

And	suppose,	for	contradiction,	the	lemma	fails.	As	in	Jech’s	proof,	our	aim	will	be	to	use	the	
properties	of	well-orderings	to	derive	the	existence	of	a	<	least	counterexample,	i.e.,	an	𝑥	in	
𝑊	such	that	¬𝑥 < 𝑓(𝑥) ∧ (∀𝑦: 𝑦 < 𝑥);𝑦 < 𝑓(𝑦)D	and	derive	contradiction	from	this.	



Applying	Simple	Comprehension	(Axiom	8.4)	to	the	formula	below	

¬𝑥 < 𝑓(𝑥)	

tells	us	it	would	logical	possible	-	while	holding	fixed	the	facts	about	how	𝑊,<, 𝑓	apply	in	
the	situation	we	are	currently	considering	-	for	the	predicate	𝐺	apply	to	just	such	
counterexamples.	That	is	

◊ (q,G,W ∀𝑥)(𝐺(𝑥) ↔ ¬𝑥 < 𝑓(𝑥))	

Now	we	can	enter	this	◊q,G,W 	context,	i.e.,	begin	an	Inner	Diamond	(Proposition	A.1)	
argument,	where	we	reason	about	what	else	must	be	true	in	a	possible	scenario	where	(the	
facts	about	𝑊,<, 𝑓	in	our	original	scenario	are	held	fixed	but)	we	also	have:	

(∀𝑥);𝐺(𝑥) ↔ ¬𝑥 < 𝑓(𝑥)D	

Now	the	premises	of	the	lemma	(that	𝑓	is	an	embedding	of	(𝑊,<)	into	itself	and	(𝑊,<)	a	
well	order)	and	the	assumption	that	the	conclusion	of	the	lemma	fails	are	all	implicitly	
context	restricted	to	𝑊,<, 𝑓	(seen	by	appropriately	restricting	all	the	quantifiers).	So,	all	of	
these	statements	must	all	remain	true	in	this	new	context	and	can	by	imported	into	this	
context.	

Thus,	we	can	infer	that	𝐺	is	non-empty,	from	the	assumption	that	the	lemma	fails,	i.e.,	(∃𝑥 ∣
𝑊(𝑥))(¬𝑥 < 𝑓(𝑥),	together	with	the	fact	that	(∀𝑥);𝐺(𝑥) ↔ ¬𝑥 < 𝑓(𝑥)D.	

We	know	that	𝑊,<	is	a	well	ordering,	and	the	least	element	condition	from	the	definition	
of	well	ordering	(Definition	E.2)	says	the	following:	

□ ¥;∃𝑥 ∣ 𝑊(𝑥)D𝐺(𝑥) → ;∃𝑦 ∣ 𝑊(𝑦) ∧ 𝐺(𝑦)D;∀𝑧 ∣ 𝑊(𝑧) ∧ 𝐺(𝑧)D(𝑦 ≤ 𝑧))¦q,G 	

So,	by	□	Elimination	(Lemma	B.3)	we	can	infer	the	existence	of	a	least	counterexample	𝑦,	
i.e.,	

;∃𝑦 ∣ 𝑊(𝑦) ∧ 𝐺(𝑦)D(∀𝑧 ∣ 𝑊(𝑧) ∧ 𝐺(𝑧)))(𝑦 ≤ 𝑧))	

Now	let	𝑧 = 𝑓(𝑦) < 𝑦.	By	our	assumption	that	𝑓	is	an	embedding	(and	thus	must	respect	
<)	it	follows	from	𝑧 < 𝑦	that	𝑓(𝑧) < 𝑓(𝑦) = 𝑧.	So,	by		the	equation	specifying	the	extension	
of	G	above	we	can	infer	that	𝐺(𝑧).	Thus,	𝑧	is	an	satisfies	𝐺(𝑧)	and	is	less	than	𝑦.	
Contradiction	⊥.	

Exiting	the	above	◊	context	(i.e.,	completing	our	Inner	Diamond	argument),	we	get:	

◊ ⊥q,G,W 	

And	from	this	⊥	follows	by	◊	Elimination	(Axiom	8.2)	(remembering	that	⊥	is	content	
restricted	to	the	empty	list).	Hence,	the	desired	conclusion	follows	by	contradiction.	■	

Intuitively	speaking,	the	argument	above	shows	that	the	if	there	were	a	counterexample	to	
the	lemma	then	it	would	be	logically	possible	(indeed	logically	possible,	while	holding	fixed	



the	𝑊,<, 𝑓	facts!)	for	the	canonical	contradiction	⊥	to	be	true.	But	it’s	not	logically	possible	
for	⊥	to	be	true.	So,	there	is	no	counterexample	to	the	lemma.	

Representing	this	proof	in	terms	of	our	natural	deduction	system.	

	

B.6.2 Reconstructing Well-Ordering Lemma B 

Jech	writes	

“No	well-ordered	set	is	isomorphic	to	an	initial	segment	of	itself”(Jech	1978a)	

We	can	state	the	claim	to	be	proved	using	the	definition	of	isomorphism	(Definition	7.4)	
from	Chapter	7.5.	

Lemma	B.7.		If	(𝑊,<)	is	a	well-ordering	and	there	is	some	𝑥	in	𝑊	such	that	𝑊-	applies	to	
just	those	𝑧 < 𝑥	in	𝑊	then	¬◊ ⟨q,q',G 𝑊,>⟩ ≅

W
⟨𝑊′, >⟩	

Proof.	Let	𝑊,𝑊-, <	be	as	in	the	lemma	and	suppose	for	contradiction	that	◊ ⟨q,q',G 𝑊,>
⟩ ≅W ⟨𝑊′, >⟩	.	Using	Inner	Diamond	(Proposition	B.1)	we	can	enter	this	◊	context.	We	can	
import	the	fact	𝑊,<	is	a	well	order	(because	it	is	content-restricted	to	𝑊,𝑊-	and	<).	By	
first-order	logic	and	unpacking	definitions	we	can	infer	from	the	fact	that	𝑓	isomorphically	
maps	⟨𝑊,>⟩	to	⟨𝑊-, >⟩	that	𝑓	is	an	embedding	of	𝑊,<	into	𝑊-, <	.	And,	by	the	assumptions	
about	𝑊-	above,	this	implies	that	𝑓	is	an	embedding	of	𝑊,<	into	𝑊,<	.	

