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Chapter 6

The Language of Logical

Possibility

6.1 Agenda

In Part I we discussed some existing potentialist and actualist approaches

to the foundations of set theory, and noted some problems for them. We

saw that actualists face an arbitrariness problem related to the Buralli-Forti

paradox. Potentialists face a problem about clarifying the intended meaning

their possibility and extendability claims (e.g., the intended interpretation

of the □ and ♢) in a way that supports their project. And both actualists

and potentialists face a problem about justifying the ZFC axioms, especially

the Axiom of Replacement. With this picture in place, we can now begin

this book’s positive project.
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112 CHAPTER 6. THE LANGUAGE OF LOGICAL POSSIBILITY

In the next few chapters (Part II of this book) I will develop a particular

version of (Putnamian) Potentialist set theory, and argue that it lets us

avoid many of the problems discussed above. As we have seen, potentialist

paraphrases of set theory make claims about how it would be (in some sense)

possible to extend an initial segment of the hierarchy of sets.

So I will begin by introducing the key notion of possibility which I think

we should use to formulate potentialist set theory - namely, conditional

logical possibility - in this chapter. I will argue that we already have and

need a notion of logical possibility, and that this notion naturally general-

izes to a notion of what is logical possible while ‘holding certain structural

facts fixed’. The resulting notion of conditional logical possibility turns out

to have significant expressive power. For example, combining it with first

order vocabulary lets us categorically describe the structure of the natural

numbers.

In chapter 7 I will discuss how we can use the relevant notion of logical

possibility to formulate a version of Putnam’s potentialist set theory which

differs from, and simplifies, Hellman’s formulation in a few key ways.

In chapter 8 I will give mathematical details on my proposed formulation.

Readers who are more interested in this book’s philosophical arguments

than the justification for Replacement provided in the Part III, are invited

to skim this section or only consult it as needed to answer questions about

how the ideas in chapter 7 can be implemented.

Finally in chapter 9 I will review how this helps solve the problems raised
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for other versions of potentialism above.]

6.2 Logical Possibility Simpliciter

We seem to have an intuitive notion of logical possibility which applies to

claims like (∃x)(red(x) ∧ round(x)) and makes sentences like the following

come out true.

• It is logically possible that (∃x)(red(x) ∧ round(x))

• It is not logically possible that (∃x)(red(x) ∧ ¬red(x))

• It is logically necessary that (∀x)(red(x))→ ¬(∃x)(¬red(x)).

Philosophers representing a range of different views of mathematics have

made use of this notion and are comfortable applying it to non-first order

sentences.

This notion of logical possibility is (roughly) what’s analyzed by saying

some theory has a set theoretic model. And it concerns whether some state

of affairs is allowed by the most ‘general subject matter neutral laws’ of

how there can be some pattern of objects standing in n-place relations (in

something like Frege’s sense of logical laws being subject matter neutral).

However, like Hartry Field, I take it logical possibility to be a primitive

concept not reducible to any facts about set theoretic models or possible

worlds. If you are skeptical that there is such a notion, note that it is

definable in terms of the even more common notion of validity1 (something

1See the discussion of the corresponding notion of validity and logical consequence in
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is logically possible iff its negation is not logically necessary iff the inference

from the empty premises to its negation is not valid).

At first glance, one might be tempted to identify claims about logical possi-

bility with claims about the existence of a set theoretic model. But see [33]

for a convincing argument against this view. Very crudely, the issue is this:

a key aspect of our notion of logical possibility is that what’s actual must be

logically possible. But, if we identify logical possibility with the existence of

a set theoretic model then it seems puzzling why the inference from actual

to possible is justified, since the total universe can’t be represented as a set

theoretic model (because, assuming realism about set theory, the universe

contains all the sets)2.

To evaluate whether a claim ϕ is logically possible (in this sense), we hold

fixed the operation of logical vocabulary (like ∃,∧,∨,¬), but abstract away

from any further metaphysically necessary constraints on the application of

particular relation symbols. Thus, we consider all possible ways for relations

to apply (including those ways that aren’t definable). For example, it is

logically possible that (∃x)(Raven(x) ∧ Vegetable(x)), even if it would be

metaphysically impossible for anything to be both a raven and a vegetable.

We also abstract away from constraints on the size of the universe, so that

[31],[87] and [44].
2Of course, in the case of first order statements, Gödel’s completeness theorem ensures

us that any intuitively logically possible state of affairs will have a set theoretic model.
But, it seems that we can understand claims about the logical possibility of states of
affairs described with richer logical vocabulary like second order quantification possibility
(or at least that we shouldn’t rule this possibility out in advance). Also, as Field argues,
our willingness to draw this conclusion from Godel’s proofs in the completeness theorem
seems to arise from our having an intuitive notion of logical possibility.
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♢(∃x)(∃y)(¬x = y) would be true even if the actual universe contained only

a single object.

6.3 Contrast With Other Modal Notions

Before going on, it may help philosophical readers to note how my notion

of logical possibility differs from three vaguely similar modal notions in the

literature, namely Tarskian re-interpretability, metaphysical possibility and

conceptual possibility.

The notion of logical possibility is (potentially) less demanding than the

notion of Tarskian reinterpretability, for reasons discussed in Etchemendy’s

The Concept Of Logical Consequence. Essentially, the issue is that certain

scenarios might be genuinely logically possible but require the existence

of more objects than actually exist, and hence not permit any Tarskian

reinterpretation (since Tarskian reinterpretations of a sentence must still

take the sentence’s quantifiers to range over some collection of objects in

the actual world).

The notion of logical possibility is also prima facie less demanding than

the notion of metaphysical possibility3. For, as Frege noted, the laws of

logic hold at all possible worlds. Yet it would seem that statements like

(∃x)(Raven(x)∧V egetable(x)) can require something which is logically pos-

3I want to leave it open for hardcore Tractarians who reject this notion to say that
logical possibility turns out to be the same thing as metaphysical possibility. I’m just
noting that we have a concept of logical possibility independent of this, and that this
suffices to give an attractive account of set theory.
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sible but metaphysically impossible.

Cashing set theory out in terms of logical rather than metaphysical possibil-

ity frees us from worries that there might be overly restrictive limits on the

number of physical objects (and perhaps the number of impure mathemati-

cal objects) arising from constraints on the structure of space and time[75].

Finally, the notion of logical possibility is also less demanding than the no-

tion(s) of idealized conceivability and/or conceptual possibility at issue in de-

bates over philosophical zombies and Chalmers’ Constructing the World [16]

(and are, inconveniently, sometimes also labeled logical possibility). For the

notion of conceptual possibility reflects something like ideal a priori accept-

ability. So when evaluating whether it is conceptually possible that ϕ we

have to preserve all analytic truths associated with relations occurring in ϕ.

In contrast (as I have noted above) logical possibility abstracts away from

all such specific features of relations. Thus, for example, if we assume it is

analytic that (∀x)(bachelor(x)→ male(x)), then it will be logically possible

but not conceptually possible that (∃x)(bachelor(x) ∧ ¬male(x)).

6.4 Conditional Logical Possibility

So much for the familiar notion of logical possibility discussed above, and

the appeals of taking it as a conceptual primitive. I want to suggest that,

if you accept this notion, it’s natural to also accept a generalization of it

which I will call conditional logical possibility.

If you accept a notion of logical possibility, it seems only natural to be able
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to make sense of restricting that notion to the scenarios which preserve the

structure of how some relations R1, . . . , Rn apply (in the actual world, or in

some possible world under consideration).

So I think we can also intuitively understand claims about logical possibility

given the facts about how certain relations apply. Consider a statement like

the following.

Given what cats and blankets there are, it is logically impossible

that each cat slept on a different blanket last night.

This sentence has an intuitive reading which employs a notion of logical

possibility holding fixed the way that certain relations apply (in this case,

holding fixed what cats and blankets there are) rather than logical possibility

simpliciter. A moment’s thought will reveal that (on this reading) the above

sentence is true if and only if there are more cats than blankets.

I propose to think of the logical possibility ♢(...)(...) as an operator which

takes a sentence ϕ and a finite (potentially empty) list of relation symbols

R1, . . . , Rn and produces a sentence ♢R1,...,Rnϕ which says that it is logically

possible for ϕ to be true, without any change to (structural facts) about how

the relations R1, . . . Rn apply. Thus, for example, the claim, ‘Given what

cats and baskets there are, it is logically impossible that each cat slept in a

distinct basket’ becomes:

C∧B:¬♢cat,basket[(∀x)(cat(x)→ (∃y)(basket(y)∧ sleptIn(x, y)∧

(∀z)[cat(z) ∧ sleptIn(z, y)→ x = z])]

Stepping back, we might say that claims employing the familiar the notion
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of logical possibility simpliciter (♢) discussed in the previous sections con-

cern what’s possible if we let both the size of the domain of discourse and

the application of relations to that domain vary with complete freedom.

In contrast, claims about conditional logical possibility (♢R1,...Rn) concern

what’s logical possible if we hold fixed the structural facts about how some

relations R1, . . . , Rn apply (while still letting the size of the domain and the

application of all relations other than R1, . . . , Rn within this domain vary

freely).

But what do I mean by ‘holding the structural facts fixed’, about how some

relations R1, . . . , Rn apply? Consider the way we’d say two different in-

terpretations of some person’s language which both take the ‘number’ and

‘successor’ to apply to some ω sequence thereby agree on the structure of

the natural numbers (under successor), even if they disagree about the total

size of the universe, whether Julius Caesar or the empty set are identical to

any numbers etc. Or consider the way that a Platonist would say the struc-

ture of the natural numbers is fixed necessarily and will always remain the

same, even if the total size of the universe can be changed by the creation

or destruction of physical objects or changes to the structure of space etc.

My notion of agreeing on/preserving structural facts about R1, . . . , Rn gen-

eralizes this notion of agreeing on/preserving the structural facts about how

‘natural number’ and ‘successor’ apply.

If we could talk about functions between (the objects in) different logically

possible worlds, then we could specify what it takes to hold the structural

facts about how some relation (say, admires()) apply fixed, in terms of iso-
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morphisms as follows.

A logically possible world w2 counts as holding fixed the struc-

tural facts about how admires() applies in w1 iff some function f

bijectively maps the objects which either admire or are admired

in w1 to the objects which either admire or are admired in w2,

so that for all objects x and y in w1 which either admire or are

admired in w1, we have x admires y iff f(x) admires f(y).

And more generally, a logically possible world w2 preserves the

structural facts about how relations R1, . . . , Rn (say admires()

and cat()) apply iff some function f bijectively maps the objects

which R1, . . . , Rn apply to in w1 (i.e. those things which are

either cats or admire something or are admired by something)

to the objects which R1, . . . , Rn apply to in w2 in a way that

respects all these relations.

But note that I’m putting conditional logical possibility forward as a con-

ceptual and metaphysical primitive. So I make this comparison purely for

expository purposes.

For another example of how conditional logical possibility applies, consider

the claim that it’s logically possible, holding fixed how ‘admires()’ applies,

that everything which admires something it is pitied by something. That is,

♢admires(∀x) [(∃y)admires(x, y)→ (∃z)pities(z, x)]

.
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In contrast to the bare logical possibility claim,

♢(∀x)(∃y) (admires(x, y)→ (∃z)pities(z, x))

we can’t see that this conditional logical possibility ♢admires claim is true just

by considering a logically possible scenario in which a single individual both

admires and pities themselves. For presumably the actual world contains

more than one individual who admires and/or is admired by something.

Thus, this scenario will not qualify as holding the structural facts about

how admiration() applies fixed since it has less individuals who admire or

are admired than the actual world.

Instead, to witness the truth of this claim, we must consider a logically

possible scenario which is ‘isomorphic to reality’ with regard to which ob-

jects admire one another, in the sense described above. So, for example,

such scenarios cannot change the number of individuals which admire some-

thing, or the number of individuals who admire themselves, or the number

of pairs of individuals who reciprocally admire each other. But this logically

possible scenario can vary the application of other relations like pities(),

(and, though not needed here, the total size of the universe) as needed to

make the claim (∀x) ((∃y)admires(x, y)→ (∃z)pities(z, x)) true. Thus, for

example, to witness the truth of the above logical possibility claim, we can

consider a scenarios where for all a and b, if a admires b, b pities a (even

though one hopes is not true of the actual world).

Note that fixing the structural facts about how some relations R1, . . . Rn
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apply doesn’t merely mean preserving the truthvalue of some set of sentences

describing how these relations apply. For example, suppose the ticks of some

infinite clock form a genuine ω sequence under the relation ‘follows’. Then

when evaluating ♢tick,follows only logically possible scenarios which preserve

the fact that the clock ticks form an ω sequence under ‘follows’ will be

relevant. Yet by Skolemization no collection of first order sentences will

suffice to ensure that this is the case. Thus, the claim that some logically

possible scenario preserves the structural facts about how ‘tick’ and ‘follows’

apply in the actual world (or some scenario under consideration) cannot be

identified with the requirement that this scenario preserves the truthvalue

of some collection of first order sentences.

4

We can also make nested logical possibility claims, i.e., claims about the

4One can further explain and motivate my the notion of conditional logical possibility
by relating it to Stuart Shapiro’s notion of structures in [98]. Shapiro introduces a notion
of systems, consisting of some objects to which some relations R1...Rn apply, considered
under some relations. He gives the following examples, “An extended family is a system
of people with blood and marital relationships, a chess configuration is a system of pieces
under spatial and “possible move relationships, a symphony is a system of tones under
temporal and harmonic relationships, and a baseball defense is a collection of people with
on-field spatial and “defensive-role relations.”

Then he says that a structures are ‘the abstract form’ of a system, which we get by
“highlighting the interrelationships among the objects, and ignoring any features of them
that do not affect how they relate to other objects in the system.” Thus, for example,
“The natural-number structure is exemplified by the strings on a finite alphabet in lexical
order, an infinite sequence of strokes, an infinite sequence of distinct moments of time,
and so on.” And adding or subtracting objects to the world outside of a given system,
will make no different to which structure that system instantiates.

Although I mean to propose them as conceptual primitives, one can (roughly) explain
my notion of conditional logical possibility (aka structure preserving logical possibility) in
terms of Shapiro’s notions as follows:

It is logical possible, given the R1 . . . Rn facts, that ϕ (i.e., ♢R1...Rn iff some logically
possible scenario makes ϕ true while holding fixed what structure (in Shapiro’s sense)
the system formed by the objects related by R1 . . . Rn (considered under the relations
R1 . . . Rn) instantiates.
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logical possibility of scenarios which are themselves described in terms of

logical possibility. I have in mind sentences like the following:

♢C∧B: ♢(¬♢cat,basket [(∀x)(cat(x)→ (∃y)(basket(y) ∧ sleptIn(x, y) ∧

(∀z)[cat(z) ∧ sleptIn(z, y)→ x = z])])

The above sentence, ♢(C∧B), expresses a truth because (reading from the

outside in):

• It is logically possible (holding fixed nothing) that there are 4 cats and

3 baskets.

• Relative to the logically possible scenario where there are 4 cats and 3

baskets, it is not logically possible (given what cats and baskets there

are), that each cat slept in a basket and no two cats slept in the same

basket.

Based on these kind of examples, I take logical possibility sentences of the

form ♢R1,...,Rnϕ to be meaningful, even in cases where ϕ is itself a sentence

which makes appeal to facts about logical possibility. As noted above, I

will not allow sentences which quantify in to the ♢ of logical possibility, i.e.

sentences of the form (∃x)♢ϕ(x).

To clearly express claims about logical possibility, we can define a formal

language, which I will call the language of logical possibility (though no

implication that this exhausts the concept of logical possibility should be

drawn). Fix some infinite collection of variables and relation symbols of ev-

ery arity together with ⊥ and define the language of logical possibility to be

the smallest language built from these variables using these relation symbols
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and equality closed under applications of the normal first order connectives

and quantifiers and ♢... (where ♢... expressions can only be applied to sen-

tences (so there is no quantifying in). We will also use □... in our sentences

but regard it as an abbreviation for ¬♢...¬.

In appendix B I show how to use set theoretic models to approximate truth

conditions for arbitrary sentences in the language of logical possibility. Look-

ing at this appendix may help answer any questions about the meaning of

nested conditional logical possibility claims.

6.5 A Sample of this Language’s Power

To see the expressive power of this notion of logical possibility (and begin

to see how it can be useful for formulating potentialist set theory) note that

we can categorically describe the intended structure of the natural numbers,

using only the conditional logical possibility operator ♢... and standard first

order logical connectives, rather than second order quantification (as is com-

monly done).

One can uniquely describe the intended structure of the natural numbers

by combining the first 6 Peano Axioms (which can be expressed using only

first order logical vocabulary) with an Axiom of Induction, which can be

expressed in the language of second order logic as follows:

(∀X)(([0 ∈ X ∧ (∀n)(n ∈ X → S(n) ∈ X)]→ (∀n)(N(n)→ n ∈ X)) 5

5Where 0 is not officially part of our language, but I use claims about 0 to abbreviate
corresponding claims about the unique number that isn’t a successor of anything, in the
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Informally, this axiom says that if some property applies to 0 and to the

successor of every number it applies to, then it applies to all the numbers.

We can express the same idea using ♢ (and any one place relation P other

than ‘N’) as follows.6

□N,S

(
[P (0) ∧ (∀x)(∀y)(P (x) ∧ S(x, y)→ P (y))]→ (∀x)(N(x)→ P (x))

)

This formula says that, given the facts about what is a number and a suc-

cessor, i.e., about how N and S apply), it would be logically impossible for P

to apply to 0 and to the successor of each object which it applies to without

applying to all the numbers.

Call the sentence you get by replacing the axiom of induction in second

order Peano Arithmetic with the above modal sentence PA♢.

usual fashion.
6 Here P (0) is shorthand for (∃z)(∀w) (N(z) ∧ ¬S(w, z) ∧ P (z)), and □ abbreviates

¬♢¬ as usual.



Chapter 7

Purified Potentialist Set

Theory: An Informal Sketch

In this chapter I will informally present my preferred version of potentialist

set theory (using the notion of conditional logical possibility), and clar-

ify some philosophical issues about it. This formulation of potentialist set

theory will avoid appeal to the contested notion of de re modality and (ar-

guably) uses fewer conceptual primitives than other articulations of poten-

tialism. In later chapters I will argue that it solves some of the problems

noted for these previous views.

Structurally my version of potentialst paraphrases (presented in section 8)

will look rather like Hellman’s paraphrases in [44]. Recall that Hellman

would paraphrase the set theoretic sentence (∀x)(∃y)(x ∈ y) as saying the

following. Necessarily if V1 satisfies ZFC2 and includes a set x, it is logically

125
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possible for there to be an extension V2 of V1, also satisfying ZFC2 and

containing a set y such that x ∈ y (in the sense of ∈ relevant to V2). Writing

this out formally using ≥ to say that one model of ZFC2 extends another,

we get

□(∀V1)(∀x) [x ∈ V1 → ♢(∃V2)(∃y)(y ∈ V2 ∧ V2 ≥ V1,∧x ∈ y)]

My paraphrases will have broadly the same structure, however there are a

number of important differences to be considered.

7.1 Which Hierarchies?

First, we can ask what structure the standard width initial segments V

discussed in our potentialist paraphrase are required to have. As we saw,

Hellman considers the possibility of structures satisfying a version of ZFC2.

In contrast, I will formulate potentialist set theory in terms of the possibility

of structures (called initial segments) which merely satisfy the width require-

ments for the iterative hierarchy of sets. Thus, from an actualist point of

view, any Vα (i.e., the sets below any ordinal α) will count as an initial seg-

ment. I won’t even require the structures I use in my paraphrases to satisfy

Boolos’ very modest height requirement, that there not be a highest level.

I think this way of proceeding has a kind of intrinsic elegance, and Linnebo

(in effect) takes a similar approach to this question. Moreover, by not re-

quiring the structures in my paraphrases to satisfy ZFC2 I need not assume
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the consistency of an infinite number of inaccessible as Hellman must. As

we will see this allows me to justify my potentialism from a single coherent

conception of logical possibility without the kind of controversial assump-

tion which would be needed to justify the consistency of this kind of large

cardinal axiom.

7.2 A Putnamian Approach to Initial Segments

Now let’s consider the sense in which my potentialist paraphrases will say

that objects with the structure above are possible. We saw that Putnam,

Hellman and Linnebo all took very different approaches to this question.

Putnam considered the possibility of first order states of affairs involving

non-mathematical relations. Hellman considered the possibility of second

order items X and f picking out a structure. And Linnebo considered the

interpretational possibility of there being sets up to a certain height.

I will employ a version of Puntam’s approach. When I say that it would be

possible to have an initial segment V , I will mean (something like) that it’s

logically possible for some non-mathematical relations (e.g., ‘is a penciled

point’, ‘is connected by an arrow’) to apply to objects with the intended

structure of an iterative hierarchy of sets, in the same way that ‘set’ and

‘...is an element of...’ are supposed to apply within a standard with initial

segment (in the sense just introduced)1. By using non-mathematical rela-

1 So, for example, although I may casually talk about the possible existence of iterative
hierarchy structures Vi, I don’t mean to assert that there are (or could be) special objects
called structures, as e.g. Shapiro does. Or at least, I don’t want to say that we need such
objects to understand set theory. All talk about ’the possibility of a structure existing’,
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tions we avoid having to presume there is an antecedently meaningful notion

of set or other mathematical relation.

But how exactly are we to cash out the claim that some relations apply to

objects in a fashion which makes them an initial segment in the sense above?

One might take the arrows and pencil points to form an initial segment just

if they satisfy some set-theoretic axiomitization an initial segment with ‘set’

replaced with pencil point and ‘element of’ replaced with arrows. This is

essentially what Hellman does (replacing the ‘set’ and ‘in’ in ZFC2 with

second order items X and f).

However, it will be convenient to admit the levels in this hierarchy as prim-

itive objects in their own right rather than rely on the (non-obvious) fact

that Von Neumann ordinals can serve that function inside the sets. So I

will follow Boolos’ approach in (discussed in section 2.1) by taking iterative

hierarchies to involve of two different types of (first order) objects : sets

and ordinal levels, with sets being related to one another by elementhood,

ordinal levels being related to one another by less than, and every set being

‘available at’ some ordinal level.

Thus, I will employ five non-mathematical relations to characterize the no-

tion of initial segment: two one place relations playing the role of set() and

ord(), and three two place relations playing the roles of ∈, < (ordinal or-

dering) and @ (is available at). Note that here I am taking ord() to apply

to ordinal levels, i.e., to the layers of the hierarchy of sets at which various

in the potentialist paraphrase strategy above is merely shorthand for claims about the
possibility of there being objects which instantiate specific non-mathematical first order
predicates and relations in a certain way.
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sets are ‘available’, not to the sets which we’d call an ordinal in standard

set theory (I will still refer to these objects as ordinals). So, for example,

we might use the following non-mathematical first order properties and re-

lations: ... is a penciled point, ...is a penciled star, ...is connected to.. by a

dotted/dashed/solid arrow.

7.3 Characterizing Iterative Hierarchies Modally

I will define a formula in the language of logical possibility V (set, ord, <,∈,@)

which asserts2 the relations set, ord, <,∈,@ apply to a objects in such a way

as to form a standard width initial segment as discussed above.

I will now describe the key ideas asserted by this formula, leaving the details

of implementing this vision for chapter 8. The goal here is merely to convey

to the reader how my notion of conditional logical possibility can capture the

key ideas with minimal mathematical formalism. The reader who prefers to

simply parse the mathematical definitions can jump ahead to chapter 8.

7.3.1 Describing the Levels

First we want to say that the objects playing the role of levels of the hier-

archy of sets are well ordered by <. The claim that < linearly orders ord

is a purely first order claim, and can be expressed straightforwardly (see

appendix A). However, expressing the fact that any non-empty collection of

2Note that although I’m choosing mathematical sounding variable names for the rela-
tions in this example, this is just a mnemonic device!
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ordinals (objects satisfying ord) have a least element seem to require second

order quantification. However, we can express it using conditional logical

possibility.

Note that it is straightforward to express the claim that if there is a Happy

ordinal there is a least Happy ordinal. We just assert that if there is a Happy

ordinal there is some Happy ordinal y and that any other Happy ordinal z

also is less than or equal to y. We can express this as a formula ϕ

ϕ
def↔ ∃x(ord(x) ∧Happy(x))→ ∀z (ord(z) ∧Happy(z)→ (y ≤ z))

.

The difficulty is to ensure that this property holds not just for the actual

relation Happy but for any logically possible way a relation might apply to

the ordinals. We couldn’t express this property with normal logical possi-

bility but this is exactly the content of asserting that it’s logically necessary,

holding fixed ord, <, that ϕ holds, i.e. □<,ordϕ. This tells us that any logi-

cally possible way Happy applies it has the property that if there is a Happy

ordinal there is a least Happy ordinal.

See A.0.2 in appendix A for details of this definition of well-ordering.

7.3.2 Describing the Sets

After requiring that the layers ord be well ordered by < we then build up

the sets in terms of these layers. We justify calling the objects satisfying set
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sets by insisting they satisfy extensionality, i.e., if x ̸= y are sets then they

must have different elements under ∈ and insist that the elements of a set

are all sets. In accordance with the iterative hierarchy conception we insist

that each set x is available at some ordinal level o, i.e. @(x, o) and that a

set available at o is available at ever greater ordinal3.

This leaves the key detail of ensuring that the sets satisfy the width require-

ment. We do this by imposing a fatness requirement which says that, for

any way we could choose some sets available at levels o′ < o, there is a set

available at level o. This is the only non-first-order aspect of the definition

of V (set, ord,∈, <,@) aside from the definition of well-order.

As in our definition of well-order we can express the fact that (for any ordinal

o) if Happy() applies only to sets available at an ordinal less than o then

there is a set available at o with exactly the Happy sets as elements with a

first order formula4 ψ.

As in the definition of well-order we can then use a logical necessity operator

to ensure this property holds for any logically possibly way Happy could

apply by asserting □set,ord,<,∈,@ψ.

But instead we will say that it is necessary (fixing the structural facts about

3We also impose a thinness requirement ensuring that a set available at level o only
has members available at earlier ordinals.

4In particular,

ψ
def↔(∀o | ord(o))[

(∀x)(Happy(x) → set(x) ∧ (∃o′)(ord(o′) ∧ o′ < o ∧@(x, o′))) →

(∃y)(@(y, o) ∧ (∀z)(Happy(z) ↔ z ∈ y))

]
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how all our relations set, ord, <,∈,@ apply) that, for each ord l if the prop-

erty Happy() only applies to sets available @ some ords below l, then there’s

a set y such that @ o which contains as elements exactly the things which

are Happy().

Using these techniques we can define the sentence V (set, ord, <,∈,@) in the

language of logical possibility which says these properties apply to objects

in the way that we expect the properties of ‘level’, ‘below’, ‘set’, ‘element

of’ and ‘available at’ to apply within a standard width initial segment. Note

that we can substitute any relations into this formula and remember that

set, ord, <,∈,@ are merely placeholders for some non-mathematical proper-

ties.

We note that we can also define the notion of one initial segment extending

another (in the intuitive sense where one initial segment of the sets can

extend another) which denote by V ′ ≥ V where V abbreviates a list of

relations set, ord, <,∈,@ and V ′ abbreviates set′, ord′, <′,∈′ @.

7.4 Assignment Relations and Avoiding Quantify-

ing In

7.4.1 Two roles for quantifying in

Now let’s talk about quantifying in and how my formulation of potentialist

set theory avoids it. Let us first distinguish two ‘jobs’ which quantifying in

can do in potentialist set theory.
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In general, potentialists understand set theoretic claims with nested quan-

tification like (∃x)(∀y)¬y ∈ x, as saying something like the following. It’s

possible to choose an x within an initial segment V , such that it is neces-

sary that, for any y chosen from an initial segment V ′ extending V , ¬y ∈′ x

(where ∈′ is the membership relation in V ′). We saw that Linnebo and

Hellman both use quantifying in to express this idea.

Hellman, in particular, uses two kinds of quantifying in. He uses second

order quantifying in to talk how a given initial segment V could be extended

(for remember that his initial segments consist of a second order object X

and relation f) . And he uses first order quantifying in to make claims like

‘given a set x in V it is logically possible to have an initial segment V ′

extending V containing a set y bearing some relation to x.’

My final task in this chapter will be to explain how both kinds of quantifying

in can be eliminated.

7.4.2 Preserving the Structure of Initial Segments

Let’s start with second order quantifying in. I need to do the work that

Hellman does with second order quantifying-in without it, i.e., express the

property that it’s logically possible that an initial segment V is extended by

an initial segment V ′. This is done straightforwardly by simple holding fixed

(the relations in) V . For instance, I could express the logical possibility of

an initial segment V ′ extending V by

♢V V ′ ≥ V def↔ ♢set,ord,∈,<,@V
′ ≥ V
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Now let’s turn to first order quantifying in (a device which Linnebo and Hell-

man both use). Since we can’t quantify in we must somehow pass the same

information by holding fixed certain relations. In particular, to give a po-

tentialist translation of a sentence like (∀x)(∃y)ϕ(x, y) where ϕ is quantifier

free we want to assert something like the following

□
[
V (V )→ (∀x | set(x))♢V V ′ ≥ V ∧

(
∃y | set′(y)

)
ϕ(x, y)

]

That is, it’s logically necessary however x one chooses a set x from an initial

segment V that it’s logically possible to extend V with an initial segment

V ′ containing a set x making ϕ(x, y) true. We need to convey the same

content without quantifying in. We do this by replacing quantification with

an assignment function.

In particular, we associate each initial segment V with an assignment func-

tion ρ assigning variables to sets in that initial segment. Using functional

notation for ρ, i.e., writing ρ(x) = y rather than ρ(x, y), we can capture the

same content as the above sentence as follows.

□
[
V (V )∧ set (ρ(⌜x⌝))→ ♢V,ρ,N,SV ′ ≥ V ∧ set′

(
ρ′(⌜y⌝)

)
ϕ(ρ(⌜x⌝), ρ′(⌜y⌝))

]

Here ⌜x⌝ is a number from N 5) coding the variable x (see next chapter for

details). Ignoring the details for the moment the key insight here is that the

first logical necessity operator lets ρ range over all possible relations so the

5⌜x⌝ is represented as S(S(S(. . . S(0))) for some number of successor operators and 0 s
the unique element of N that isn’t a successor and S is a relation that we write functionally.
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consequent must be true given any choice of a set from V chosen by ρ(⌜x⌝)

. Similarly, the ♢V,ρ,N,S

7.5 Big Picture

So, zooming out, (and putting these pieces together) my preferred transla-

tions of potentialist set theory have the following large scale shape.

I will translate a set theory sentence ∃xϕ (where ϕ is a quantifier free formula,

like x = x) as saying that it’s logically possible that there’s some structure

consisting of: an initial segment of the hierarchy of sets V , a copy of the

natural numbers N and assignment relation ρ : N → V which pairs (the

Gödel number of) ‘x’ with an object x within the hierarchy, such that ϕ(x).

And I will translate a set theoretic sentence ∃x∀yϕ(x, y) (where ϕ is quanti-

fier free) roughly like this. It’s logically possible that there are objects with

the structure of: an initial segment V , a copy of the natural numbers N and

assignment relation ρ : N → V which pairs (the gödel number of) ‘x’ with

an object in V so that the following claim is logically necessary holding fixed

the (structural) facts about this first hierarchy V, ρ,N, S.

If V ′, ρ′ consists of an initial segment V ′ which extends V and

an assignment relation ρ′ : N → V ′ such that ρ′(⌜x⌝) = ρ(⌜x⌝),

ρ′ will assign ‘y’ such that ϕ(ρ′(⌜x⌝), ρ′(⌜y⌝)).
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Chapter 8

Logico-Structural

Potentialism

In this chapter I will fill in the formal details of the potentialist translation

strategy described in chapter 7.

In section 8.2 I will define the core kind of structures (standard width initial

segments of the hierarchy of sets) which my potentialist set theory considers

the possibility of extending. In sections 8.3 and 8.4 and I will show how to

cash out claims about it being possible to extend one initial segment V (and

choice of some objects x, y, z within that V ) to a larger V ′ containing an

object w, without quantifying in. In section 8.5 I show how to put all the

above pieces together, and provide a recursive definition for my potentialist

paraphrases.

137
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8.1 Functional Notation

To avoid overwhelming complexity we will occasionally resort to functional

notation. We now explain how to understand this notation in terms of the

language of logical possibility described above.

Definition 8.1.1. R is a function if (∀x)(∀y)(∀z)(R(x, y)∧R(x, z)→ y = z)

So, for example, I would say that admiration is a function (in the actual

world) if and only if no one admires two different people. For further nota-

tional convenience we will write f(x0, . . . , xn) = y to abbreviate the claim

f(x0, . . . , xn, y). When written informally we will understand f(x0, . . . , xn)

to stand in for some y such that f(x0, . . . , xn, y).

Finally, given two predicates D and R, I will say f is a function from D to R

just if f is a function and (∀x)(D(x)→ (∃y)f(x, y))∧(∀x | D(x))(∀y)(f(x, y)→

R(y)) and take notions surjective, injective, domain and range have their

usual meaning.

8.2 Describing Standard-Width Initial Segments

So let us begin by describing our intended initial segments. Recall the

iterative hierarchy conception of sets from chapter 2. Following Boolos[11]

we imagined a hierarchy of sets consisting of a two sorted structure consisting

of

• a well ordered series of stages, with no last element, and
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• a collection of sets formed at these stages, such that a set is formed at

a stage iff its members are all formed at earlier stages.