Now,	to	get	contradiction,	note	that	by	Lemma	A	(all	instances	of	which	are	provable	from	
empty	premises,	hence	provable	in	any	◊	context)	𝑓	does	not	map	any	object	satisfying	𝑊	
strictly	<-below	itself.	However,	we	know	there	is	an	object	𝑥	satisfying	𝑊	which	is	>	all	
objects	satisfying	𝑊-	and	that	⟨𝑊,>⟩ ≅W ⟨𝑊-, >⟩.	It	follows	by	first-order	logic	that	𝑓	maps	
this	𝑥	to	a	some	𝑦 < 𝑥.	Thus,	we	have	derived	contradiction/the	false	(⊥)	from	premises	
which	would	have	to	obtain	in	this	(supposedly)	logically	possible	scenario.	

As	before,	we	can	conclude	this	inner	◊q,q',G 	argument	and	returning	to	our	original	
context	with	the	conclusion	that	◊ ⊥q,q',G .	And	from	this	⊥	follows	by	◇	Elimination	
(Axiom	8.2).	
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This	completes	our	proof	by	contradiction	that	there	can	be	no	𝑓	isomorphicly	mapping	
(𝑊,>)	to	a	proper	initial	segment	of	itself.		

We	can	use	the	natural	deduction	system	to	expose	the	modal	reasoning	within	this	
argument,	as	follows.	

	

B.7 Pasting and Collapsing 

Finally,	I	will	conclude	this	chapter	with	two	lemmas	involving	of	how	more	complex	modal	
reasoning	involving	multiple	◊	contests.	The	first	lemma	tells	us	when	two	logically	
possible	facts	can	be	inferred	to	be	jointly	possible.	

One	cannot	generally	infer	from	◊ 𝛷ℒ 	and	◊ 𝛹ℒ 		to	◊ (ℒ 𝛷 ∧ 𝛹).	For	consider	the	case	where	
𝛷	says	there	are	exactly	8	million	things	and	𝛹	says	there	are	exactly	9	million	things.	
However,	the	Pasting	Lemma	(Lemma	B.7)	says	that	one	can	make	this	inference	in	the	
special	situation	when	the	sentences	𝛷	and	𝛹	are	content	restricted	so	that	they	can	only	
make	claims	about	the	objects	satisfying	some	disjoint	lists	of	relations	ℐ		and		𝒥			(and	how	
these	relate	the	actual	ℒ-structure,	which	both		◊ 𝛷ℒ 	and	◊ 𝛹ℒ 	preserve).	

Lemma	B.7	(Pasting).		Let	ℐ,	𝒥	and	ℒ	be	pairwise	disjoint	sets	of	relations.	If	◊ 𝛷ℒ ,	where	𝛷	is	
content	restricted	to	ℒ, ℐ	and	◊ 𝛹ℒ ,	where	𝛹	is	content-restricted	to	ℒ, 𝒥,	then	◊ (ℒ 𝛷 ∧ 𝛹).	

Intuitively	speaking,	the	facts	about	content	restriction	above	ensure	that	attempting	to	
make	the	sentences	inside	both	possibility	claims	true	at	the	same	time	cannot	impose	
conflicting	demands.	For	the	only	relations	whose	extensions	are	relevant	to	the	truth	of	
both	sentences	are	the	relations	on	the	list	ℒ	.	And	our	assumptions	say	that	it’s	possible	to	
make	each	interior	sentence	true	while	fixing	the	actual	application	of	these	relations.	

Proof.	Let	𝛷	be	content	restricted	to	ℒ, ℐ	and	𝛹	to	ℒ, 𝒥,	as	per	the	antecedent.	
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Informally,	this	deduction	corresponds	to	the	following	reasoning:	

Assume	that	◊ 𝛷ℒ 	and		◊ 𝛹ℒ .	We	can	prove	our	claim	by	making	two	nested	Inner	Diamond	
(Proposition	B.1)	arguments.	

First	enter	the	(◊ℒ )	context	associated	with	◊ 𝛷ℒ .	That	is,	consider	what	else	must	be	true	
in	any	such	possible	(◊ℒ )	situation	where	𝛷.	In	this	situation	◊ 𝛹ℒ 	must	remain	true,	for	it	
is	content	restricted	to	ℒ,	and	we	are	considering	a	scenario	which	preserves	the	ℒ	facts.	By	
◇	Ignoring	(Axiom	8.3)	it	follows	that	◊ 𝛹ℒ,ℐ 	.	

Now	enter	this	second,	interior,	◊ℒ,ℐ 	context.	That	is,	consider	what	must	be	true	in	a	
further	possible	scenario	where	𝛹	is	true	while	all	facts	about	how	relations	ℒ, ℐ	applied	in	
the	scenario	we	previously	considered	are	preserved.	Here	we	clearly	have	𝛹.	But	we	can	
import	the	fact	that	𝛷	from	the	previous	context,	because	it	is	content	restricted	to	ℒ, ℐ.	So	
we	can	deduce	𝛷 ∧ 𝛹.	

Now,	leaving	this	inner	◊ℒ,ℐ 	context,	we	can	conclude	that	◊ (ℒ,ℐ 𝛷 ∧ 𝛹).	And	we	can	infer	
that	that	◊ (ℒ 𝛷 ∧ 𝛹)	by	◊	Ignoring	(	Axiom	8.3)	(because	ℒ	is	clearly	a	sublist	of	ℒ, ℐ).	

So,	leaving	the	larger	◊ℒ 	context	we	can	conclude	that	◊ℒ (◊ℒ (𝛷 ∧ 𝛹))	holds	in	the	
situation	we	were	originally	considering.	

Finally,	because	◊ (ℒ 𝛷 ∧ 𝛹)	is	content	restricted	to	ℒ,	we	can	use	◇E	to	draw	the	desired	
conclusion	◊ (ℒ 𝛷 ∧ 𝛹)	.		

The	other	lemma	concerns	when	we	can	collapse	multiple	logical	possibility	operators	into	
a	single	operator.	

Lemma	B.8	(Diamond	Collapsing).		If	ℒ- ⊇ ℒ	then	◊ ◊ℒ- 𝛷ℒ ↔ ◊ 𝛷ℒ .	
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Proof.	To	prove	the	left	to	right	direction,	suppose	that	◊ ◊ 𝛷ℒ-ℒ .	Enter	the		◊ℒ 	context.	In	
this	context	we	have	◊ℒ- 𝛷.	Since	ℒ- ⊃ ℒ,	by	Reducing	(Lemma	B.4)	we	can	infer	◊ 𝛷ℒ .	
Exiting	the	◊ℒ 	context,	we	have	◊ (◊ℒ 𝛷)ℒ 	in	our	original	contest.	So,	we	can	apply	◇	
Elimination	(Axiom	8.2)	to	infer	◊ℒ 𝛷.	

	

To	prove	the	other	direction,	suppose	that	◊ 𝛷ℒ .	Entering	this	diamond	context,	we	have	𝛷	
and	can	infer	that	◊ℒ- 𝛷	by	◇	Introduction	(Axiom	8.1).	So,	completing	our	inner	diamond	
argument	gives	us	◊ ◊ℒ- 𝛷ℒ .	

	■	

We	also	observe	that	there	is	a	corresponding	□	version	of	the	above	lemma.	

Lemma	11.5	(Box	Collapsing).		If	ℒ- ⊇ ℒ	then	□ 𝛷ℒ ↔ □ □ 𝛷ℒ'ℒ 	

Proof.	Note	that	this	is	equivalent	to	proving	

¬□ 𝛷ℒ ↔ ¬□ □ 𝛷ℒ'ℒ 	

which	is	just	
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◊ ¬ℒ 𝛷 ↔		◊ ◊ℒ- ¬𝛷ℒ 	

This	is	true	by	Diamond	Collapsing	(Lemma	B.8).	■	

C. Vindication of FOL Inference in Set Theory 

In	chapter	9	I	show	that	potentialist	translations	of	all	the	ZFC	axioms	are	true	and	can	be	
justified	within	my	formal	system.	However,	this	is	not	enough	to	justify	ordinary	
mathematical	practice.	We	also	need	to	show	that	everything	set	theorists	derive	from	the	
𝑍𝐹𝐶	axioms	using	FOL	has	a	true	and	justified	potentialist	translation.	And	this	fact	is	not	
immediately	guaranteed	by	the	soundness	of	first-order	logic,	because	our	potentialist	
translations	of	set	theoretic	sentences	have	a	different	logical	form	from	the	originals.	

In	this	appendix	I	will	show	that,	for	any	two	sentences	of	actualist	set	theory,	if	𝜙	first-
order	logically	implies	that	𝜓	then	𝑡(𝜙)	implies	𝑡(𝜓).	Specifically,	I	will	show	that,	for	every	
first-order	logical	proof	in	the	language	of	set	theory,	there	is	a	corresponding	proof	from	
my	inference	rules	for	logical	possibility	which	takes	us	from	the	translation	of	the	
premises	for	this	argument	to	the	translation	of	its	conclusion.	That	is,	I	will	prove	the		
Theorem	9.1	from	Chapter	9	which	I	restate	below.	

Theorem	9.1	(Logical	Closure	of	Translation).		Suppose	𝛷,𝛹	are	sentences	in	the	language	
of	set	theory	and	𝛷 ⊢#$% 𝛹	then	𝑡(𝛷) ⊢ 𝑡(𝛹)	

Or,	equivalently,	if	⊢#$% 𝛷 → 𝛹	then	⊢ 𝑡(𝛷) → 𝑡(𝛹).	

C.1  Proof Strategy 

I	will	prove	the	above	result	by	first	establishing	a	more	general	result	about	potentialist	
translations	of	arbitrary	set	theoretic	formulae	(below),	which	implies	the	fact	we	want	
about	sentences.	Note	that	any	formula	we	are	translating	should	be	assumed	to	be	in	the	
language	of	set	theory.	

Proposition	C.1.		Given	a	set	𝛤	of	formulas	in	the	language	of	set	theory	if	𝛤 ⊢
#$%

𝜃	then	

𝒱 ⃗ (𝑉)), 𝑡)(𝛤) ⊢ 𝑡)(𝜃)	where	𝑡)(𝛤)	denotes	the	pointwise	image	of	𝛤	under	𝑡).	

Remember	that	𝑡)(𝛷)	intuitively	represents	the	translation	of	𝛷	with	respect	to	the	
structure	𝑉)	and	the	assignment	function	𝜌).	Thus,	this	theorem	can	be	thought	of	as	
showing	that	first-order	inferences	are	valid	even	with	respect	to	the	partial	translation	𝑡).	

As	one	might	expect,	this	more	general	result	implies	the	Logical	Closure	of	Translation	as	
we	prove	below.	

Proof.	Consider	any	𝛷,𝛹	such	that	⊢#$% 𝛷 → 𝛹.	It	follows	that	𝛷 ⊢#$% 𝛹	and	by	the	
theorem	above,	we	know	that	𝒱 ⃗ ;𝑉)   ⃗ D, 𝑡)(𝛷) ⊢ 𝑡)(𝛹)	and	thus	⊢ 𝒱 ⃗ ;𝑉)   ⃗ D → ;𝑡)(𝛷) → 𝑡)(𝛹)D.	

Now	assume	that	𝑡(𝛷).	By	this	is	just	�𝒱 ⃗ ;𝑉 ⃗@D → 𝑡@(𝛷)�.	From	this	we	may	infer	𝒱 ⃗ ;𝑉 ⃗ @D →
𝑡@(𝛷)	and	by	using	the	fact	that	𝒱 ⃗ ;𝑉@   ⃗ D → ;𝑡@(𝛷) → 𝑡@(𝛹)D	we	can	conclude	𝒱 ⃗ ;𝑉 ⃗@D → 𝑡@(𝛹).	
So	we	have	𝑡(𝜙) ⊢ 𝒱 ⃗ ;𝑉 ⃗ @D → 𝑡@(𝛹).	



Since	𝒱 ⃗ ;𝑉@   ⃗ D → ;𝑡@(𝛷) → 𝑡@(𝛹)D	is	provable	from	empty	premises	we	also	have	𝑡(𝛷) ⊢
𝒱 ⃗ ;𝑉 ⃗@D → 𝑡@(𝛹).	So	by	□		Introduction	(Lemma	B.2)	and	the	fact	that	𝑡(𝛷)	is	content	
restricted	to	the	empty	sentence,	we	can	infer	𝑡(𝛷) ⊢ �𝒱 ⃗ ;𝑉 ⃗ @D → 𝑡@(𝛹)�.	Hence	𝑡(𝛷) ⊢ 𝑡(𝛹)	
and	thus	⊢ 𝑡(𝛷) → 𝑡(𝛹).	■	

We	now	prove	proposition	Proposition	C.1	via	structural	induction	on	first-order	proofs	
(note	that	technically	this	is	a	meta-theorem	and	the	induction	occurs	in	our	meta-
language).	However,	first	we	need	a	formal	definition	of	an	FOL	proof.	

The	choice	to	explicitly	define	a	notion	of	proof	(as	opposed	to	simply	defining	the	set	of	
provable	sentences)	might	seem	odd	here.	After	all,	it	would	be	mathematically	more	
elegant	to	simply	define	provability	as	the	smallest	relation	closed	under	certain	rules.	
However,	defining	an	explicit	notion	of	proof	allows	us	to	induct	on	proof	length	in	
establishing	the	above	proposition	rather	than	trying	to	define	some	kind	of	well-founded	
relation	on	sequents.	

We	think	of	proofs	in	terms	of	the	familiar	tree	structure,	but	formalize	this	notion	in	a	way	
which	makes	it	clear	what	rule	is	being	applied	at	each	point,	as	below.	