.

And we can say that something counts as a standard width initial segment

if it satisfies all the requirements above except for the height requirement

(that there is no last/highest stage).

I will define a formula V(set, ord, <,∈,@) in the language of logical possibil-

ity which expresses the fact that the objects satisfying ord are well-ordered

by < (giving the well-ordered series of stages), the objects satisfying set act

like sets under ∈ and that the relation @ relates sets to the stages that the

are formed at in such a way that @(x, o) holds just if the members of x are

all available at stages before o. Note that I will sometimes write the relations

< and @ in infix notation, e.g., x < y rather than < (x, y). Also I will refer

to the elements satisfying ord as ordinals and the elements satisfying set as

sets.

Remember that here that I am using the terms set, ord,∈ for menmonic

and readability purposes alone. As per the Putnamian strategy discussed in

7, my official potentialist translation of set theory will employ only logical

vocabulary and non-mathematical relations like ‘is a penciled point’, and

‘there is an arrow from... to...’.

Definition 8.2.1 (Initial Segment). The tuple (set, ord, <,∈,@) forms an

initial segment just if all of the following hold
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1. (ord, <) is a well-order1

2. (∀x)(∀y) [x ∈ y → set(x) ∧ set(y)]

3. (∀x)(∀y) [@(x, y)→ set(x) ∧ ord(y)]

4. (∀x)(∀y) [x < y → ord(x) ∧ ord(y)]

5. (Fatness) For each o satisfying ord and each way of choosing some ele-

ments satisfying set from the sets (i.e. elements satisfying set) available

at stages o′ < o there is a set with exactly those elements as members.

□set,ord,<,∈,@(∀o)
[
ord(o)→

(∀x)
(
P (x)→ set(x) ∧ (∃o′)(ord(o′) ∧ o′ < o ∧@(x, o′)))→

(∃y)(set(y) ∧@(y, o) ∧ (∀z)(P (z)↔ z ∈ y)
)]

6. Every set is available at some ordinal level.

(∀x)[set(x)→ (∃o) ord(o) ∧@(x, o)]

7. All sets available at some o such that ord(o) can only have elements

which occur at some level below as elements.

(∀x)(∀o)(@(x, o)→ (∀z)
[
z ∈ x→ (∃o′)(o′ < o ∧@(z, o′))

]
)

1See definition A.0.2 in appendix A for formal definition.
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8. (Extensionality) No two distinct elements satisfying set have exactly

the same elements.

(∀x)(∀y) [set(x) ∧ set(y)→ x = y ∨ (∃z)(set(z) ∧ ¬(z ∈ x↔ z ∈ y)]

9. The ordinals are disjoint from the sets

(∀x)¬(ord(x) ∧ set(x))

Note that we can think of Vα from the standard set-theoretic hierarchy as

corresponding to an initial segment ⟨set, ord, <,∈,@⟩ where ord, < has the

same order type as α. Speaking loosely, this means if @(x, u) then x would

be in V|u|+1 where |u| indicates the ordinal corresponding to u.

I will use V(Vi) to abbreviate the claim that seti,∈i etc. satisfy the sentence

V(set, ord,<,∈ @⟩) defined above. I will also use V (x) to abbreviate ord(x)∨

set(x) and ♢V abbreviates ♢ord,set,<,∈,@.

8.3 Extendablity

Next we need to cash out claims about one initial segment extending another.

Definition 8.3.1 (Initial Segment Extension). Va extends Vb just if all the

following hold.

• V(Va)

• V(Vb)
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• (∀x) [setb(x)→ seta(x)]

• (∀x)(∀y) [setb(y)→ (x ∈b y ↔ x ∈a y)]

• (∀x)[ordb(x)→ orda(x)]

• (∀x)(∀y) [ordb(y)→ (x <b y ↔ x <a y)]

• (∀x)(∀y)[ordb(y)→ (x@by ↔ x@ay)]

I will use Va ≥ Vb to abbreviate the claim that Va (i.e. seta, orda,∈a,@a,≤a)

extends Vb (i.e. setb, ordb,∈b,@b, <b).

If we followed Putnam and Hellman in quantifying in to the ♢ of logical

possibility, this would suffice to let us write potentialist translations. We

would translate the set theoretic utterance (∃x)(∀y) [¬x = y ∨ ¬y ∈ x] as

follows:

♢((∃x)V (V1) ∧ set1(x) ∧□V1(∀y)
[
V2 ≥ V1 ∧ set2(y)→

¬x = y ∨ ¬y ∈2 x)
]
)

In words it’s logically possible there is an initial segment (of the hierarchy

of sets) V1 containing a set x (i.e. set1(x)) such that its necessary, holding

fixed V1 (i.e. set1, ord1,∈1, <1,@1), that any choice of an element y from a

model of set theory V2 extending V1 must satisfy x = y ∨ ¬y ∈2 x.

However, once we embrace the notion of conditional logical possibility we

can banish quantifying-in from our translations and thus avoid certain philo-



8.4. ELIMINATING QUANTIFYING IN 143

sophical controversies (as discussed below in chapter 9).

8.4 Eliminating quantifying in

The key ‘trick’ which lets us eliminate quantifying in from our potentialist

paraphrases, will be to supplement out initial segments Vi with a copy of

the natural numbers (representing formal variables from the language of set

theory) and an assignment function ρi which assigns each formal variable

(i.e. natural number) to a set (objects satisfying seti) from Vi. Note that

my only reason for using N is that the natural numbers (under successor)

contain infinitely many definable objects, which we can use to represent

variables.

Specifically we represent the natural numbers with the predicate N and the

function S and identify the formal variable xn with the natural number n

(i.e. S(. . . S(0)︸ ︷︷ ︸
n

). Rather than use clunky formal variables xi everywhere

we instead use normal letter variables x, y, z etc.. to stand in for particular

formal variables and denote the number y stands in for by ⌜y⌝, i.e., if y

stands in for xn then ⌜y⌝ = n . We formalize this as follows.

Definition 8.4.1 (Interpreted Initial Segment). Say that the relations in

the pair (V, ρ) apply to an interpreted initial segment (written V⃗ (V, ρ)) just

if set,∈, ord, <,@ satisfy V (set,∈, ord, <,@) and ρ is a function from those

objects satisfying N to those satisfying set. More concretely, this amounts

to the conjunction of the following three claims:

• V (V )
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• N, S satisfy PA♢ (the categorical description of the numbers given in

appendix F.3).

• ρ is a function from N to set

Note that we prove in lemma F.3.2 that it’s logically possible to have N, S

satisfy PA♢.

I will often use the V⃗a notation to denote the pair Va, ρa. And I will use ♢V⃗n
to abbreviate claims of the form ♢setn,∈n,ordn,@n,≤n,ρn,N,S (and similarly for

□V⃗n
. Note that we use the same relations N, S for every V⃗i.

We can now define a notion of extension for interpreted initial segment.

Definition 8.4.2 (Interpreted Initial Segment Extension). The interpreted

initial segment V⃗b extends V⃗a while assigning x written V⃗a ≤x V⃗b just if

• Va ≤ Vb

• V⃗
(
V⃗a

)
∧ V⃗

(
V⃗b

)
• (∀n | N(n)) (ρa(n) = ρb(n) ∨ n = ⌜x⌝)

My strategy will be to translate the set theoretic sentence (∃x)(∀y) [x = y ∨ ¬y ∈ x]

with a potentialist claim about what is conditionally logically possible, given

the structural facts about how some relations set1,∈1 . . . ρ1 apply as follows.

8.5 The final product

With these definitions in place we can give a translation of (∃x)(∀y) [x = y ∨ ¬y ∈ x]

as follows
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♢
(

V⃗ (() V⃗1) ∧□V⃗1

[
V⃗2 ≥y V⃗1 →

ρ2(⌜x⌝) = ρ2(⌜y⌝) ∨ ¬ρ2(⌜y⌝) ∈2 ρ2(⌜x⌝)
])

However I’ll make one final change to the strategy illustrated above, to allow

us to treat quantifiers in a uniform fashion. In the above examples the first

quantifier had to be treated in a special manner as (the relations abbreviated

by) V⃗1 were not required to extend any V⃗0. To this end, our translations will

introduce a V⃗0 and insist that V⃗1 extend V⃗0. Thus, for example, my official

translation of (∃x)(∀y) [x = y ∨ ¬y ∈ x] is actually:

□
(

V⃗
(
V⃗0

)
→ ♢V⃗0(V⃗1 ≥x V⃗0 ∧□V⃗1

[
V⃗2 ≥y V⃗1 →

ρ2(⌜x⌝) = ρ2(⌜y⌝) ∨ ¬ρ2(⌜y⌝) ∈2 ρ2(⌜x⌝)
])

8.5.1 Recursive Definition of Potentialist Paraphrases

I will now describe recursive principles which let us translate every sentence

in the first-order language of set theory into a claim about logically possible

extendability.

First we define a partial paraphrase function tn. Intuitively, tn(ϕ) transforms

a set theoretic formula ϕ into the a potentialist claim about the possible
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extendablity of the structure Vn where free variables are filled in by the

assignment function ρn (coded by our assignment relation Rn).

Definition 8.5.1 (Potentialist Translation). For any number n and set

theoretic formula ϕ

• tn(xi ∈ xj) = ρn(⌜xi⌝) ∈n ρn(⌜xj⌝))

• tn(xi = xj) = ρn(⌜xi⌝) = ρ(⌜xj⌝))

• tn(¬ϕ) = ¬tn(ϕ)

• tn(ϕ ∨ ψ) = tn(ϕ) ∨ tn(ψ)

• tn(ϕ ∧ ψ) = tn(ϕ) ∧ tn(ψ)

• tn((∀x)ϕ(x)) = □Vn

[
V⃗n+1 ≥x V⃗n → tn+1(ϕ)

]
.

• tn((∃x)ϕ(x)) is the claim that ♢Vn
[
V⃗n+1 ≥x V⃗n ∧ tn+1(ϕ)

]
The translation of a set theoretic sentence ϕ is

t(ϕ) = □ [V(V0)→ t0(ϕ))]

In the above definition recall that □V⃗n
(♢V⃗n) abbreviates a claim about

what is logically necessary/possible holding fixed the facts about setn,∈n

, ordn,@n,≤n,N, S, ρn

In what follows, I will, consistent with our general policy for functions, write

ϕ(ρn(⌜xi⌝)) to abbreviate claims of the form (∃k)ρn(i, k) ∧ ϕ(k). Moreover,

since I will always subscript all the relations ρn,N, S whenever I subscript ρn

I will assume that any □ or ♢ subscripting ρn actually subscripts ρn,N, S.
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8.5.2 Atomic Predicate Use Reducing Trick

If desired, in the above potentialist paraphrases we can replace Vj with

Vj mod 2 without affecting the truth value of the translation. This allows us

to translate sentences with arbitrarily many quantifier alternations using a

fixed finite number of atomic relations.

For readability I won’t employ this more economical paraphrase strategy in

any of the arguments below. So I will argue as though we have access to

a countable infinity of different atomic predicates, which we could use to

translate sentences with quantifiers nested to arbitrary depth2

8.5.3 Equivalence of Approaches

It’s useful to observe that my choice to add a base initial segment V⃗0 into

my translations is purely a matter of convenience as the two translation

schemas turn out to be logically equivalent in my system.

So, for example, the straightforward paraphrase for ∃xϕ(x) would be

♢
[
(V (V⃗1) ∧ t1(ϕ(x)))

]
and this is (in the formal system I propose) logically equivalent to my official

paraphrase for ∃xϕ(x)

□(V (V0)→ ♢V0
[
V⃗1 ≥ V⃗0 ∧ t1(ϕ)

]
)

2However, I’d further suggest (but won’t prove here) that all the formal proofs of ZFC
axioms I show how to give below (not just all my potentialist paraphrases) can be done
in a language of logical possibility with only finitely many atomic relations.
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See lemmas H.4.1 and H.4.2 for a proof of this equivalence.



Chapter 9

How This Helps

In this chapter I will conclude Part II of this book, by discussing how the

particular version of potentialist set theory we have developed lets us solve

the problems noted for other versions of potentialism in Part I. I will also

argue that it has some additional virtues and consider some objections.

9.1 Previously Mentioned Advantages

9.1.1 Avoiding Set Existence Awkwardness

Recall that in section 4 I raised a worry for Linnebo’s ‘Parsonian’ poten-

tialism arising from the question: what sets actually exist? Parsonian ap-

proaches to potentialist set theory cashed out set theoretic claims as modal

claims about what sets could exist, flowing from (among other things) facts

about the metaphysical nature and essence of sets, and how this constrained

149
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what sets could possibly exist.

As a result, Parsonian views seemed committed to acknowledging a fact

about what sets (literally) actually exist, alongside all the modal facts about

what sets could exist which they use to interpret mathematicians’ talk of

sets. Thus they seemed to have to posit to a kind of arbitrary fact about

where the hierarchy of sets happens to stop (perhaps just as much as the

actualist views). They also seemed committed to a kind of strange double

meaning, whereby there are sets that exist but mathematicians’ talk never

refers to these, and only concerns itself with modal claims about what sets

could exist. One might ask: in what sense are these abstract objects ‘sets’

if they are never what’s referred to by mathematicians’ set talk?

Like other Putnamian formulations of potentialism, my proposal avoids this

family of worries. For it doesn’t invoke a concept of set or the essence of

sethood or (strictly speaking) what sets could exist. It only talks about

‘what sets are logically possible’ in the following sense. It talks about how

it would be logically possible for some objects (considered under some rela-

tions) to form the kind of structure which actualists think standard width

initial segments of the iterative hierarchy of sets must have. Thus, it isn’t

committed to a fact about what sets actually exist.

Specifically (following Putnam rather than Hellman), my particular poten-

tialist translations of set theoretic claims take the form of claims about how

it would be logically possible for non-mathematical predicates and relations

of certain arities to apply. For example, one can write my proposed poten-

tialist paraphrase of a given set theoretic sentence (say the Pairing Axiom
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in ZFC) as a claim about how it would be logically possible for there to be

some penciled dots related by penciled arrows (as well as a number of other

relations1). One could also write my proposed potentialist paraphrase of

the same set theoretic sentence as a claim about how it would be logically

possible for some flamingos and bears to be related to one another by admi-

ration, fear and curiosity. (Happily, in the formal system I propose below,

this pair of different translations for the same set theoretic sentences will be

immediately logically equivalent to one another).

Perhaps allowing for this kind of free choice about which non-mathematical

properties and relations to use will seem weird. One might ask: but which

of the above of the formulations (invoking specific first order predicates and

relations) should we say that set theorists’ assertions really mean?

Here are two possible answers to that challenge, each of which I think is

fairly satisfactory. First we might say that actual set theorists’ talk is am-

biguous between all these different logically equivalent formulations or even

that there is no fact of the matter2. This position is analogous to a com-

mon position on Benacerraf’s challenge to set theoretic reductions to say

which specific collection of sets we should identify with the natural numbers

(adopted by, e.g., Parsons in [72] and McGee in[67]). It is common to say

that ordinary mathematical talk of numbers only has a definite reference

up to isomorphism, being ambiguous between all the different copies of the

natural number structure within the hierarchy of sets.

1My translations require relations for ord, <,@ as well as set and ∈.
2One might even maintain the question itself is a kind of category error like asking who

is ‘the’ witness to the truth of the claim ‘There is a man who is more than six feet tall.’
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Second, I could lean on the fact (noted in the introduction) that I’m only

proposing that thinking of ordinary set theoretic utterances as shorthand for

(something like) my potentialist paraphrases would be a useful sharpening

of our current set theoretic concepts and practice. Given this, I’m not

committed to saying that any version of my potentailist paraphrases is what

set theorists currently mean. At most I’m committed to the claim that it

would be a good idea to for set as the theorists to adopt (something like)

my potentialist paraphrases.

9.1.2 Clarifying the Modal Notion at Issue

I suggested in chapter 4 that we face a worry about justifying our confidence

in set theory, if we try to use Linnebo’s potentialist paraphrases as part

of a proposed foundation for set theory. I have suggested that Linnebo’s

notion of intepretational possibility isn’t clear enough (or isn’t determinate

in the right ways) to motivate strong confidence in truth of many axioms

about involving it. I have attempted to avoid this problem by using an

independently motivated and intuitive notion of logical possibility in my

potentialist paraphrases.

As noted above, one might try to avoid this problem by taking Linnebo’s

axioms to implicitly define the notion he is talking about. And indeed there

are surely many interesting modal notions and variants on the concept of

logical possibility we can study.

However this multiplicity of modal notions does not imply that any syntactic
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rules which we write down will correspond to a legitimate concept, or even

be syntactically consistent. If we just write down arbitrary rules, we run the

danger of adopting a modal version of Prior’s [79] spurious logical connective

‘tonk’, which had the introduction rules for ‘or’ and the elimination rules for

‘and’ - and thereby allowed one to derive every sentence from every other

sentence if accepted. So if we just think about Linnebo’s modal principles

as stipulative definitions, we can’t justify confidence that they are even

syntactically consistent.