Definition	C.1	(First-order	Proof).		𝛤 ⊢#$% 𝜃	just	if	there	is	a	first-order	proof	of	𝜃	from	𝛤 =
𝛾(, … 𝛾V	where	this	is	inductively	defined	as	follows	(taking	the	various	rule	names	are	
understood	to	refer	to	distinct	constants282)	and	⟨… ⟩	to	denote	an	ordered	tuple.)	

If	𝜃 ∈ 𝛤	then	⟨𝐴𝑠𝑠, 𝜃⟩	is	a	proof	of	𝜃	from	𝛤.	

If	𝜃 = 𝜙 ∧ 𝜓	and	𝑃s	is	a	proof	of	𝜙	from	𝛤	and	𝑃t	is	a	proof	of	𝜓	from	𝛤	then	

á∧ I, 𝑃s , 𝑃t, 𝜙 ∧ 𝜓â	is	a	proof	of	𝜃	from	𝛤	

If	𝜃 = 𝜙	or	𝜃 = 𝜓	and	𝑃s∧t	is	a	proof	of	𝜙 ∧ 𝜓	from	𝛤	then	á∧ E, 𝑃s∧t, 𝜃â	is	a	proof	of	𝜃	from	
𝛤	

If	𝜃 = 𝜙 ∨ 𝜓	and	𝑃	is	a	proof	of	𝜙	from	𝛤	or	𝜓	from	𝛤	then	⟨∨ I, 𝑃, 𝜙 ∨ 𝜓⟩	is	a	proof	of	𝜃	from	
𝛤	

If	𝑃s∨t	is	a	proof	of	𝜙 ∨ 𝜓	from	𝛤	and	𝑃s⊢x 	is	a	proof	of	𝜃	from	𝛤, 𝜙	and	𝑃t⊢x 	is	a	proof	of	𝜃	
from	𝛤, 𝜓,	then	á∨ E, 𝑃s∨t, 𝑃s⊢x , 𝑃t⊢x , 𝜃â	is	a	proof	of	𝜃	from	𝛤	

If	𝜃 = 𝜙 → 𝜓	and	𝑃t	is	a	proof	of	𝜓	from	𝛤 ∪ 𝜙	then	á→ I, 𝑃t, 𝜙 → 𝜓â	is	a	proof	of	𝜃	from	𝛤	

If	𝑃s→x 	is	a	proof	of	𝜙 → 𝜃	from	𝛤	and	𝑃s	is	a	proof	of	𝜙	from	𝛤	then	á→ E, 𝑃s→x , 𝑃s , 𝜃â	is	a	
proof	of	𝜃	from	𝛤	

	

282	For	instance,	numbers	if	formalized	in	an	arithmetic	meta-language	



If	𝜃 = ¬𝜙	and	𝑃t	is	a	proof	of	𝜓	from	𝛤, 𝜙	and	𝑃¬t	is	a	proof	of	¬𝜓	from	𝛤, 𝜓	then	

á¬I, 𝑃t, 𝑃¬t, ¬𝜙â	is	a	proof	of	¬𝜙	from	𝛤.	

If	𝑃¬¬x 	is	a	proof	of	¬¬𝜃	from	𝛤	then	⟨𝐷𝑁𝐸, 𝑃¬¬x𝜃⟩	is	a	proof	of	𝜃	from	𝛤.	

If	𝜃 = (∀𝑣)𝜙	and	𝑃s	is	a	proof	of	𝜙	from	some	𝛤- ⊆ 𝛤	with	𝑣	not	free	in	any	member	of	𝛤-	
then	á∀I, 𝑃s , (∀𝑣)𝜙â	is	a	proof	of	𝜃	from	𝛤.	

If	𝜃 = 𝜙(𝑣|𝑣-)	where	v’	is	free	for	v	in	𝜃283	and	𝑃(∀U)s	is	a	proof	of	(∀𝑣)𝜙	from	some	𝛤	then	

á∀E, 𝑃(∀U)s , 𝜃â	is	a	proof	of	𝜃	from	𝛤.	

If	𝜃 = 𝑣 = 𝑣,	where	𝑣	is	any	variable	then	⟨(= 𝐼), 𝜃⟩	is	a	proof	of	𝜃	from	𝛤.	

If	𝜃	is	obtained	from	𝜙	by	replacing	zero	or	more	occurrences	of	𝑣(	with	𝑣&,	provided	that	no	
bound	variables	are	replaced,	and	all	substituted	occurrences	of	𝑣&	are	free	and	𝑃| is	a	proof	
of	𝑣( = 𝑣&	from	𝛤	and	𝑃s	is	a	proof	of	𝜙	from	𝛤	then	á(= 𝐸), 𝑃|, 𝑃s , 𝜃â	is	a	proof	of	𝜃	from	𝛤.	

If	𝑃t∧¬t	is	a	proof	of	𝜓 ∧ ¬𝜓	from	𝛤	then	á⊥ 𝐼, 𝑃t∧¬t, ⊥â	is	a	proof	of	⊥	from	𝛤.	

(⊥	E)	If	𝜃 = ¬𝜙	and	𝑃}	is	a	proof	of	⊥	from	𝛤	then	⟨⊥ 𝐼, 𝑃}, 𝜃⟩	is	a	proof	of	𝜃	from	𝛤	

Note	that	there	is	no	conflict	between	our	definition	of	∀𝑥	as	an	abbreviation	of	¬∃𝑥¬	and	
our	use	of	the	introduction	and	elimination	rules	for	∀	rather	than	∃	in	proofs	(the	rule	∀𝐸	
simply	applies	to	statements	of	the	form	¬∃𝑣¬𝜓).	

Definition	12.2.		If	𝑃	is	a	first-order	proof	then	𝑃-	is	a	subproof	of	𝑃	just	if	either	

• 𝑃	has	the	form	⟨𝑅, 𝑃@, 𝜃⟩	and	𝑃- = 𝑃@	or	𝑃-	is	a	subproof	of	𝑃@	

• 𝑃	has	the	form	⟨𝑅, 𝑃@, 𝑃(, 𝜃⟩	and	𝑃-	is	𝑃@	or	𝑃(	or	a	subproof	of	𝑃@	or	𝑃(.	

C.2 Proof of Main Result 

We	are	now	in	a	position	to	prove	Proposition	C.1.	

Proof.	Suppose	that	𝑉 ⃗)	is	an	interpreted	initial	segment,	𝑡)(𝛾)	holds	for	all	𝛾 ∈ 𝛤	and	𝑃	is	a	
proof	of	𝜃	from	𝛤.	Furthermore,	assume,	by	way	of	induction,	that	the	proposition	holds	for	
all	𝑃-	a	subproof	of	𝑃.	We	prove	that	𝑡)(𝜃)	also	holds	(which	by	the	inductive	hypothesis	
demonstrates	that	𝒱 ⃗ ;𝑉 ⃗)D, 𝑡)(𝛤) ⊢ 𝑡)(𝜃)).	

Now	consider	the	possible	cases	for	𝑃	

	

283	That	is,	if	substituting	v	with	v’	does	not	lead	to	any	variable	which	was	antecedently	free	
becoming	bound.	Here	𝜃(𝑣|𝑣′)	stands	for	the	result	of	substituting	all	free	instances	of	𝑣	in	𝜃	
with	instances	of	𝑣′.	



𝑷 = ⟨𝑨𝒔𝒔, 𝜽⟩	
In	this	case	we	have	𝜃 ∈ 𝛤	so	we	immediately	have	𝒱 ⃗ (𝑉)), 𝑡)[𝛤] ⊢ 𝑡)(𝜃).	

𝑷 = ⟨𝑹,… ⟩	where	𝑹 ∈∧ 𝑰,∧ 𝑬,∨ 𝑰,∨ 𝑬,→ 𝑰,→ 𝑬,¬𝑰,DNE	
This	follows	immediately	from	the	fact	that	𝑡)	commutes	with	truth	functional	operations	
and	the	validity	of	the	above	rules	in	our	system	for	reasoning	about	logically	possibility.	
For	example,	if	á∧ 𝐼, 𝑃s , 𝑃t, 𝜙 ∧ 𝜓â	where	𝜃 = 𝜙 ∧ 𝜓	then	𝑡)(𝜙 ∧ 𝜓)	would	be	𝑡)(𝜙) ∧ 𝑡)(𝜓)	
and	by	the	inductive	assumption	applied	to	𝑃s , 𝑃t	we	know	that	𝑡)(𝜙)	and	𝑡)(𝜓)	both	hold	
yielding	the	desired	conclusion.	

𝑷 = ⟨(= 𝑰), 𝜽⟩	
In	this	case	𝑡)(𝜃)	is	𝜌)(⌜𝑣⌝) = 𝜌)(⌜𝑣⌝)	which	trivially	follows	from	the	assumption	that	
𝑉)	is	an	interpreted	initial	segment	(hence	𝜌)	is	functional	with	⌜𝑣⌝	in	its	domain).	

𝑷 = á(= 𝑬), 𝑷|, 𝑷𝝓, 𝜽â	
By	applying	the	inductive	hypothesis	to	𝑃|	we	have	⊢ 𝑡)(𝑣( = 𝑣&)	which,	,	is	𝜌)(𝑣() =
𝜌)(𝑣&).	By	the	inductive	hypothesis	applied	to	𝑃s	we	can	infer	𝑡)(𝜙).	As	𝜃	is	obtained	from	
𝜙	by	replacing	zero	or	more	occurrences	of	𝑣(	with	some	𝑣&	(where	no	bound	variables	are	
replaced	and	all	substituted	occurrences	of	𝑣&	are	free)	the	Variable	Swap	Lemma	(lemma	
Lemma	L.5	in	section	L.2	of	the	online	appendix)	lets	us	deduce	𝑡)(𝜃).	

The	proof	of	the	Variable	Swap	Lemma	(Lemma	L.5	in	section	L.2	of	the	online	
appendix)can	be	found	in	section	L.2	of	the	online	appendix	but	it	should	be	intuitively	
clear	that	if	𝜌)(𝑣() = 𝜌)(𝑣&)	then	replacing	some	number	of	occurrences	of	𝑣(	in	𝜃	with	𝑣&	
can’t	change	it’s	truth-vallue.	

𝑷 = á∀𝑰, 𝑷𝝓, 𝜽â	
By	our	definition	of	First-order	Proof	(Definition	12.1)	𝜃 = (∀𝑣)𝜙(𝑣)	for	some	formula	𝜙	
and	variable	𝑣,	and	𝑃s	is	a	proof	of	𝜙	from	some	𝛤- ⊂ 𝛤	containing	no	formula	𝛾	in	which	𝑣	
appears	free.	

If	𝛾 ∈ 𝛤-	then	by	the	inductive	hypothesis	applied	to	𝛤-,	𝑃s	and	𝑛 + 1	we	have	
𝒱 ⃗ ;𝑉 ⃗)D, 𝑡)[𝛤] ⊢ 𝑡)(𝛾).	Now	suppose	𝑉 ⃗)+( ≥U 𝑉 ⃗).	As	𝑣	is	not	free	in	𝛾,	by	the	Translation	
Theorem	we	can	prove	that	𝑡)+((𝛾).	Thus	𝒱 ⃗ ;𝑉 ⃗)D, 𝑡)[𝛤] ⊢ 𝑉 ⃗)+( ≥U 𝑉 ⃗) → 𝑡)+((𝜙).	

The	Translation	Theorem	(Theorem	L.1)	is	proved284	in	section	L.2	of	the	online	
appendixes.	However,	it	intuitively	says	that	the	truth-value	of	𝑡)(𝛾)	only	depends	on	how	
𝑉 ⃗)	assigns	the	free	variables	in	𝛾	and	not	on	the	height	of	𝑉 ⃗).	Thus,	if	𝑉 ⃗V ≥U 𝑉 ⃗)	and	𝑣	isn’t	
free	in	𝛾	then	we	can	infer	𝑡V(𝛾)	from	𝑡)(𝛾).	

	

284	Note	that	Hellman	proves	something	analogous	to	this	lemma	in	(Geoffrey	1996),	
assuming	there	are	infinitely	many	inaccessibles	(but	I	make	no	such	assumption).	



As,	by	Lemma	7.1,	every	member	𝑡)[𝛤]	is	content	restricted	to	𝑉 ⃗).	Thus,	by	□		Introduction	
(Lemma	B.2)	we	may	deduce	that	

𝑡);(∀𝑣)𝜙(𝑣)D ↔
def
□ 𝑉 ⃗)+(E# ≥

U
𝑉 ⃗) → 𝑡)+((𝜙)	

𝑷 = á∀E, 𝑷∀𝒗𝝓, 𝜽â	
By	definition	of	First-order	Proof	(Definition	C.1),	𝜃	is	equal	to	𝜙(𝑣|𝑣-)	for	some	formula	𝜙	
and	variable	𝑣	where	none	of	the	substituted	instances	of	𝑣-	are	bound	and	𝑃∀Us	is	a	proof	
of	∀𝑣𝜙.	