In contrast, by providing an intuitive intended meaning for our modal notion

□ and ♢ (via the notion of conditional logical possibility), which the axioms I

will propose can be seen as intuitively true of, we banish concerns that these

axioms are inconsistent. Above I argued that those attempting to provide a

foundation for potentialist set theory must find a notion of possibility which

we have strong enough independent intuitions about (and confidence in the

cogency of our conception of) to justify ZFC axioms. And this is what I

have tried to provide.

One might wonder if my notion of conditional logical possibility could be

advanced as a way of understanding Linnebo’s notion of interpretational

possibility, and combined with his formal development of potentialist set

theory. This would be nice, but here are some prima facie roadblocks for

that project. First, Linnebo’s notion of interpretational possibility is not

supposed to be subject matter neutral (but only to characterize a sense

in which more/different sets could exist). Second, (as we will see in the

discussion of the Barcan Marcus formula below) Linnebo proposes axioms
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which are explicitly stated to rule out possibility of worlds smaller than the

actual one, whereas it seems clearly logically possible that, e.g., only two

things exist 3. Thirdly, various principles which Linnebo takes to follow from

the nature of sets (and uses in his development of potentialist set theory),

don’t seem to be logically necessary principles that apply to all objects.

9.2 Metaphysical Non-Specialness

A possible advantage of the potentialist set theory developed here concerns

the question of how metaphysically special we should take the iterative hi-

erarchy conception of sets to be.

One might argue that Linnebo and Parsons’ potentialism is committed to the

iterative hierarchy conception to be deeply natural/special (there are sets,

which have an essence which requires exactly this), in a way that Putnamian

versions of set theory can avoid.

For Putnamian potentialism has a somewhat if-thenist/modal structuralist

flavor. It combines naturally with the idea that we just happen to have

developed set theory by talking about how one logically possible kind of

structure (an iterative hierarchy of sets) could exist and be extended, but

we could equally well do mathematics by talking about the logical possibility

and extendability of some other kind of structure.

3To be fair, one might argue that my notion also falls short of capturing the full intuitive
notion of logical possibility, because axioms I will propose below let us derive that it is
not logically possible for there to be a completely empty universe, while it is intuitively
logically possible for no objects to exist. See the remarks about developing a version of
my project which uses inclusive logic in the section on the Barcan Marcus formula below.
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And arguably this feature of my/Putnam/Hellman’s view provides an ad-

vantage over Parsonian theories with regard to metaphysical parsimony and

access worries. For the Putnamian isn’t committed to saying that there’s

something metaphysically special about the iterative hierarchy structure (as

opposed to other ways of developing a set like concept which evades Russell’s

paradox) or the claim that set theorists have managed to latch on to such a

uniquely special set-like concept.

Perhaps this laid back approach to the significance of the iterative hierarchy

conception also fits better with mathematical practice. For (one might ar-

gue) the mathematical community just looked for one coherent conception

set-like structure which avoided Russell’s paradox and was generous enough

to provide a foundation/larger mathematical universe within which other

mathematical structures could be found and related to one another. They

didn’t do anything which looked like comparing different options for founda-

tional structures which would do that work and inferring that the iterative

hierarchy conception metaphysically superior.

9.3 Avoiding Second Order Logic

9.3.1 Nominalistic Qualms

Now let’s compare the version of potentialism developed in this section with

Hellman’s potentialism for a moment. Aside from the concern about justi-

fying potentialist use of ZFC axioms noted above (which will be answered
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by part III of the book), the main worry I considered was for Hellman’s

potetialism was his own concern that his use of second order logic generated

undesirable ontological commitments; isn’t second order quantification (as

Quine suggested) just set theory in disguise?

Now this problem for nominalists is not really a problem for those (like my-

self) who are happy to allow the existence of various kinds of mathematical

objects (like the natural numbers), but advocate potentialist set theory on

the basis set theory speific concerns about the Burali-Forti paradox. For (as

discussed in section 2.5.2) no version of the Burali-Forti paradox seems to

arise for talking about a single layer of classes over the first order objects.

Thus the motives for denying that there’s an actualist hierarchy of sets don’t

apply to rejecting second order comprehension.

However I think adopting my proposed form of potentialism can help philoso-

phers who do want to be nominalists solve this problem by eliminating all

appeals to second order logic, in favor of a notion of conditional possibility

which (as I argue in [5]) is very close to notions Hellman already accepts the

nominalistic credentials of and uses to make sense of applied math.

9.3.2 Conceptual Simplification

Quite aside from concerns about nomainalism, one might argue that my

potentialist set theory’s avoidance of second order quantification provides

an has an advantage on the front of conceptual parsimony.

Hellman uses: first order logical vocabulary, second order quantification, log-
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ical possibility and (to make sense of applied mathematics, which I haven’t

discussed here) something like an actuality operator.

Linnebo uses: first order logical vocabulary, plural quantification, interpre-

tational possibility, and the notions of set and elementhood.

My paraphrases use: first order logical vocabulary and the conditional logical

possibility operator.

Insofar as a single modal notion turns out to be able to do both the following

jobs in potentialist translation, it is appealing to use it.

• describe the (first order logic transcendent) structure of the partial

hierarchies of sets potentialists want to consider

• articulate the sense in which some such structures are possible and

could be extended in certain ways.

To put this idea about conceptual parsimony another way, there can seem

to be a kind of inelegant conceptual double counting in employing both the

♢ of logical possibility and a notion of second order quantification while

treating these as unrelated primitives (as Hellman does). For, intuitively,

there’s something in common between the way we consider ‘all possibili-

ties’ for how some first order predicates could apply when evaluating logical

possibility and the way we consider ‘all possibilities’ for choosing some first

order objects from a given collection when considering what second order

objects exist.

Perhaps actualists about set theory can straightforwardly explain this sim-
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ilarity. For they can define both notions in terms of what sets exist4. In

particular they can appeal to the same notion of ‘all subsets over a given

first order domain’ when defining logical possibility in terms of the existence

of a model and when cashing out second order quantification in terms of sets

existence.

But potentialists cannot do the same. For we potentialists understand set

existence in terms of logical/interperetational/whatever possibility, rather

than the other way around. So we cant account for the sense of conceptual

overlap between the notions of logical possibility and second order quan-

tification by cashing out both notions in terms of set theory. Thus we lose

the above benefit and, e.g., Hellman and Linnebo wind up treating logi-

cal possibility and second order quantification as just separate conceptual

primitives.

Happily, however, we can solve this problem if we embrace the notion of

conditional logical possibility, for this single notion a can be used to ar-

ticulate and analyze both claims about logical possibility and second order

quantification56

4Or at least they can do this if we bracket Field’s objection to identifying claims about
logical possibility with claims about set theory discussed in 6.

5We have seen how to do this in for the purposes of second order claims needed to for-
mulate potentialist set theory. See REDACTED for an argument that we can reformulate
second order claims more generally

6 On the topic of second order logic, one might worry that my favored potentialist para-
phrase strategy above is worse than Hellman’s insofar as I have only provided paraphrases
for sentences of first order set theory, and not paraphrases for second order statements
which attempt to quantify over the hierarchy of sets.

I this isn’t much of a cost, since what Hellman says isn’t very attractive. For example, in
section 2.3 orMathematics Without Numbers himself notes that his potentialist translation
of second order replacement is unsatisfying insofar as it doesn’t imply (his potentialist
translation of) first order replacement.

Also I think the core potentialist idea suggests that second order quantification over the
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9.4 Quantifying-In

Finally I will argue that the fact that my formulation of potentialist set

theory avoids quantifying into the ♢ of logical possibility (and indeed my

language of logical possibility does dot allow any quantifying in) has some

philosophical benefits.

9.4.1 Sidestepping Controversy

In Part I we saw that the major existing formulations potentialst set theory

employ quantifying in to the ♢ of logical possibility. That is, they use

sentences like ∃x♢R(x), where the logical possibility operator is applied to

a formula with free variables.

However there are significant controversies about the truth conditions (and

indeed meaningfulness) for very simple sentences involving quantifying, which

can make it difficult to provide uncontroversial foundations for versions of

potentialist set theory which employ quantifying in.

For one thing, there is disagreement about whether all pairs of things that

are actually distinct are necessarily distinct7.

There is also disagreement about what to say about statements which quan-

full hierarchy of sets shouldn’t make sense. There isn’t some fixed first order collection, the
sets, such that we can ask what subsets of it exist. But for those who are not convinced,
I should note that my system can also mimic Hellman’s translations.

7One might try to argue that it’s metaphysically and hence logically possible for there
to be two people who could have been one person as follows. Suppose that two people
are formed by a contingent event of person splitting. One might think these people are
distinct but could have been identical.
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tify into a world where an object doesn’t exist. For example, Kripke’s[54] ap-

proach (which Hellman endorses) allows sentences like (∃x)♢ [¬Fox(x) ∧ (∀y)Fox(y)]

to be true, a consequence which Williamson[108] and others have argued is

extremely counterintuitive8. These controversies can raise doubts about

whether our intuitions about quantifying in are reliable while, to my knowl-

edge, no analogous paradoxes arise in the system I lay out9 (and the absence

of quantifying in makes it hard to see how they could).

There is also a Quinean strand of argument which claims that quantifying

into modal contexts is meaningless. I take Quine’s problem with quantifying

in, in [84], to be that he dislikes the “Aristotelian essentialism” of saying

that some properties to belong to an object like the number 7 essentially

(e.g., being less than 9) while others apply only contingently (e.g., being

the number of planets). After all, taking there to be such an abundance of

facts about essences can seem arbitrary. My language of logical possibility

eschews cross-logically-possible-world object identification of any kind (e.g.,

cross-world equality or counterpart relations) as well as quantifying in10.

Thus and worries like Quine’s don’t even get off the ground. And it seems,

at least, rhetorically desirable to demonstrate that potentialist set theory

8While this debate is commonly conducted in terms of metaphysical possibility, it
naturally raises similar concerns for logical possibility.

9My proposed account of set theory is compatible with taking Williamson to show that
any modal notion which allows quantifying in (such as metaphysical possibility) must
have a fixed domain – provided one thinks it doesn’t make sense to quantify in to logical
possibility. Of course, it’s not compatible with taking Williamson to show that every
modal notion must have a fixed domain.

10For, recall that when evaluating conditional logical possibility we consider logically
possible scenarios which preserve structural facts of how some relations R1, . . . , Rn apply,
rather than facts about which objects they apply to. So advocates of my version of
potentialist set theory aren’t thereby committed to taking essence claims about e.g. what
it would be logically possible for a given object to do to be meaningful.
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doesn’t require quantifying in or similarly controversial notions.

So much for disagreements about the meaningfulness of quantifying in and

the truthvalue of basic statements involving quantifying in. Now, in itself,

the existence of such controversy isn’t necessarily a problem for any partic-

ular formulation of set theory which uses quantifying in, like Linnebo’s or

Hellman’s. For perhaps one of these philosophers is getting the right answer

regarding this disputed question, or perhaps there are different equally legiti-

mate things the syntax of quantifying into the ♢ can mean, and each theorist

is getting things right regarding the semi-formal language he is using.

However the existence of such controversies does raise a problem for using

formulations of potentialist set theory involving quantifying in (like Lin-

nebo’s and Hellman’s) in the foundational project I’m attempting. For my

aim is to indicate a clear modal notion and then show that we can jus-

tify the potentialist translations of the ZFC axioms from modal principles

which seem clearly and uncontroversially true. By doing this we can vin-

dicate mathematicians’ use of these axioms from a potentialist perspective,

answer philosophical questions about the justification of replacement etc.

But we can only hope to provide the kind of confidence and deduction from

the obvious and intuitive one would intuitively like from a foundations for

mathematics by latching on to uncontroversial principles.

Accordingly I think it will help me achieve the foundationalist aims of this

book to formulate a language of logical possibility which doesn’t allow quan-

tifying in (and hence doesn’t let one formulate the sentences whose truth-

value/meaningfulness is so widely disputed), and show that all the modal
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claims we need to articulate and justify poentialist set theory can be stated

within this language. I think that, rightly or wrongly, people are more dis-

posed to agree about what’s conditionally logically possible (once the mean-

ing of that concept has been roughly gestured at) than what’s de re logically

possible for individual objects (perhaps because of the felt connection be-

tween the latter facts and questions about de re metaphysical possibility).

And given this fact, it’s pragmatically useful for someone attempting to pro-

vide uncontroversial modal axioms, and hence an uncontroversial foundation

for set theory, to use the former notion and not the latter.

9.4.2 Shyness and Compossibility Worries

By avoiding quantifying in, my proposal also avoids a different worry, about

‘metaphysical shyness’ which Linnebo raises for Hellman in [61]. Linnebo

suggests that to make sense of set theory via Hellman’s proposal (which

takes potentialist set theory to reflect general constraints on the behavior of

all objects ) we will want to say (so to speak) any two logically possible struc-

tures could be combined, yet it seems that there could be metaphysically

shy objects such that the essence of these objects makes it metaphysically

(and even logically?) impossible for them to exist side by side.

Linnebo formulates a kind of shyness worry about metaphysical possibility,

writing “Do we really know that there cannot be ‘metaphysically shy objects,

which can live comfortably in universes of small infinite cardinalities, but

which would rather go out of existence than to cohabit with a larger infinite

number of objects? Another variant of this problem arises when we consider
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applied set theory. In order to apply set theory to some given objects, the

approach in question presumably needs it to be possible for these objects to

coexist with strongly inaccessibly many objects, arranged so as to make up

a standard model built on top of these ur-elements. But this claim will be

false if there can be objects that necessarily cannot coexist with inaccessibly

many other objects.”[61]. Then he suggests that a similar shyness worry

can be raised for logical possibility. He also suggests that logical possibility

allows for an analog of the problem of metaphysically incompatible objects

(like two metaphysically possible knives formed by joining a single handle

with different blades).

I take my formulation of potentialist set theory in terms of conditional logical

possibility to avoid this problem of metaphysically shy objects, insofar as it

avoids all quantifying in to the ♢ of logical possibility. My approach doesn’t

make any claim about the essences of objects, just claims about what is

possible while preserving structural facts about how some properties apply

(something that does not require preserving the specific objects which these

properties apply to).

9.4.3 Barcan Marcus

A final worry about quantifying in concerns the converse Barcan Marcus

formula □(∀x)ϕ(x) → (∀x)□ϕ(x) and the question of whether everything

exists necessarily. Note that the converse Barcan-Marcus formula is provable

in most (reasonably strong) quantified modal logics and easily allow one to

derive the conclusion that everything exists necessarily. In particular, if we
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take ϕ(x) to be x = x→ (∃y)(y = x) we easily see that (∀x)ϕ(x) is logically

true and thus infer (∀x)□ϕ(x), i.e.,

(∀x)□x = x→ (∃y)(y = x)

Philosophers who use quantifying in to handle potentalist set theory can

respond to this problem in different ways. Linnebo handles this problem

by embracing it, and saying that the relevant modal notion of ‘possible

construction’ relevant to set theory doesn’t allow for the possibility of smaller

worlds in [60].

I will (in effect) handle this (in largely the spirit that Hellman and Kripke

[45][55] do) by saying that the necessitation rule only applies to complete

sentences. And perhaps this is intuitively motivated; we wouldn’t say it’s

logically necessary/a tautology that x = x, because formulas with free vari-

ables aren’t even sentences so they don’t have truth values, and hence can’t

be necessarily/logically true.

More specifically, we have seen that the language of logical possibility doesn’t

treat such sentences as meaningful. And I will provide a formal system for

reasoning within this language whose individual principles and inference

rules are easy for us to evaluate because it (in effect) cleaves good reasoning

about logical possibility up into two parts.

• In one part we use standard first-order logic to reason about a given

logically possible scenario/what an arbitrary logically possible scenario

must be like.
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• In another part we use special modal-structural principles to establish

which scenarios are logically possible, and ‘transfer’ facts about one

scenario to another.

An alternative approach would be to allow quantifying in, but use an inclu-

sive logic[70] . Switching to an inclusive logic would let us block the above

argument for the Barcan-Marcus formula by blocking the initial proof that

‘(∃y)(y = x), rather than the application of necessitation to this formula in

the last sentence as inclusive logics neither assume that all singular terms

refer to members of the domain nor that the domain is non-empty.

I think this strategy is prima facie quite appealing, because it would al-

low us to capture the intuitive logical possibility of entirely empty domains.

However because, as a matter of sociological fact, no inclusive logic is cur-

rently widely accepted, I have preferred to sacrifice intuitions about empty

domains and use classical first order logic rather than arguing for new views

on both first order logic and set theory in this book. I leave the task of

reworking the formal system and proofs provided in this book to fit with

any inclusive logic that may gain wide acceptance in the future.
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Chapter 10

Naturalist Worries

Above I’ve argued for a potentialist approach to set theory, on which set

theoretic talk is best ‘explicated’ as making modal claims about how it

would be possible to have various hierarchy-of-sets like structures extending

one another. This potentialist approach to set theory counts as a nominalist,

insofar my logical regimentations for pure set theoretic claims don’t quantify

over mathematical objects.

This approach to set theory might raise worries for philosophers who em-

brace extreme naturalism of a kind that is currently rather popular in philos-

ophy of mathematics[63] [14]. Such philosophers will wonder: is my choice of

these nominalistic regimentations adequately mathematically/scientifically

motivated or does it have only philosophical motivations (something the

extreme naturalist would consider inadequate)?

In this chapter, I will respond to a version of Burgess and Rosen’s influen-

167



168 CHAPTER 10. NATURALIST WORRIES

tial dilemma for mathematical nominalists, which nicely sharpens the above

worry. In a nutshell, Burgess and Rosen argue that nominalist logical reg-

imentations of scientific sentences are inadequately naturalistically moti-

vated, whether we consider them as claims about what mathematicians and

scientists should say (because they wouldn’t be published in relevant scien-

tific journals) or as claims about what scientists currently do say (because

they lack adequate motivation from linguistics and cognitive science).

I will argue that my potentialist logical regimentation of set theory may be

adequately naturalistically motivated, even if the above claim about publi-

cation in core mathematics journals and linguistics/cognitive science data

are correct.

10.1 Burgess and Rosen

In [14] Burgess and Rosen propose the following influential argument-by-

dilemma that nominalistic logical regementations of pure and applied math-

ematics lack adequate naturalistic motivation.

Consider some proposed nominalistic logical regimentation of a scientific

theory that appears to quantify over mathematical objects. This proposal

must be intended either as a ‘hermeneutic’ proposal, clarifying what people

currently mean by the theory or a ‘revolutionary’ proposal concerning what

they should mean. But (they argue) typical convoluted nominalistic para-

phrases of applied mathematical statements in the sciences would seem to

be
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• too psychologically and linguistically unmotivated to be a plausible

hermeneutic theory of what people currently mean.

• too unmotivated by the standards of the scientific discipline in ques-

tion to be a plausible revolutionary theory of what scientists should

say/mean. For example, nominalistic regimentations of a physical the-

ory would generally not be accepted by physics journals.

Thus it would seem that, in either case, this logical regimentation (and the

theory it is used to defend) should probably be rejected.

This general argument against nominalism has prima facie force against my

limited nominalism about set theory as well. For one might argue that my

potentialist formulations of set theory are implausible as either revolutionary

or hermeneutic proposals for the following reason.

• It’s unclear whether mathematics journals would publish work in po-

tentialist set theory, and core mathematics journals probably would

not1.

• Linguists, cognitive scientists or grammarians studying set theoretic

talk in ordinary contexts (including publication in core mathematics

journals) would probably give Platonist logical regimentations not po-

tentalist ones.

so I will now try to answer this worry.

1On the other hand, journals on the boundaries of mathematics like the Review of
Symbolic Logic certainly do publish work on potentialist set theory (c.f. Linnebo and
Hamkins’ “The modal logic of set-theoretic potentialism and the potentialist maximality
principles[42]) and mathematicians concerned with the questions about adding new axioms
to set theory like Hamkins take an interest in it.
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10.2 Naturalism Rejecting Response

One obvious response to the argument above is simply to reject the nat-

uralistic presuppositions that adequate motivation for adopting a theory

must be mathematical or scientific in character. An untroubled friend of

traditional philosophical metaphysics can happily and frankly advocate the

‘revolutionary’ line that their nominalistic regimentation reflects what we

should say when speaking seriously and literally (in a regimented language

which displays our commitments as per Quine’s criterion [86]), as we do

when discussing metaphysics.

They can say that we have good philosophical reasons for preferring such

paraphrases, which are to be taken just as seriously as mathematical and

scientific ones2. If (as Burgess and Rosen suggest) these nominalistic regi-

mentations of physical theories are not what we should say when submitting

to physics journals, this may simply be because articles in physics journals

are (for obvious practical and division of labor reasons) not attempting to

speak completely literal in a logically regimented language which exposes

the metaphysical structure of reality when we apply Quine’s criterion. Arti-

cles in science journals are instead written in unregimented natural language

2In A Subject with no Object Burgess and Rosen also argue individually against various
traditional philosophical motivations for nominalism about all mathematical objects: ac-
cess worries that accepting ontological realism makes human accuracy about mathematics
mysterious, appeals to Occam’s razor, and resistance to necessary, abstract etc. objects.

I don’t take this first cluster of worries to be a problem for my potentialist set theory,
insofar as I have suggested a subject matter specific motivation (the Burali-Forti paradox)
for preferring a nominalist explication of set theory: Adopting potentialist set theory lets
us articulate a conception of the height of the hierarchy of sets (in terms that we seem
to understand even after thinking about Burali-Forti, and reconcile this with intuitive
logical-combinatorial facts about all actual structures being extendable.
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which is easier to work with – and perhaps helpfully lets one bracket certain

metaphysical questions3.

However, some readers may feel more sympathetic to the naturalist intu-

itions invoked by Burgess and Rosen’s dilemma above.

10.3 Naturalistic Response

So I will now argue that the argument above fails, even if one accepts the

demand for naturalistic motivation. Suppose the assumptions about math-

ematical and scientific journals and motivation from cognitive science and

linguistics above are correct. I will argue that this doesn’t suggest that there

isn’t adequate mathematical motivation for adopting potentialist set theory

for the following reason.

Providing mathematical foundations for mathematical subdisciplines (which

aren’t expected to correspond to the surface grammar of what we’d say in

journals devoted to these subdisciplines) is already an accepted and appar-

ently fruitful part of contemporary mathematical practice. Mathematicians

already draw a distinction between what it’s right to say in normal contexts

(including the classroom or and mainstream mathematical journals) and

what it’s right to say in certain unusually pedantic contexts of foundational

investigation.

Take, for example, the classic set theoretic foundations for analysis invoked

3I have in mind questions like whether there’s an abstract object ‘electronhood’ or
merely a property? For example, writing up a physical theory in a logically regimented
language which Quine’s criterion can be applied might require one take a stand on this.
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above. There is plausibly no linguistic/cognitive sciences motivation for

logically formalizing the assertions which are or should be in an analysis

journal as quantifying over sets and talking about Dedekind cuts rather

than merely talking about real numbers and not asserting that they have

any further structure. Success at a providing set theoretic foundation for

analysis (as motivated by the need to solve problems and paradoxes within

analysis) doesn’t require providing an analysis which is motivated by looking

at the surface grammatical form of what one does or should say in most

contexts.

Similarly, I propose that success at providing a modal foundational for set

theory (as motivated by the need to solve problems within set theory like

the Burali Forti paradox) doesn’t require providing logically regimented sen-

tences which simply match the surface grammatical form of what people do

or should will say about set theory in most contexts. For contemporary

mathematical practice itself seems to clearly acknowledge/allow that there

can be good mathematical reason for adopting logical regimentations for

mathematical talk which are far more elaborate than what we do or should

say in most mathematical contexts.

We might think of these foundational proposals as accounts of what one

should say in a context with the following features. One has plenty of time

(so there is no need for abbreviation) and no need to teach others (so there’s

no need for technically false simplifications). But one lays oneself open to

arbitrary pedantic or strange questions, e.g., questions which connect very

‘disparate’ parts of one’s web of mathematical beliefs. And one tries to
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apply ones concepts to questions of types not generally considered (e.g.,

taking limits of certain strange functions which are not physically natural).

Theoretically, it also makes sense that mathematicians would make such a

distinction between what should be said in foundational/reductive contexts

vs. in the course of something like Kuhnian normal science where we know

how to get right answers by employing familiar ways of talking and tech-

niques. For, on the one hand, it it is useful for them to precisify their terms

if they are reasoning at the edges of normal practice, in cases where paradox

threatens or its desirable to apply concepts from one domain to new areas.

But, on the other hand is also desirable for mathematicians and scientists

to continue with an apparently working practice of studying something and

not to commit themselves to any specific foundational analysis of what is

going on ‘under the hood’. Journals devoted to an area of normal science

which seems to be going well, needn’t bother attempting to further analyze

their terms. And perhaps articles written within such patches of function-

ing normal science shouldn’t take the risk of committing themselves to one

answer to foundational questions over another.

If this division between normal and foundational mathematical contexts is

accepted, then we should not be troubled by the fact (if it is a fact) that

most mainstream mathematics journals wouldn’t want to publish some the-

ory which is proposed as a foundation for mathematical subdiscipline. So, I

claim that even if the assumptions about publication in mathematical jour-

nals (and the results of linguistically analyzing ordinary set theoretic talk)

are correct, naturalistic philosophers can take the account of potentialist set
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theory developed here seriously as a story about what we should say in the

special pedantic context of foundational debate.

If one further says (as seems plausible, but optional, for the naturalist) that

ones ontological commitments are given by applying Quine’s criterion (‘to

be is to be the value of a bound variable’) to ones best logically regimented

theory of the world as one would state it in pedantic/foundational contexts4,

this amounts to a defense of nominalism about set theory against Burgess

and Rosen’s dilemma.

4This seems like a fairly reasonable way to proceed for a philosopher strong naturalist
sympathies who wants to take ontological questions seriously at all. If someone says that
they don’t really believe in average plumbers and can cash out all their talk of such forms
in other terms, it seems only reasonable to acquit them of ontological commitment to
average plumbers (i.e., to read their ontology off what they say in pedantic/foundational
contexts not everyday one).

However one might argue that very strong naturalist sympathies of the kind which drive
Burgess and Rosen’s dilemma (philosophical motivations count for nothing) should lead
one to reject questions of traditional ontology all together. For example it’s worth noting
that platonist logical regimentations of antecedently well known physical theories likely
also wouldn’t be accepted by physics journals. Arguably the very idea of providing a log-
ical regimentation of a theory and then applying Quine’s criterion to it to say what exists
depends on accepting a philosophically motivated project of ontology. So we shouldn’t
think of the ‘science journals wouldn’t accept it’ point as motivating realism about mathe-
matical objects over nominalism, but rather as suggesting a kind of quietism/agnosticism
about all philosophical questions which can’t be studied by the accepted methodology of
some sciences, and hence rejecting both nominalism and platonism about mathematical
objects alike.
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Chapter 11

Content Restriction

In this final section of the book (Part III) we will develop a formal theory

of how to reason about (conditional) logical possibility, and then use it to

justify acceptance of the ZFC axioms. Chapters 12 and 14 propose some

intuitively appealing axioms and inference rules for reasoning about condi-

tional logical possibility. But first I must introduce content restriction, a

key concept we will need to state these axioms and rules.

11.1 A motivating example

To motivate the idea of content restriction, consider purely number theoretic

statements, i.e., statements whose syntactic form makes it clear that they

only make a claim about the structure of the natural numbers, rather than

a claim whose truthvalue might reflect the behavior of some larger universe
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of objects. Intuitively, the truth value of such a statement is completely

determined by the structure of the natural numbers. That is, their truth

values are completely determined by structural facts about how the relations

N, S,+ and × (S for ‘successor’) apply (call this the ⟨N, S,+,×⟩ structure)

and don’t depend on what other objects may or may not exist.

So, for example, consider the number theoretic claim that there are infinitely

many twin primes. We know that if the current state of the world makes this

statement true, then facts about the natural number structure alone suffice

to do this. Because it only quantifies over the natural numbers, and only

concerns itself with how the relations successor, plus and times apply to the

natural numbers, we can’t change its truth-value by adding or subtracting

objects from the universe outside the extension of N or by tinkering with

the extension of properties and relations other than S,+ and × (like ‘is

democratically governed’ or ‘is a spaceship’).

Accordingly, if a purely number theoretic statement is true, we expect it to

remain true under any changes to the world which don’t effect the natural

number structure. As time passes, empires may fall, the population of hu-

mans may rise and the total size of the universe may change radically. But,

so long as the natural number structure remains fixed, the truth-value of

purely number theoretic statements cannot change.

And that’s not all. We further expect that the truth-value of any purely

number-theoretic statement cannot be changed by the application of any

conditional logical possibility operator which holds fixed the natural num-

ber structure (i.e., the facts about how ⟨N, S,+,×⟩ apply). For, intuitively,
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modifying what other objects exist outside the structure of the natural num-

bers which this statement quantifies over (and/or changing the extension of

other relations which it doesn’t employ) can’t affect its truth-value.

This idea (that truth value of all purely number theoretic claims must be

the same in all logically possible worlds which preserve the structure of the

natural numbers) fits well with common intuitions about the significance of

non-elementary proofs.

Thinking about how the natural numbers would relate to other larger math-

ematical structures, like the complex numbers, can be epistemicly helpful in

discovering the answer to some purely number theoretic statements. Proofs

of this kind are called non-elementary proofs. But we don’t think about the

existence of the complex numbers as helping make these number-theoretic

statements true or false. Rather we think that, if true, the relevant number-

theoretic statements must have been true ‘all along’, just because of what

the natural numbers are like, and considering how the natural numbers are

(or could be) related to the complex number just helps us see this fact.

Accordingly, it doesn’t matter to our acceptance of a nonelementary proof

whether we think the complex numbers actually exist, or merely that it

would be logically coherent for (an instance of) the actual natural number

structure to exist inside (an instance of) the complex numbers. Showing the

twin prime conjecture is true and merely showing that it would have to be

true in the relevant logically coherent scenario both suffice to establish its

truth in the actual world. ]
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11.2 Generalizing this idea

Let us now generalize the above idea that the syntactic form of certain sen-

tences ensures they are ‘purely about the natural numbers structure’ – and

hence must remain true in all logically possible scenarios which hold facts

about the natural number structure fixed. That is, such statements must

remain true in all scenarios which hold fixed how the relations ⟨N, S,+,×⟩

apply.

So consider what we want to say about the natural numbers. Let ϕ be a

statement whose syntax insures that it is purely about the natural numbers

in the following sense:

• All quantifiers in ϕ are restricted to the objects satisfying N. Thus

(we can write it to make this explicit, i.e., so that) it only contains

universal quantifiers as part of expressions of the form ∀x(N(x)→ ψ)

and existential quantifiers as part of expressions of the form ∃x(N(x)∧

ψ)

• ϕ is a sentence in the language of numertheory, so it only contains

relations on this list: N, S,+,×

Then (if we accept intuitions I’ve tried to pump above) we expect that ϕ

cannot change in any conditionally logically possible scenarios which hold

the facts about the natural numbers fixed. Accordingly, ϕ is actually true

iff it is conditionally logically possible - holding fixed the natural number

structure- that ϕ be true.
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ϕ↔ ♢N,Sϕ

I will generalize this idea by considering other lists of relations R1...Rn

(rather than just N, S). I will define a syntactic property of sentences which

intuitively ensures that a sentence is completely about (structural facts con-

cerning) how some list of relations R1...Rn apply, so that its truthvalue

(intuitively) must remain fixed in all conditionally logically possible scenar-

ios which hold these relations fixed. I will call this property ‘explicit content

restriction’. And we will see that when a sentence ϕ is content restricted to

some list of relations R1...Rn it is intuitively clear that ϕ↔ ♢R1...Rnϕ

However one little wrinkle arises in performing this generalization. In the

case of the natural numbers, we thought of the structure of the natural num-

bers under the relations S,+,×. And we said that purely number theoretic

statements had their quantifiers restricted to objects in the extension of N.

But now we want to generalize this idea of ‘only talking about’ the struc-

ture determined by how some arbitrary list of relations R1...Rn apply. And

this list of relations doesn’t have one particular property distinguished as

representing the domain.

So what exactly should it mean to talk about‘the R1...Rn structure’? Specif-

ically, what domain of objects should we consider the behavior of, under the

relations R1...Rn? I will handle this problem by (in effect) considering the

domain of objects which any one of the relations R1...Rn apply to, under

the relations R1...Rn. So, for example, if our list of relations R1...Rn is

cat(),loves() then an object is satisfies Ext(R1...Rn) iff it is either a cat or a

lover or a beloved. And we will consider the structure of objects determined
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by the relations R1...Rn (analogous to the natural number structure, in the

original case) to be the structure of the objects in Ext(Cat(),Loves()) under

the relations cat() and loves().

With just a little abuse of notation, we can call this domain of objects

associated with the R1...Rn structure the extension of the list of relations

R1...Rn, and giving the formal definition below.

Definition 11.2.1 (Definition of Ext). Let Ext(R1, . . . Rn)(y) abbreviate

the formula

∨
1≤i≤n
1≤j≤li

(∃x1) . . . , (∃xj−1), (∃xj+1), . . . , (∃xli)Ri(x1, . . . , xj−1, y, xj+1, . . . , xli)

where li is the arity of Ri and
∨

1≤i≤n
1≤j≤li

ϕi,j indicates the disjunction ϕi,j over

all indicated values for i and j. Thus, Ext(R1, . . . Rn)(y) is the formula

asserting that some tuple v⃗ including y satisfies some Ri(v⃗).