To	prove	this	claim	we	merely	need	to	show	that	if	every	logically	possible	way	of	
extending	𝑉 ⃗)	with	𝑉 ⃗)+(	and	choosing	𝑣	makes	𝑡)+((𝜙)	true	then	whatever	assignment	𝑉 ⃗)	
makes	for	𝑣-	makes	𝑡);𝜙(𝑣|𝑣

-)D	true.	To	this	end	we	must	use	the	intuitive	fact	that	
whatever	assignment	𝑉 ⃗)	makes	for	𝑣-	there	is	some	extension	𝑉 ⃗)+(	which	makes	the	same	
assignment	for	𝑣.	This	fact	is	proved	in	the	Pointwise	Interpretation	Tweaking	Lemma	(	
Lemma	L.1	in	section	L	of	the	online	appendix).	

We	first	note	that	by	Pointwise	Interpretation	Tweaking	Lemma	we	have.	

◊ £𝑉 ⃗)+( ≥U 𝑉 ⃗) ∧ 𝜌)+((⌜𝑣⌝) = 𝜌)(⌜𝑣
-
⌝)¤EII⃗# 	

Enter	this	◊EII⃗# 	context.	By		Lemma	2.1	each	sentence	in	𝑡)[𝛤]	can	be	infered	to	remain	true	
in	this	context285.	So,	by	the	inductive	hypothesis	applied	to	𝑃∀Us	we	may	infer	

𝑡);(∀𝑣)𝜙(𝑣)D ↔
def
□ (E# 𝑉 ⃗)+( ≥U 𝑉 ⃗) → 𝑡)+((𝜙))	

Application	of	□		Elimination	(Lemma	7.4)	allows	us	to	infer	𝑡)+((𝜙)	and	from	there,	as	
𝜌)+((⌜𝑣⌝) = 𝜌)(⌜𝑣

-
⌝) = 𝜌)+((⌜𝑣

-
⌝)	we	may	apply	the	Variable	Swap	Lemma	(lemma	

Lemma	L.5	in	section	L.2	of	the	online	appendix)	to	derive	𝑡)+((𝜃).	

As	𝜃 = 𝜙(𝑣|𝑣-)	if	𝑣-	isn’t	𝑣	then	𝑣	doesn’t	appear	free	in	𝜃.	If	𝑣-	is	𝑣	then	𝜌)+((⌜𝑣
-
⌝) =

𝜌)(⌜𝑣
-
⌝)	and	in	either	case	as	𝑉 ⃗)+( ≥U 𝑉 ⃗)	we	have	that	𝜌)+(	and	𝜌)	agree	on	all	free	

variables	in	𝜃.	Hence	by	the	Translation	Theorem	(Theorem	L.1	in	the	online	appendixes)	
we	can	infer	𝑡)(𝜃).	Leaving	the	◊EII⃗# 	context	we	have	◊EII⃗# 𝑡)(𝜃).	Since	by	Lemma	2.1	𝑡)(𝜃)	is	
content	restricted	to	𝑉 ⃗)	by	◇	Elimination	(Axiom	8.2)	we	can	conclude	𝑡)(𝜃).	

	!	

	

285	Strictly	speaking	we	only	need	to	import	the	finitely	many	𝛾 ∈ 𝛤	used	to	prove	∀𝑣𝜙	



C.3 Justifying Truth Condition Adequacy 

I	claim	that	if	our	Platonist	paraphrase	satisfies	the	above	Definable	Supervenience	
Condition	and	captures	intended	truth	conditions	for	all	sentences	in	S	then	the	if-thenist	
paraphrase	strategy	above	does	as	well.	That	is,	we	can	produce	a	nominalistic	sentence	
which	is	true	at	all	the	same	possible	worlds	where	the	Platonist	would	say	their	logically	
regimented	sentence	is	true	–	exactly	the	possible	worlds	where	we	think	the	English	
sentence	being	regimented	is	intuitively	true.	

Paraphrase:	□ (𝒩 𝐷 → 𝛷X)	is	true	at	a	world	w	iff	the	Platonist	would	say	𝛷d	

For	suppose	that	the	above	conditions	are	satisfied	for	some	applied	mathematical	
sentence	𝛷	and	N,	and	D	and	P.	I	claim	that	Platonist	must	admit	that	if	𝛷	is	true	iff	□𝒩
( 𝐷 → 𝛷)	For,	consider	any	metaphysically	possible	world	w.	The	Platonist	thinks	D	is	true	
at	w,	by	the	fact	that	they	take	D	to	be	metaphysically	necessary.	But	then,	by	the	following	
theorem	we	have	𝛷	iff	my	translation	of	𝛷	(i.e.,	□ (𝒩 𝐷 → 𝛷))	is	true.	

C.3.1 Formal Justification for Truth Conditions Adequacy 

Theorem	12.1.		Suppose	that	

1. 𝒫 ∩𝒩 = ∅	

2. Both	𝛷d	and	𝐷	are	content	restricted286	to	𝒫 ∪𝒩.	

3. 𝐷	is	a	categorical	description	of	𝒫	over	𝒩.	

then	¥𝐷 → ;𝛷 ↔ 𝑇(𝜙)D¦	

Remember	that	𝑇(𝜙) = □ (𝐷 → 𝜙)𝒩 .	

Note	that	while	all	theorems	proved	in	this	book	hold	with	necessity,	we	make	the	
necessity	claim	explicit	here	as	it	is	used	to	justify	claim	that	𝑇(𝜙)	matches	the	truth	value	
the	Platonist	intended	𝜙	to	have	at	every	metaphysically	possible	world.	

Proof.	Note	that	it	is	enough	to	prove	𝐷 → ;𝛷 ↔ 𝑇(𝜙)D	as	we	may	then	invoke	□		
Introduction	(	Lemma	B.2)	to	infer	the	necessity	of	the	claim.	So	we	suppose	that	𝐷	holds	
and	verify	𝛷 ↔ 𝑇(𝜙).	

(←)	Suppose	𝑇(𝜙) = □ (𝒩 𝐷 → 𝛷).	By	□		Elimination	(	Lemma	B.3)	we	may	infer	𝐷 → 𝛷	
and	thus	𝛷.	

(→).	Suppose	for	a	contradiction,	that	𝛷	holds	but	𝑇(𝜙)	fails	to	hold.	Thus,	we	can	infer,	◊𝒩
( 𝐷 ∧ ¬𝛷).	Letting	𝒫-	be	a	set	of	new	relations	of	the	same	arity	as	𝒫	and	applying	

	

286	Intuitively,	given	any	𝐷	that	is	a	categorical	description	of	𝒫	over	𝒩	it	should	be	possible	
to	find	a	𝐷′	that	imposes	the	same	restrictions	but	is	content	restricted	to	𝒫 ∪𝒩.	However,	it	
is	not	clear	how	to	go	about	proving	this.	



Relabeling	(Axiom	8.5)	we	may	infer	□ (𝒩 𝐷[𝒫/𝒫′] ∧ ¬𝛷[𝒫/𝒫′])	(where	𝒫/𝒫-	indicates	
simultaneously	replacing	the	relations	in	𝒫	by	those	in	𝒫-).	

Now	since	we	are	assuming	that	both	𝐷	and	𝛷	hold	we	may	infer	◊ (𝒩 𝐷 ∧ 𝛷)	via	◇	
Introduction	(Axiom	8.1).	As	𝐷	and	𝛷	are	both	content	restricted	to	𝒩 ∪𝒫	(and	thus	
𝐷[𝒫/𝒫-] ∧ ¬𝛷[𝒫/𝒫-]	is	content	restricted	to	𝒩 ∪𝒫-)	we	may	use	Pasting	(Lemma	B.7)	to	
infer	

◊ 𝐷𝒩 ∧ 𝐷[𝒫/𝒫-] ∧ 𝛷 ∧ ¬𝛷[𝒫/𝒫-]	

Enter	this	◊𝒩 	context	and	import	the	following	fact	(content	restricted	to	the	empty	set)	
from	the	definition	of	categorical	over	(Definition	12.3).	

(𝐷[𝑁(, … , 𝑁V, 𝑃(, … , 𝑃)] ∧ 𝐷[𝑁(, … , 𝑁V, 𝑃(/𝑃′(, … , 𝑃)/𝑃′)] → 𝒩 ∪ 𝒫 ≅ 𝒩 ∪𝒫-)	

By	application	of	(full)	□		Elimination	(	Lemma	H.4	of	section	H	of	the	online	appendix)	we	
can	infer	𝐷 ∧ 𝐷[𝒫/𝒫-] → 𝒩 ∪ 𝒫 ≅ 𝒩 ∪𝒫-	and	thus	𝒩 ∪𝒫 ≅ 𝒩 ∪𝒫-.	Hence,	we	can	use	
the	Isomorphism	Theorem	(	Theorem	I.1	of	section	I	of	the	online	appendix)	to	infer	from	
this	and	the	fact	that	𝛷	holds	that	𝛷[𝒫/𝒫-]	holds.	But	this	contradicts	the	fact	that	
¬𝛷[𝒫/𝒫-].	Exporting	this	contradiction	gives	us	the	desired	conclusion.	!	

D Archimedean and Rich Instantiation 

It	is	easy	to	show	that	the	platonic	structures	appealed	to	here	(the	natural	numbers	and	
the	functions	from	the	natural	numbers	to	paths)	definably	supervene	on	the	how	
nominalistic	relations	apply,	via	the	techniques	used	in	Chapter	12.2.).	

Platonist	‘x	has	length	a	finite	multiple	of	y’:	for	all	𝑛	there	are	paths	𝑐< , 1 ≤ 𝑖 ≤ 𝑛	
with	𝑐@ = 𝑥,	𝑐( = 𝑦	and	𝑐< ⊕𝑥 = 𝑐<+(	

Then	we	can	prove	the	uniqueness	Putnam	claims	under	the	following	nominalistically	
stateable	assumptions,	which	may287	imply	that	space	is	infinite	in	extent.	

• given	a	path	𝑥	there	are	paths	𝑦	with	length	equal	to	any	finite	multiple288	of	𝑥.	

	

287	It’s	not	entirely	clear	that	the	Closure	Under	Multiples	requirement	requires	that	space	
is	infinite	in	extent.	For	instance,	if	space	is	(as	some	models	of	General	Relativity	would	
suggest)	closed	back	on	itself	(i.e.,	has	the	geometry	of	the	surface	of	a	4-dimensional	
sphere)	then	sufficiently	long	paths	would	simply	start	wrapping	around	the	universe.	
Assuming	one	is	willing	to	accept	such	paths	then	it	is	much	more	plausible	that	something	
like	these	conditions	hold	necessarily	(not	an	assumption	we	must	vindicate	but	see	below)	
as	one	might	think	space	can’t	have	an	edge.	

288	The	fact	that	𝑦&	is	twice	the	length	of	𝑥	can	be	expressed	as	⊕% (𝑥, 𝑥, 𝑦),	the	fact	that	𝑦M	
is	three	times	the	length	of	𝑥	can	be	expressed	as	the	conjunction	of	the	claim	that	𝑦&	is	
twice	the	length	of	𝑥	and	⊕% (𝑥, 𝑦&, 𝑦M).	The	closure	condition	simply	asserts	the	existence	
	



• No	path	is	infinite	in	length	with	respect	to	another,	i.e.,	if	𝑥 ≤% 𝑦	then	some	finite	
multiple	of	𝑥	is	longer289	than	𝑦.	

• The	relations	≤% ,⊕%	have	the	basic	properties	you	would	expect	from	their	role	as	
length	comparisons290.	

That	is,	the	assumptions	above	imply	that	there	is	a	unique	(up	to	multiplicative	constant)	
length	function	(from	paths	to	the	real	numbers)	respecting	≤% ,⊕% .	Hence	there’s	a	unique	
length	ratio	function	𝑙a(𝑝(, 𝑝&) = 𝑟	such	that	for	all	functions	𝑓	satisfying	the	above	
constraints	W(d")

W(d+)
= 𝑟.	

One	can	also	(as	seems	more	in	the	spirit	of	Putnam’s	cryptic	remark	about	how	his	
uniqueness	claim	is	to	be	proved)	establish	the	same	uniqueness	on	the	assumption	that	
space	is	(roughly)	infinitely	divisible	rather	than	infinite	in	extent,	replacing	the	finite	
multiple	condition	by	a	finite	division	condition,	i.e.,	for	each	path	𝑦	and	finite	multiple	𝑚	
there	is	a	path	𝑥	such	that	𝑚	copies	of	𝑥	have	the	same	length	as	𝑦.	And	we	can	write	a	
corresponding	division	rather	than	multiplication-based	version	of	the	Archimedean	
principle.	Philosophers	who	have	a	more	classical	view	of	space	might	find	such	a	condition	
more	plausible	as	a	necessary	constraint	on	the	nature	of	space	(we	will	also	consider	the	
possibility	that	neither	seems	necessary	below	as	well).	

• given	a	path	𝑥	there	are	paths	𝑦	with	length	equal	to	any	finite	multiple	of	𝑥.	

• No	path	is	infinite	in	length	with	respect	to	another,	i.e.,	if	𝑥 ≤% 𝑦	then	𝑥	is	longer	than	
some	finite	divisor291	of	𝑦.	

• The	relations	≤% ,⊕%	have	the	basic	properties	you	would	expect	from	their	role	as	
length	comparisons292.	