So I will take ‘theR1...Rn structure to be the structure of objects in Ext(R1, . . . Rn)

under the relations R1...Rn. And I will try to define a syntactic property of

explicit content restriction, such that the fact that a sentence ϕ is explicitly

content restricted to the relations R1...Rn intuitively insures that ϕ only

talks about this structure, so that its truth-value will be preserved in all

conditionally logically possible scenarios which hold this structure fixed.



11.3. FORMAL DEFINITION 183

11.3 Formal Definition

So explicitly content restricted sentences are supposed have a syntactic struc-

ture which ensures that their truth-value is completely determined by the L

structure (for L a certain list of relations), with the result that ϕ↔ ♢Lϕ.

To motivate my definition, consider two examples.

The truthvalue of the sentence ‘Every lover is loved by someone’ ∀x(∃yLoves(xy)→

∃zLoves(zx)) is completely determined by facts about the Loves() structure

in the sense defined above. That is, it only makes a claim about the structure

of objects which are either lovers or beloveds, under the relation Loves.

We can see this by noting that it is logically equivalent to a sentence with

quantifiers explicitly restricted to objects in Ext(Loves) and the considera-

tions above apply.

(∀x | Ext(L)(x))((∃y | Ext(L)(y))Lxy → (∃z | Ext(L)(z))Lzx)

And we clearly cannot change the truth-value of the resulting sentence by

• adding or subtracting objects which neither person() nor loves() ap-

plies to from the universe

• changing the extension of predicates other than person() and loves()

So we can’t change the truthvalue of this sentence without changing the

Loves structure (in the sense defined above). Thus we intuitively have

∀x(∃yLxy → ∃zLzx)↔ ♢L∀x(∃yLxy → ∃zLzx)↔ □L∀x(∃yLxy → ∃zLzx)

In contrast, the truthvalue of the sentence ‘Everything loves something’, i.e.,
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(∀x)(∃y)(Loves(x, y)), is not completely determined by the Loves() struc-

ture. For the existence of objects outside of this structure can make a differ-

ence to its truthvalue. Specifically it is logically possible that this sentence

be true. But, given any world where this sentence is true, we can imagine a

logically possible scenario which holds fixed the structural facts about how

loves() applies at this world, but makes this sentence false by containing an

additional object which loves does not apply to. Thus the truth-value of

this sentence is not completely determined by the world’s Loves structure.

We might have (∀x)(∃y)(Loves(x, y)) but ♢Cat,Loves¬(∀x)(∃y)(Loves(x, y))

Roughly speaking, I will say that a sentence ϕ is explicitly content restricted

to a finite set (note the notions of sets aren’t presumed in the object language

merely used to describe the meta-language and can be easily be eliminated1)

of relations L iff only the relations from L are used in ϕ and every quantifier

is restricted to range over elements that belong to some tuple in the extension

of a relation in L. 2 The definition below expresses this idea.

Note that I will frequently drop the braces and union symbols when talking

about sets of relations. For instance, I will abbreviate the claim that ψ is

content restricted to L∪{R}∪L′ simply as ψ is content restricted to L, R,L′

and write L = R1, . . . , Rn rather than L = {R1, . . . , Rn}.

Definition 11.3.1 (Content Restriction). A sentence ϕ is explicitly content-

1Sets merely serve as a convenient way to talk about syntactic properties of formulas
in the language of logical possibility. Since we only make use of finite sets there is no
need for a set-theoretic meta-language (we could directly give a computable enumeration
of allowed inferences).

2The intuitive conception outlined above only makes sense for sentences, but it will
define a notion of content restricted for formulas as well so we can keep track of whether
the sentences built from them are content restricted.
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restricted to a list L if it is a member of the smallest set S satisfying:

• ⊥ is in S

• If vi, vj are variables the formula vi = vj is in S

• If vi is a variable and Ri ∈ L then Ri(vj) is in S

• If ψ ∈ S and ρ ∈ S then ¬ψ, ψ ∨ ρ, ψ ∧ ρ and ψ → ρ are all in S

• If ψ ∈ S and L is non-empty then ∃y(y ∈ Ext(L) ∧ ψ) is in S

• If ψ ∈ S and L is non-empty then ∀y(y ∈ Ext(L) → ψ) is in S (note

this case is added only for illustrative purposes as technically ∀ is

merely an abbreviation for ¬∃¬).

• If ϕ = ♢L′ψ , where ψ is a sentence and L′ ⊆ L then ϕ ∈ S. Note that

ψ need not be in S

Clauses 2-6 above express the basic idea from above: that if a sentence

employs only quantifiers which are restricted to Ext(L) and relations in

L, then it makes a claim which is purely about the L structure, and its

truthvalue must be completely determined by this structure.

Clauses 1 and 7 liberalize this definition slightly, by allowing two other basic

ingredients to figure in sentences which are content restricted to L.

Clause 1 allows sentences content which are content restricted to L to employ

the logically false proposition ⊥. This is motivated by the fact that ⊥ is

intuitively content restricted to any list of relations L . Because there is

no way to change ⊥’s truthvalue at all, there is no way to change it while

holding fixed the facts about the L structure.
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Clause 7 allows sentences which are content restricted to L to employ claims

about conditional logically possible given the facts about the L structure (or

some part of it). Recall that ♢L′ψ says that it’s logically possible for ψ to

be true, while holding fixed the structural facts about how the relations in

L′ apply. Accordingly only structural facts about the relations in L′ should

be able to make a difference to its truthvalue (remember that we don’t allow

quantifying into the ♢, so ψ cannot contain any free variables assignments

of variables won’t matter). So when L′ is a subset of L, we can’t change

the truth value of this sentence without changing how some relation in L

applies.

To see how this definition applies, let’s consider some examples. Let L is

a list of relations that contains (exactly) a two-place relation R and a one

place relation Q, then

• (∀x)(∀y)(x = y) is not content-restricted to L.

• (∃x)(Q(x) ∧K(x)) is not content-restricted to L.

• (∀x)[x ∈ Ext(R) → (∀y)(y ∈ Ext(R) → [R(x, y) → Q(y)]])3 (which is

first order logically equivalent to (∀x)(∀y)[R(x, y)→ Q(y)]) is content-

restricted to L.

• ♢R[(∀x)(R(x, x) ∧ (∃y)S(x, y))] is content restricted to L

Also note the following consequences of the definition above:

• If L is a sublist of L′, then all formulae ϕ which are content restricted

3i.e. (∀x)[(∃k)(R(x, k)∨R(k, x)) → (∀y)[(∃k′)(R(y, k′)∨R(k′, y)) → (R(x, y) → Q(x))]]
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to L are also content restricted to L′.

• A sentence is content restricted to the empty list E iff it is a truth

functional combination of unsubscripted □ sentences, ♢ sentences and

⊥.

As you may have noticed, explicitly content-restricted sentences are gener-

ally long and unwieldy. This can be annoying when writing up proofs whose

inference steps can only (strictly speaking) be applied to sentences which

are content-restricted to some list L. To avoid this annoyance, I make the

following definition.

Definition 11.3.2. A formula ϕ is implicitly content-restricted to L

if there is a sentence ψ explicitly content restricted to L and ϕ ↔ ψ can

be derived (using no assumptions) using only the first order inference rules,

i.e., the principles already noted above.

I will then frequently use the shorthand of applying rules which (strictly

speaking) can only be applied to content-restricted sentences to implicitly

content restricted sentences – taking the work of using first order logic to

deduce the explicitly content-restricted form of a sentence before applying

the relevant rule (and then transforming it back after applying the rule) for

granted.

I will say things like dom(f) ⊂ Ext(R1, ..Rn) to further abbreviate the claim

that (∀x) (dom(f)(x)→ Ext(R1, ...Rn)(x)) .
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11.4 Content Restriction for Potentialist Paraphrases

With this definition of content restriction in hand, we see that our definitions

of potentialist translations for set theoretic sentences and formulas are often

content restricted in useful ways.

Lemma 11.4.1. If ϕ, θ1, . . . , θn are formula in the language of set theory

then

1. tn(ϕ) is always content-restricted to Vn, Rn,N, ρn

2. If ϕ is a sentence, then t(ϕ) is content restricted to the empty list.

3. For all i, j if V⃗ (Vi) , ti(θ1), . . . , ti(θn) ⊢♢ ti(ϕ) then V⃗ (Vj) , tj(θ1), . . . , tj(θn) ⊢♢

tj(ϕ)

Proof. Claims 1 and 2 follow immediately from the definition of content re-

striction and our potentialist paraphrases (repeated below). Claim 3 follows

by a tedious, but simple, induction on proof length, where we transform the

ti version of a proof to the tj version by replacing every instance of a relation

in Vi+k, ρi+k with the corresponding relation Vj+k, ρj+k and noting that the

result is still a proof.



Chapter 12

The Formal System I: Basic

Rules

12.1 Rules Inherited from First Order Logic

I will define the consequence relation ⊢ by listing closure conditions in this

chapter and the next1 Let Γ,Γ1,Γ2 be finite sets of formulas, and Γ ⊢ θ

express the claim that one can prove θ given the assumptions in Γ.

My closure conditions begin, boringly, with the following principles corre-

sponding to standard inference rules for first order logic,(which I take from

1As usual, I will say that all variables that occur in an atomic formula are free. If a
variable occurs free (or bound) in θ or in ψ, then that same occurrence is free (or bound)
in ¬θ, (θ ∧ ψ), (θ ∨ ψ), and (θ → ψ) and ♢θ and □θ . That is, the (unary and binary)
connectives do not change the status of variables that occur in them. All occurrences of
the variable v in θ are bound in (∀v)θ and (∃v)θ. Any free occurrences of v in θ are bound
by the initial quantifier. All other variables that occur in θ are free or bound in (∀v)θ and
(∃v)θ, as they are in θ.

189
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the Stanford Encyclopedia article on classical logic[96]).

(As) If ϕ is a member of Γ, then Γ ⊢ ϕ.

(∧I) If Γ1 ⊢ θ and Γ2 ⊢ ψ, then Γ1,Γ2 ⊢ (θ ∧ ψ).

(∧E) If Γ ⊢ (θ ∧ ψ) then Γ ⊢ θ; and if Γ ⊢ (θ ∧ ψ) then Γ ⊢ ψ.

(∨I) If Γ ⊢ θ then Γ1 ⊢ θ ∨ ψ; if Γ ⊢ ψ then Γ ⊢ θ ∨ ψ.

(∨E) If Γ1 ⊢ (θ ∨ ψ), Γ2, θ ⊢ ϕ and Γ3, ψ ⊢ ϕ, then Γ1,Γ2,Γ3 ⊢ ϕ.

(→I) If Γ, θ ⊢ ψ, then Γ ⊢ (θ → ψ).

(→E) If Γ1 ⊢ (θ → ψ) and Γ2 ⊢ θ , then Γ1,Γ2 ⊢ ψ.

(¬I) If Γ1, θ ⊢ ψ and Γ2, θ ⊢ ¬ψ, then Γ1,Γ2 ⊢ ¬θ.

(DNE) If Γ ⊢ ¬¬θ then Γ ⊢ θ.

(∀E) If Γ ⊢ ∀vθ , then Γ ⊢ θ(v|v′), provided that v’ is free for v in θ.2

(∀I) If Γ ⊢ θ and the variable v does not occur free in any member of Γ,

then Γ ⊢ ∀vθ.

(=I) Γ ⊢ v = v, where v is any variable.

(=E) If Γ1 ⊢ v1 = v2 and Γ2 ⊢ θ, then Γ1,Γ2 ⊢ θ′, where θ′ is obtained

from θ by replacing zero or more occurrences of v1 with v2, provided that

no bound variables are replaced, and all substituted occurrences of v2 are

free.

2That is, if substituting v with v’ does not lead to any variable which was antecedently
free becoming bound. Here θ(v|v′) stands for the result of substituting all free instances
of v in θ with instances of v′.
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(⊥ I) If Γ ⊢ ψ ∧ ¬ψ then Γ ⊢ ⊥.

(⊥ E) If Γ, θ ⊢ ⊥ then Γ ⊢ ¬θ.

For convenience, I will also include the following inference rules for ∃ but,

formally, I willl regard ∃ as an abbreviation for ¬∀¬.

(∃I) If Γ ⊢ θ, then Γ ⊢ ∃vθ′, where θ′ is obtained from θ by substituting the

variable v′ for zero or more occurrences of a variable v, provided that (1) all

of the replaced occurrences of v are free in θ, and (2) all of the substituted

occurrences of v′ are free in θ.

(∃E) If Γ1 ⊢ ∃vθ and Γ2, θ ⊢ ϕ, then Γ1,Γ2 ⊢ ϕ, provided that v does not

occur free in ϕ, nor in any member of Γ2.

I can now introduce the core axioms3 which govern reasoning with □ and ♢

in my formal system.

Note that for the remainder of this book I adopt the convention that when

used as meta-variables the capital greek letters Φ,Ψ,Θ,Ξ,Υ are restricted

to sentences while the lower case greek letters ϕ, ψ, θ, ξ, υ may be formulas

of sentences. I will also I follow the convention, standard in philosophical

presentations of modal logic of calling these rules axioms, and presenting

them in this form, even when they take the form of inference rules, i.e.,

closure conditions for ⊢ rather than sentences that can be inferred at any

point.

3Here we follow the convention [37] of calling rules formulated in terms of formula
meta-variables subject to syntactic constraints axioms rather than axiom schemas.
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12.2 ♢ Introduction and Elimination

Axiom 12.2.1 (♢ Introduction).

Θ→ ♢LΘ

This rule captures the idea that what is actual must also be logically possible

or, indeed, logically possible holding some facts about the actual world fixed.

This rule corresponds to rule T (sometimes written equivalently as □A→ A)

in the familiar modal system S5 [37].

Examples:

• “There are two cats”⇒ “It is logically possible, given what cats there

are, that there are two cats”.

• “There are two cats”⇒ “It is logically possible, given what dogs there

are, that there are two cats”.

Axiom 12.2.2 (♢ Elimination). If Θ is content-restricted to L then

♢LΘ→ Θ

This rule expresses the idea that when θ is content-restricted to L, the truth

value of θ is totally determined by the facts about L.

For instance:
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• “It is logically possible, given what cats there are, that there are two

cats” ⇒ “There are two cats”

• BUT NOT: “It is logically possible, given what dogs there are, that

there are two cats” ⇒ “There are two cats”

Note that the second inference is not permitted by my rule because θ (“there

are two cats”) is not content-restricted to the list {dog(·)}

The next basic axiom (schema) to expresses the intuition that if Θ is content

restricted to L then holding fixed relations not in L doesn’t affect the logical

possibility of Θ.

12.3 ♢ Ignoring

Axiom 12.3.1 (♢ Ignoring). Suppose Θ is content-restricted to L = R1, . . . Rn

and S1 . . . Sm are relations not amongR1, . . . Rn. Then ♢L′Θ→ ♢L′,S1...SmΘ.

Remember that when a formula is content-restricted to L, its truth depends

only on facts about L. This principle reflects this intuition by allowing one

to ignore other facts.

We will see that the converse inference, from ♢L,S1...SmΘ to ♢LΘ is also

provable from the basic axioms and inference rules in this chapter (in 13.1.1)

.

Examples:

• It is possible, given what cats there are, that there every cat admires a
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distinct dog → It is possible, given what cats and dolphins there are,

that every cat admires a different dog.

• But NOT: It is possible, given what cats there are, that there are

exactly 3 objects → It is possible, given what cats and dolphins there

are, that there are exactly 3 objects.

This inference is not permitted because the claim that there are exactly

3 objects is not content restricted to any list of relations including

cats() but not dolphin().

• And NOT: It is possible, given what cats there are, that every cat

admires a distinct dog → It is possible, given what cats and dogs

there are, that every cat admires a distinct dog.

Here θ is content restricted to {cat, dog, admires}, but for this infer-

ence to be permitted θ would have to be content restricted to a list

that didn’t include the relation dog since changing facts about what

the relation dog() applies to could change the truth-value of θ.

12.4 Simple Comprehension

Axiom 12.4.1 (Simple Comprehension). Suppose R /∈ L and R isn’t used

by ϕ nor appears in Ψ then

Ψ→ ♢L (Ψ ∧ (∀z⃗) [R(z⃗)↔ ϕ(z⃗)])
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This axiom schema captures the idea that any way a formula applies to

objects is a logically possible way for a relation to apply to those objects.

The inclusion of Ψ under the ♢L reflects the intuition that the relation could

apply in the way ϕ does without altering how any other relations apply or

changing which objects exist4.

12.5 Relabling

Axiom 12.5.1 (Relabeling). If R1 . . . Rn are distinct relations that don’t

occur in L, and R′
1 . . . R

′
n are distinct relations not equal to any Ri with the

same arities5 that don’t occur in L or Θ , then

♢LΘ↔ ♢LΘ[R1/R
′
1 . . . Rn/R

′
n]

.

Here Θ[R1/R
′
1 . . . Rn/R

′
n] denotes the simultaneous substitution of R′

1 for

R1, R
′
2 for R2 and so on. Note that when we give a list of relations R1 . . . Rn

we usually assume they are distinct relations (no Ri is actually the same

relation as Rj , j ̸= i) but we state it explicitly here for clarity.

This axiom schema expresses the idea that when evaluating claims about

logical possibility only the arity of a relation matters. Thus, replacing some

R ̸∈ L with an unused relation R′ ̸∈ L of the same arity cannot change the

4Technically, without changing the structure of the objects which are taken to exist at
that ‘world’.

5That is the arity of Ri and R
′
i are the same.
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truthvalue of ♢Lθ.

Example: By substituting sleeps with chews we see “It is logically possible,

given the facts about dogs and blankets, that every dog sleeps on a different

blanket”⇔ “It is logically possible, given the facts about dogs and blankets,

that every dog chews on a different blanket.”

Example: “If there is something which everyone loves, it is logi-

cally possible (given the facts about love) that there is something

which everyone loves and happy() applies to exactly those indi-

viduals which love themselves.”

Note that unlike more familiar second order comprehension schemas, simple

comprehension doesn’t let infer that there is already a relation defined by

the formula, only that it’s possible. However, when it comes to proving

results about what is possible, this difference imposes no further difficulty

since, as we will see, we can collapse ♢L♢L′ into ♢L.

Note that as □L is just ¬♢L¬ it is trivial to show that relabeling applies to

□ claims as well as ♢ claims. We formalize this observation in the following

lemma.

Lemma 12.5.2 (Box Relabeling). If R1 . . . Rn are distinctrelations that

don’t occur in L, and R′
1 . . . R

′
n are distinct relations not equal to any Ri

with the same arities as R1 . . . Rn that don’t occur in L and aren’t mentioned

in θ, then Γ ⊢ □Lθ ↔ □Lθ[R1/R
′
1 . . . Rn/R

′
n].
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12.6 Importing

Axiom 12.6.1 (Importing). If Θ is content restricted to L then

[Θ ∧ ♢LΦ]→ ♢L(Φ ∧Θ)

This rule captures the idea that any true sentence Θ which only talks about

how some relations L apply, must remain true in any logically possible con-

text that holds the L facts fixed.

12.7 Logical Closure

Inference Rule 12.7.1 (Logical Closure). If Θ ⊢ Φ then

♢LΘ→ ♢LΦ

Note that, despite being called axioms, the principles in this chapter and the

next need not be listed in the premises of an argument, e.g., if Θ is content

restricted to L then, by ♢ Elimination,

∅ ⊢ ♢LΘ→ Θ

This rule captures the idea that logical inference is universally valid. Thus,

if we can deduce Φ from Θ then a ‘scenario’ in which Θ is true must also be

one in which Φ is true. Note that when L is empty, this rule performs the
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work of both the necessitation and distribution rules commonly used of in

systems like S5.



Chapter 13

Notation and Some Example

Arguments

Before we present any more results in the system it is worth remarking on the

status of relations that appear in a lemma. For instance, consider the trivial

lemma whose content is (∃x)R(x)→ (∃x)R(x). We don’t regard the lemma

as merely a proof of the fact that for some particular relation, e.g., red, if

there is some red thing then there is some red thing. Rather, we regard the

lemma as standing in for the fact that this result is provable for any one place

relation or, alternately, as proving that the claim in the lemma is logically

necessary1. Thus, we allow deducing the fact that (∃x)G(x) → (∃x)G(x)

from the trivial lemma asserting that (∃x)R(x)→ (∃x)R(x). Note that this

resembles the situation in first-order logic where we prove that substitution

1As we will see shortly if we can prove (∃x)R(x) → (∃x)R(x) without any premises
we can infer □(∃x)R(x) → (∃x)R(x) and then (as we will also see below) substitute the
relations under the □ and then eliminate it.

199
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of bound variables preserves truth-value and then don’t pay much attention

to the particular bound variables used to express results.

13.1 ♢ Reducing and □ Expansion

Using first order logic (FOL) and the basic principles above we can prove

various useful lemmas.

The Reducing Lemma (together with →E) vindicates intuitive reasoning

along the following lines. Suppose it’s logically possible, given the facts

about friendship and enmity in the actual world, that something has a fren-

emy (i.e., there are items x and y such that x is the friend of y and x is

the enemy of y). Then it’s logically possible given (just) the facts about

friendship in the actual world that something has a frenemy.

Lemma 13.1.1 (Reducing). If L ⊇ L′ then

♢LΘ→ ♢L′Θ

Proof. First note that if L ⊇ L′ then any sentence of the form ♢L′Θ is

content restricted to L.

Assume that ♢LΘ. We have Θ ⊢ ♢L′Θ, by ♢ Introduction. So, by Logical

Closure, we have ♢L(♢L′Θ). Then by ♢ Elimination we can conclude that

♢L′Θ (since ♢L′Θ is content restricted to L). Thus we have ♢LΘ→ ♢L′Θ

We note that this immediately entails a corresponding expansion property

for sentences under the □.
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Lemma 13.1.2 (Box Expanding). Suppose L′ ⊃ L then

□LΦ→ □L′Φ

Proof. Suppose the claim fails. Then we have□LΦ and ♢L′¬Φ. By Reducing

we can infer ♢L¬Φ which contradicts the assumption above.

13.2 Inner Diamond

We will can also prove the Inner Diamond lemma, which will help us cap-

ture natural reasoning about conditional logical possibility in a more natural

manner. Specifically, while the Importing and Logical Closure axioms cap-

ture the intuition that we can deploy our normal tools of reasoning to infer

what further facts must be true in some particular logically possible context

using them directly would force us to carry unwieldy long conjunctions of

all facts we’ve derived are logically possible through our proofs. The Inner

Diamond lemma justifies our use of more natural mathematical reasoning.

The intuition behind the Inner Diamond lemma is that reasoning like the

following is valid.

Suppose we know the following. There are at least three cats.

And it’s logically possible, given what cats there are, that every

cat is sleeping on a distinct blanket. What else must be true in

this logically possible scenario? We can ‘import’ the fact that

there are at least three cats (since any scenario which preserves
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the structural facts about how cathood applies must preserve

this fact). So, by first order logic, this possible scenario must be

one in which there are at least four blankets. Thus it is logically

possible, given the facts about what cats there are, that there

are at least three blankets.

Proposition 13.2.1 (Inner Diamond). If Γ1 ⊢ ♢LΘ and Γ2,Θ ⊢ Φ, where

every element of Γ2 is a sentence content-restricted to L, then Γ1,Γ2 ⊢ ♢LΦ.

Proof. Consider a scenario where the antecedent of the lemma is true. As-

sume that Γ1,Γ2. Then we have ♢LΘ by the first assumption. By successive

applications Importing to each of the sentences Γ1
2, . . . ,Γ

n
2 in Γ2 , we have

♢LΘ ∧ Γ1
2 ∧ . . . ∧ Γn2 . Now by Logical Closure and the fact that Γ2,Θ ⊢ Φ

we can get ♢Lϕ. Thus Γ1,Γ2 ⊢ Φ as desired.

We note that this lemma supports the following kind of reasoning (as illus-

trated in the above example). We derive some sentence of the form ♢LΘ

from the assumptions Γ1. For instance in the example above Θ would be the

claim that ‘every cat slept on a distinct blanket’ and L would just be the

predicate cat. We then wish to reason about the ‘world’ whose possibility

is guaranteed by the fact that ♢LΘ, e.g., the world which holds fixed (the

structure of) the application of cat and at which every cat slept on a distinct

blanket. In that world Θ (every cat slept on a distinct blanket) is true as is,

intuitively, every fact content restricted to {cat} true in the actual world.

For instance, in the example above the fact that there are at least three cats

is also true in that world (we refer to the act of taking a sentence content
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restricted to L and concluding it holds at the world whose logical possibility

is asserted by ♢LΘ as importing). We then use proof rules to derive some

desired conclusion Φ from Θ and the set of ‘imported’ sentences Γ2. For

instance in the above example Φ is the sentence asserting there are at least

3 blankets. Intuitively, Φ must also be true in the logically possible world

under consideration and thus ♢LΦ must be actually true. In the example

above Γ2 would just contain the sentence asserting that there are at least

three cats. Since Θ,Γ2 ⊢ Φ and all sentences in Γ2 are content restricted to

{cat} this intuition is born out rigorously since the above lemma establishes

that Γ1,Γ2 ⊢ ♢LΦ.

13.3 Natural Deduction With Inner Diamond Ar-

guments

Since the process of entering ♢L contexts, i.e., using Inner Diamond to reason

about what else must be true in a particular logically possible scenario, is

unfamiliar and can be a bit tricky I will informally introduce a natural

deduction system for the notion of proof defined chapter 12 and chapter 14

together with some notational conventions which make it easier to keep track

of arguments like the one above (especially in contexts where one must make

multiple inner diamond arguments within one another).

This system is loosely based around that used in [39] and I follow his system

in citing the line numbers justifying each inference rule to the left of the

name of the inference rule, while indicating the assumptions a line depends
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on by placing those line numbers in brackets (line numbers not in brackets

are the lines cited as immediate justification for the current inference). So,

for example, we write down Φ 5, 6 X [2, 4, 5] on line 7 of a proof

when rule X allows us to conclude Φ from lines 5, 6 and the cumulative set

of assumptions from which we’ve established Φ are the sentences on lines

2, 4 and 5. Note that this system satisfies the principle that if ψ appears on

some line of the proof and Γ is the set of sentences appearing on the lines

listed in brackets next to ψ then Γ ⊢ ψ. However, my system differs from

his in two primary ways.

First, I will allow any purely first order deduction to be compressed into a

single FOL rule. However, I will still sometimes explicitly make use of → I

to infer ϕ → ψ in cases where ψ can only be inferred from ϕ via modal

reasoning. I will also use Ass. to indicate that a new assumption is being

made.

Second, all modal axioms and axiom schema proposed in chapters 12 and 14

are taken to be logical truths. So any instance of these axiom schemata can

be written down with no associated citations or assumptions. And, to save

time, any instance of an axiom schema with the form ϕ→ ψ may instead be

regarded as an inference rule allowing us to infer ψ from ϕ (citing the line

containing ϕ as a justification). For example, this is an acceptable deduction

of ♢P [(∃x)P (x)]→ P (x).

1 ♢P [(∃x)P (x)]→ P (x) ♢ E
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This is also an acceptable deduction of the same fact.

1 ♢P [(∃x)P (x)] Ass [1]

2 P (x) 1 ♢ E [1]

3 ♢P [(∃x)P (x)]→ P (x) 1,2 → I

Third, and most distinctively, I will introduce a special context called a ♢

context (nestable to arbitrary depth) corresponding to reasoning via Inner

Diamond, i.e., reasoning about what else must be true within some scenario

which is known to be (conditionally) logically possible. I will graphically

indicate what sentences are being asserted or assumed within this context

by indentation and a sideways T labeled with a ♢ to indicate this context.

So, for example, we can represent the following extremely short inner dia-

mond argument

Given what cats and hunters there are, it’s logically possible that

something is both a cat and a hunter. Any possible situation in

which something is a cat and a hunter must be a situation in

which something is either a cat or a hunter. Therefore, given

what cats and hunters there are, its logically possible that some-

thing is either a cat or a hunter.

with a proof that looks like this
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1 ♢cat(∃x)(cat(x) ∧ hunter(x)) [1]

2 ♢ (∃x)(cat(x) ∧ hunter(x)) [cat, hunter] (1) In♢ I, [2*]

3 (∃x)(cat(x) ∨ hunter(x)) (2) FOL [2*]

4 ♢cat(∃x)(cat(x) ∨ hunter(x)) (1, 2-3) In♢ E [1]

The vertical line going from 2-3 above indicates those lines occur inside a

special context. I call this a ♢ context to indicate that these lines contain

reasoning about what must be true within a logically possible scenario in

which (∃x)(cat(x) ∧ hunter(x)), while all the structural facts about, how

cathood applies, are preserved.

What are the rules for writing things down in this context? Recall that the

Inner Diamond lemma says that if we have one conditional possibility claim

♢L(Θ), and some facts Γ2 which are content restricted to the relations being

held fixed, then if we can show that any such possible scenario where Θ must

also be one where Φ (by showing Θ,Γ2 ⊢ Φ), we can infer the corresponding

conditional logical possibility clam for Φ.

The key idea will be to use indentation and the Fitch style sidewise ‘T’ to

graphically distinguish a main line of argument which goes from Γ2 (where

the sentences Γ2 are content restricted to L) and ♢LΘ and then ♢LΦ,from

a supporting subproof which shows that Γ2,Θ ⊢ Φ and thereby justifies the

latter inference.
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In the latter subproof (which I indent and mark off as a separate context) we

are, in essence, attempting to milk new consequences from our knowledge

that ♢L(Θ) , by thinking about what else must be true in a possible (♢L)

stuation where Θ. Thus I will call beginning such a subproof ‘entering the

♢L context’ (associated with some previous claim that ♢L(Θ) )’, and thereby

beginning an Inner Diamond argument.

One will only be permitted to import some claims Γ2 from the main line of

argument (thereby assumeing they continue to hold in the current context)

if these claims are content restricted to the relevant list of relation L. And

we will only be allowed to ‘close the inner diamond context’ by dropping

back one level of indentation and writing down ♢L(Φ) if we have proved

that Φ must hold in this context, by showing that it follows from the initial

assumption that Θ and some facts Γ2 which we have imported via general

logical laws.

Reasoning inside a ♢ context proceeds just as it does normally, with the

exception that each line in the context must either be our initial assumption

that Θ (where ♢L(Θ) is the sentence that opened the diamond context),

an instance of ‘importing’ (where the sentence must be imported from the

parent context) or be deducible from previous lines within this exact ♢

context.

While the operation of In♢I is pretty straightforward we call attention to

one detail. Note that besides line 2 we wrote [2∗] rather than [1] as one

might expect. We do this to maintain the property that if Ψ is written on
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a line it is deducible from the lines written in brackets next to it2.

One can leave the ♢L context above by going from knowledge that ϕ holds

within this context to the conclusion that ♢Lϕ holds outside it. We indicate

this inference pattern via the rule In♢E. This is the only way to introduce

a sentence into the current context based on activity in a child context3.

Example of Inner ♢ with importing:

We can also capture the reasoning in the slightly more complicated argument

below, where we use knowledge of sutiably content restricted claims about

the acutal world to draw consequences from a modal claim.

It’s logically possible, given what cats there are, that each slept

2To this end we treat the initial line in each ♢ context and every line introduced via
importing (see below) as if they were assumptions inside that context. However, we mark
these assumptions with an asterisk since they are justified assumptions (it’s safe to assume
they are true in the ♢ context) and must be replaced with the line numbers from the parent
context when we leave the ♢ context.

In accordance with this idea, a sentence ρ can be written down inside the “♢L context”
governed by the claim that ♢LΘ, iff

• ρ = Θ

• ρ = Ψ for some Γ which is content-restricted to L and occurs on an earlier line
in the proof which is in the same context as the ♢LΘ statement used to introduce
this inner diamond context. (I will, as usual, sometimes elide the steps needed to
transform implicitly content restricted sentences into first order logically equivalent
explicitly content restricted sentences.)

• ρ follows from previous lines within this ♢ context by one of the axioms or inference
rules for reasoning about logical possibility presented in this book.

3Note that In♢E may not be applied to any line with uncancelled (unstarred) as-
sumptions introduced in the context being closed. Moreover, In♢E must take each
starred line number j∗ on the line on which Φ appears (here that’s line 3 and Φ
is(∃x)(cat(x)∨hunter(x))) and replace it with the assumptions of the line (in the current
context) used to justify line j. [take this for inst and put duplicate of it below in example
with importing] For instance, in the current case the only (starred) assumption for line 3
is line 2. Looking at line 2 we see that it is justified by reference to line 1 (which is in the
current context). So we copy the line numbers in brackets on line 1 into the brackets on
line 4 (in this case that’s just 1).
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on a distinct blanket. There are at least three cats. Therefore,

it’s logically possible, given what cats there are that there are at

least three blankets.

1 ♢catEach cat slept on a distinct blanket Ass. [1]

2 There are at least three cats Ass. [2]

3 ♢ Each cat slept on a distinct blanket 1 In♢ , [3*]

4 There are more than three cats 2 Import [4*]

5 There are at least three blankets 3,4 FOL [3*,4*]

6 ♢catThere are at least three blankets 1, 2-5 In♢E [1,2]

Note that the sentence on line 2 ‘There are at least three cats’ is content

restricted to {cats} (assuming that this abbreviates an FOL statement in the

usual Fregian fashion). This fact allows us to import it into our reasoning

about what the possible scenario where each cat slept on a different blanket

must be like on line 4.