	

of	𝑦< 	for	each	𝑦	(note	that	while	this	is	a	schema,	we	can	replace	this	with	a	single	formula	
expressing	the	same	condition	in	the	language	of	logical	possibility	by	using	a	categorical	
description	of	the	natural	numbers	and	turning	this	into	a	statement	about	this	logically	
possible	structure).	

289	Formally,	anytime	the	length	of	a	path	𝑎	is	less	than	the	length	of	a	path	𝑏	there	are	
paths	𝑐< , 1 ≤ 𝑖 ≤ 𝑛	with	length	𝑖	times	that	of	𝑎	and	𝑐)	is	longer	than	𝑏.	Again,	logical	
possibility	allows	us	to	formalize	this	schema	with	an	equivalent	single	sentence.	

290	For	instance	≤%	is	transitive,	reflexive	etc.	and	⊕% (𝑝(, 𝑝&, 𝑝M) ↔⊕% (𝑝&, 𝑝(, 𝑝M)	etc..	

291	Formally,	anytime	the	length	of	a	path	𝑎	is	less	than	the	length	of	a	path	𝑏	there	are	
paths	𝑐< , 1 ≤ 𝑖 ≤ 𝑛	with	length	𝑖	times	that	of	𝑎	and	𝑐)	is	longer	than	𝑏.	Again,	logical	
possibility	allows	us	to	formalize	this	schema	with	an	equivalent	single	sentence.	

292	For	instance	≤%	is	transitive,	reflexive	etc.	and	⊕% (𝑝(, 𝑝&, 𝑝M) ↔⊕% (𝑝&, 𝑝(, 𝑝M)	etc..	



Standard	measurement	theoretic	uniqueness	arguments	then	show	that	if	either	of	these	
two	claims	are	satisfied	then	‘length	is	richly	instantiated’	in	the	following	sense:	

□ [P,,⊕,,d78� 𝐷 →	If	f	and	g	are	functions	satisfying	Putnam’s	measurement	theoretic	axioms	
for	being	a	length	function,	then	f	and	g	agree	up	to	a	constant]293	

So,	we	know	that	if	length	is	richly	instantiated	in	a	world	w	then	we	have	uniqueness	and	
the	Platonist	paraphrase	above	yields	correct	truth	conditions	at	that	world.	

D.1 Inferential Role Adequacy 

We	can	also	show	that	the	nominalistic	paraphrase	strategy	produced	by	our	translation	T	
preserves	the	desired	inferential	role	of	scientific	sentences	in	S,	capturing	both	inferences	
between	scientific	sentences	and	inferences	between	scientific	sentences	and	observational	
sentences	(on	the	plausible	assumption	that	the	latter	can	be	understand	as	content	
restricted	to	some	nominalist	vocabulary).	

It	is	easy	to	see	that	applying	our	translation	T	preserves	inference	relations	between	
scientific	statements	in	the	following	sense.	

Theorem	D.1.		Suppose	that	𝛷,𝛹	are	content	restricted	to	𝒫 ∪𝒩	and	⊢ 𝛷 → 𝛹	then	⊢
𝑇(𝛷) → 𝑇(𝛹).	Furthermore	if	⊢ 𝑇(𝛷) → 𝑇(𝛹)	then	⊢ (𝐷 ∧ 𝛷) → 𝛹,	

Proof.	As	⊢ 𝛷 → 𝛹,	we	have	(𝐷 → 𝛷) ⊢ (𝐷 → 𝛹)	by	FOL.	Suppose	□ (𝒩 𝐷 → 𝛷),	then	by	the	
above	fact	and	Box	Closure	(	Lemma	H.2	of	section	H	of	the	online	appendix)	we	have	□𝒩
( 𝐷 → 𝛹).	

For	the	furthermore,	suppose	that	𝐷 ∧ 𝛷.	Above	we	proved	that	𝐷 → ;𝛷 ↔ 𝑇(𝛷)D	holds	for	
all	sentences	content	restricted	to	𝒫 ∪𝒩.	Thus,	we	can	infer	𝑇(𝛷)	and	𝑇(𝛹),	so	𝛹.	Thus,	

(𝐷 ∧ 𝛷) → 𝛹.	!	

Note	the	‘furthermore’	ensures	that	this	translation	strategy	doesn’t	let	you	prove	any	
more	than	the	Platonist	thinks	the	scientist	can	prove.	

We	can	also	show	the	following	lemma.	

Theorem	D.2.		Suppose	that	the	conditions	for	T	being	defined	above	are	satisfied	
(specifically	◊ 𝐷𝒩 ,	i.e.,	the	Platonist	isn’t	supposing	the	existence	of	incoherent	objects),	and	
that	𝛷	is	content	restricted	to	𝒩	then	𝛷 ↔ 𝑇(𝛷)	

Proof.	(→).	Assume	𝛷.	Hence,	we	may	infer	𝐷 → 𝛷.	As	this	proof	only	assumed	𝛷	which	is	
content	restricted	to	𝒩	we	may	infer	𝑇(𝛷) = □ [𝒩 𝐷 → 𝛷]	via	□		Introduction	(Lemma	B.2).	

	

293	Recall	that	D	says	there	are	(objects	with	the	structure	of)	numbers	and	functions	from	
spatial	paths	to	numbers	and	some	functions.	



(←).	Assume	𝑇(𝛷) = □ [𝒩 𝐷 → 𝛷].	By	assumption	we	have	◊ 𝐷𝒩 .	Enter	this	◊𝒩 	context.	As	
𝑇(𝛷)	is	content	restricted	to	𝒩	we	may	import	it.	By	□		Elimination	(Lemma	B.3)	we	may	
infer	𝐷 → 𝛷	and	hence	𝛷.	

Leaving	this	inner	diamond	context	gives	us	◊ 𝛷𝒩 .	As	𝛷	content	restricted	to	𝒩	we	may	
conclude	𝛷	by	◇	Elimination	(Axiom	8.2).	!	

This	fact	shows	that	our	translation	𝑇(𝜙)	of	a	platonistic	theory	𝜙	implies	the	same	
nominalistic	sentences	observation	sentences	as	the	original	theory	does	when	combined	
with	the	Platonist’s	assumption	that	D	(on	the	plausible	assumption	that	all	observation	
sentences	are	nominalistic,	i.e.,	content	restricted	to	nominalistic	vocabulary).	For	in	this	
case,	we	have	𝑇(𝜙) → 𝜓	iff	𝑇(𝜙) → 𝑇(𝜙)	by	Theorem	D.2	iff	(𝐷 ∧ 𝜙) → 𝜓	by	Theorem	D.1.	
So,	our	translation	of	a	platonistic	scientific	theory	𝜙	implies	a	nominalistic	consequence	iff	
𝜙	itself	implies	𝜓	given	the	platonist’s	assumptions	𝐷	about	relevant	mathematical	objects	
existing.	
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