Also note that on line 5 we have proved ‘there are at least blankets’ with only

assumptions [3∗, 4∗] (which are starred because they were introduced by in-

ner diamond introduction or importing). Thus, we have shown that the con-

clusion that there are more than three blankets follows from the things we are

entitled to assume about any logically possible scenario witnessing the truth



210 CHAPTER 13. NOTATION AND SOME EXAMPLE ARGUMENTS

of the sentence on line 1. So we can apply Inn♢ Elimination to complete our

inner diamond argument, and conclude that ♢catThere are more than three blankets.

Finally, note that the assumption line numbers listed for the our conclusion

are [1, 2]. For these are the assumptions needed for the claims about the

actual world (namely the sentences on lines 1 and 2), which entitle us to

assume that the possible scenario considered on lines 3-5 satisfy the assump-

tions on lines 3 and 4 which imply are more than three blankets.

See Appendix C for an explicit formal statement of this natural deduction

system, and a demonstration that proofs in it obey the notion of provability

above.

13.4 Box Inference Rules

Although the □ is not an official item in our symbolism, but merely an

abbreviation for ¬♢¬, it is often helpful to reason in terms of it. Earlier we

proved a couple of rules regarding □ inferences and here we present several

more.

First, I present an introduction rule for □.

Lemma 13.4.1 (□ I). If Γ ⊢ Θ and every γ ∈ Γ is a sentence content-

restricted to L then □Lθ.

Proof. Suppose, for a contradiction, Γ,Θ are as above but the lemma fails,

i.e., ♢L¬Θ. By Inner Diamond with Θ1 = {♢L¬Θ} and Θ2 = Θ we can

infer ♢L⊥ as Θ,¬Θ ⊢ Θ ∧ ¬Θ. Hence, by ♢ Elimination we can export the



13.4. BOX INFERENCE RULES 211

contradiction. Hence, □LΘ as desired.

Now I give the corresponding elimination rule.

Lemma 13.4.2 (□ Elimination).

□LΘ→ Θ

Note that in I prove a stronger version of this result in appendix D that

allows arbitrary substitution of relations when eliminating the box and, for

ease of reading, I will also refer to that result as □ Elimination.

Proof. Assume the claim fails. We can derive contradiction immediately by

applying ♢ Introduction to ¬Θ to derive ♢L¬Θ which is ¬□L. We can write

this in terms of the natural deduction system presented above as follows.
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1 □LΘ [Γ]

2 ¬♢L¬Θ [Γ]

3 ¬Θ Assump. [3]

4 ♢L¬Θ 4 ♢ I [3]

5 ⊥ 2, 4 ⊥ I [3,Γ]

6 ¬¬θ 3-5 ¬I [Γ]

7 θ 6 ¬E [Γ]

13.5 Lemmas about Well-Orderings

To give a more visceral sense of how proofs using this logical system work I

will now prove two lemmas which mirror results in set theory (which can be

found in elementary texts like [50]). In each case, I will make an argument

verbally, and then follow it up with an argument using the formal notation

(making explicit when we enter and leave Inner Diamond arguments).

In later chapters and the appendixes I will present proofs in a more informal

style. However, I hope the proofs in this chapter will help the reader under-

stand how these informal proofs can be expanded into a formal argument.
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13.5.1 Lemma A

Jech’s version of the first lemma I am going to prove says the following:

“If (W,<) is a well-ordered set and f :W →W is an increasing

function, then x < f(x) for each x ∈W .”[50]

We can write a version of Jech’s Lemma follows (see appendix A for the

definition of a well-order):

Lemma 13.5.1. If f is an embedding of the well-order W,< into itself then

(∀x, y :W (x) ∧W (y))(x < f(x))

where we define

Definition 13.5.2 (Definition of Embedding). A two place relation f is an

embedding of W,< into W ′, <′ iff

• f is a function (remember we define what it takes for a relation to

qualify as a function in section 8.1)

• (∀x)[W (x)→ (∃y)(W ′(y) ∧ f(x)] i.e., f maps all of W into W ′

• (∀x)(∀y)(∀x′)(∀y′)[x < y ↔ f(x) < f(y)], i.e., f respects < .

Remember that we’ve defined function so that the function f(x) is a conve-

nient way of talking about the relation f(x, y) satisfying f(x, y)∧f(x′, y)→

x = x′.

As usual, I will sometimes abbreviate the claim that x < y ∨ ¬x = y as

x ≤ y.
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Proof. To prove this, we will use essentially the same reasoning which Jech

uses to prove his set theoretic version of this claim.

Assume that f is an embedding of (W,<) into itself, as per the statement

of the lemma.

And suppose, for contradiction, the lemma fails. As in Jech’s proof, our aim

will be to use the properties of well-orderings to derive the existence of a

< least counterexample, i.e., an x in W such that ¬x < f(x) ∧ (∀y : y <

x)(y < f(y)) and derive contradiction from this.

Applying Simple Comprehension to the formula below

¬x < f(x)

tells us it would logical possible - while holding fixed the facts about how

W,<, f apply in the situation we are currently considering - for the predicate

G apply to just such counterexamples. That is

♢W,<,f (∀x)(G(x)↔ ¬x < f(x))

Now we can enter this ♢W,<,f context, i.e., begin an Inner Diamond argu-

ment, where we reason about what else must be true in a possible scenario

where (the facts about W,<, f in our original scenario are held fixed but)

we also have:
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(13.1) (∀x)(G(x)↔ ¬x < f(x))

Now the premises of the lemma (that f is an embedding of (W,<) into

itself and (W,<) a well order) and the assumption that the conclusion of

the lemma fails are all implicitly context restricted to {W,<, f} (seen by

appropriately restricting all the quantifiers). So all of these statements must

all remain true in this new context and can by imported into this context.

Thus we can infer that G is non-empty, from the assumption that the lemma

fails, i.e., (∃x | W (x))(¬x < f(x), together with the fact that (∀x)(G(x)↔

¬x < f(x)).

We know that W,< is a well ordering, and the least element condition from

the definition of well ordering (A.0.2) says the following:

□W,< [(∃x |W (x))G(x)→ (∃y |W (y) ∧G(y)) (∀z |W (z) ∧G(z)) (y ≤ z))]

So by □ Elimination we can infer the existence of a least counterexample y,

i.e.,

(∃y |W (y) ∧G(y)) (∀z |W (z) ∧G(z))) (y ≤ z))

Now let z = f(y) < y. By our assumption that f is an embedding (and thus
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must respect <) it follows from z < y that f(z) < f(y) = z. So by eq. (13.1)

G(z). Thus, z is an satisfyies G(z) and is less than y. Contradiction ⊥.

Exiting the above ♢ context (i.e., completing our Inner Diamond argument),

we get:

♢W,<,f⊥

And from this ⊥ follows by ♢ Elimination (remembering that ⊥ is con-

tent restricted to the empty list). Hence, the desired conclusion follows by

contradiction.

Intuitively speaking, the argument above shows that the if there were a

counterexample to the lemma then it would be logically possible (indeed

logically possible, while holding fixed the W,<, f facts!) for the canonical

contradiction ⊥ to be true. But it’s not logically possible for ⊥ to be true.

So there is no counterexample to the lemma.

Representing this proof in terms of our natural deduction system.
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1 f is an embedding of the well-order (W,<) into itself [1]

2 (∃x |W (x))(f(x) < x) [2]

3 ♢W,<,f∀z[G(z)↔ f(z) < z] 3 Simple Comprehension

4 ♢ ∀z[G(z)↔ f(z) < z] {W,<, f} 3 In♢ I [4*]

5 f is an embedding of the well-order W,< into itself 1 imp [5*]

6 (∃x |W (x))(f(x) < x) 2 imp [6*]

7 □W,<[(∃x |W (x) ∧G(x))→ (∃y)[W (y) ∧G(y) ∧ (∀z)(W (z) ∧G(z)→ y ≤ z)])] 5 FOL [5*]

8 (∃x |W (x) ∧G(x))→ (∃y)[W (y) ∧G(y) ∧ (∀z)(W (z) ∧G(z)→ y ≤ z)]) 7 □ E [5*]

9 ⊥ 4, 6, 8 FOL [4*,5*,6*]

10 ♢W,<,f⊥ 3, 4-9 In♢E [1,2]

11 ⊥ 10 ♢E [1,2]

12 ¬(∃x)(f(x) < x) 11 (2) FOL [1]

13.5.2 Lemma B

Jech writes

“No well-ordered set is isomorphic to an initial segment of itself”[51]

We can define the claim that two structures R1, . . . , Rn and R′
1, . . . , R

′
n are
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isomorphic modally, as saying that it’s possible for a relation f to map the

objects in (the extension of) one structure to those in (the extension of) the

other structure.

Definition 13.5.3 (Isomorphism). A relation f is an isomorphism of ⟨R1, . . . Rm⟩

with the ⟨R′
1, . . . R

′
m⟩ (henceforth written ⟨R1, . . . Rm⟩ ∼=f ⟨R′

1, . . . R
′
m⟩) if:

• f is a bijection of Ext(R1, . . . Rm) with Ext(R1, . . . Rm) (note that the

domain of f may be larger than Ext(R1, . . . Rm) so long as it behaves

appropriately on Ext(R1, . . . Rm)).

• f respects the relations Ri, R
′
i, i.e.,

(∀x1) . . . (∀xm)
[
Ri(x1 . . . xn))↔ R′

i(f(x1) . . . f(xn))
]

,

So we can state the claim to be proved as follows.

Lemma 13.5.4. If (W,<) is a well-ordering and there is some x in W such

that W ′ applies to just those z < x in W then

¬♢W,W ′,<⟨W,>⟩ ∼=f ⟨W ′, >⟩

Proof. Let W,W ′, < be as in the lemma and suppose for contradiction that

♢W,W ′,<⟨W,>⟩ ∼=f ⟨W ′, >⟩ . Using Inner Diamond we can enter this ♢

context. We can import the fact W,< is a well order (because it is content-

restricted to W,W ′ and <). By first order logic and unpacking definitions

we can infer from the fact that f isomorphically maps ⟨W,>⟩ to ⟨W ′, >⟩
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that f is an embedding ofW,< intoW ′, < . And, by the assumptions about

W ′ above, this implies that f is an embedding of W,< into W,< .

Now, to get contradiction, note that by Lemma A (all instances of which

are provable from empty premises, hence provable in any ♢ context) f does

not map any object satisfying W strictly <-below itself. However, we know

there is an object x satisfying W which is > all objects satisfying W ′ and

that ⟨W,>⟩ ∼=f ⟨W ′, >⟩. It follows by first order logic that f maps this x

to a some y < x. Thus we have derived contradiction/the false (⊥) from

premises which would have to obtain in this (supposedly) logically possible

scenario.

As before, we can conclude this inner ♢W,W ′,< argument and returning to

our original context with the conclusion that ♢W,W ′,<⊥. And from this ⊥

follows by ♢ Elimination.

This completes our proof by contradiction that there can be no f isomor-

phicly mapping (W,>) to a proper initial segment of itself.

We can use the natural deduction system to expose the modal reasoning

within this argument, as follows.
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1 (W,<) is a well ordering and W ′ is a proper initial segment of W Ass. [1]

2 ♢W,W ′,<⟨W,>⟩ ∼=f ⟨W ′, >⟩ Ass. [2]

3 ♢ ⟨W,<⟩ ∼=f ⟨W ′, <⟩ {W,W ′, >} 2 In♢I [3*]

4 (W,<) is a well ordering and W ′ is a proper initial segment of W 1 import [4*]

5 f is an embedding of the well-order (W,<) into itself 3,4 FOL [3*,4*]

6 ¬(∃x)(f(x) < x) 6 Lemma A

7 ⊥ 3,4,6 FOL[3*,4*]

8 ♢W,W ′,<(⊥) 2,3-7 In♢E [1,2]

9 ⊥ 8 ♢E [1,2]

10 ¬♢W,W ′,>⟨W,>⟩ ∼=f ⟨W ′, >⟩ 9 (2) FOL [1]

13.6 Pasting and Collapsing

Finally, I will conclude this chapter with two lemmas involving of how more

complex modal reasoning involving multiple ♢ contests. The first lemma

tells us when two logically possible facts can be inferred to be jointly possible.

One cannot generally infer from ♢LΦ and ♢LΨ to ♢L(Φ ∧Ψ). For consider

the case where Φ says there are exactly 8 million things and Ψ says there
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are exactly 9 million things. However, the Pasting Lemma says that one can

make this inference in the special situation when the sentences Φ and Ψ are

content restricted so that they can only make claims about suitably disjoint

aspects of relation (and how these relate the actual L-structure, which both

♢LΦ and ♢LΨ preserve).

Lemma 13.6.1 (Pasting). Let I, J and L be pairwise disjoint sets of re-

lations. If ♢LΦ, where Φ is content restricted to L, I and ♢LΨ, where Ψ is

content-restricted to L,J , then ♢L(Φ ∧Ψ).

Intuitively speaking, the facts about content restriction above ensure that

attempting to make the sentences inside both possibility claims true at the

same time cannot impose conflicting demands. For the only relations whose

extensions are relevant to the truth of both sentences are map and adjacent

to. And our assumptions say that it’s possible to make each interior sentence

true while fixing the actual application of these relations.

Proof. Let Φ be content restricted to L, I and Ψ to L,J , as per the an-

tecedent.
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1 ♢LΦ Ass. [1]

2 ♢LΨ Ass. [2]

3 ♢ Φ {L} 1, In♢I [3*]

4 ♢LΨ 2 import [4*]

5 ♢L,IΨ 4 ♢ Ignoring [4*]

6 ♢ Ψ {L, I} 5 In♢I [6*]

7 Φ 3 import [7*]

8 Φ ∧Ψ 6,7 FOL [6*,7*]

9 ♢L,I(Φ ∧Ψ) 5,6-8 In♢E [3*,4*]

10 ♢L(Φ ∧Ψ) 9 Reducing [3*,4*]

11 ♢L(♢L(Φ ∧Ψ)) 1,3-10 In♢E [1,2]

12 ♢L(Φ ∧Ψ) 11 ♢E [1,2]

Informally, this deduction corresponds to the following reasoning:

Assume that ♢LΦ and ♢LΨ. We can prove our claim by making two nested

Inner Diamond arguments.

First enter the (♢L) context associated with ♢LΦ. That is, consider what

else must be true in any such possible (♢L) situation where Φ. In this
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situation ♢LΨ must remain true, for it is content restricted to L, and we are

considering a scenario which preserves the L facts. By ♢ Ignoring it follows

that ♢L,IΨ.

Now enter this second, interior, ♢L,I context. That is, consider what must be

true in a further possible scenario where Ψ is true while all facts about how

relations L, I applied in the scenario we previously considered are preserved.

Here we clearly have Ψ. But we can import the fact that Φ from the previous

context, because it is content restricted to L, I. So we can deduce Φ ∧Ψ.

Now, leaving this inner ♢L,I context, we can conclude that ♢L,I(Φ∧Ψ). And

we can infer that ♢L(Φ∧Ψ) by ♢ Ignoring (because L is clearly a sublist of

L, I).

So, leaving the larger ♢L context we can conclude that ♢L(♢L(Φ∧Ψ)) holds

in the situation we were originally considering.

Finally, because ♢L(Φ∧Ψ) is content restricted to L, we can use ♢E to draw

the desired conclusion ♢L(Φ ∧Ψ).

The other lemma concerns when we can collapse multiple logical possibility

operators into a single operator.

Lemma 13.6.2 (Diamond Collapsing). If L′ ⊇ L then

♢L♢L′Φ↔ ♢LΦ

Proof. To prove the left to right direction, suppose that ♢L♢L′Φ. Enter the

♢L context. In this context we have ♢L′Φ. Since L′ ⊃ L, by Reducing we
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can infer ♢LΦ. Exiting the ♢L context, we have ♢L(♢LΦ) in our original

contest. So we can apply ♢ Elimination to infer ♢LΦ.

1 ♢L♢L′Φ [1]

2 ♢ ♢L′Φ 1 In ♢ I [2*]

3 ♢LΦ 2 Reducing [2*]

4 ♢L(♢LΦ) 1,2-3 In ♢ E [1]

5 ♢LΦ 4 ♢ Elimination [1]

6 ♢L♢L′Φ→ ♢LΦ 5 → I

To prove the other direction, suppose that ♢LΦ. Entering this diamond

context, we have Φ and can infer that ♢L′Φ by ♢ Introduction. So completing

our inner diamond argument gives us ♢L♢L′Φ.

1 ♢LΦ [1]

2 ♢ Φ [L] 1 In ♢ I [2*]

3 ♢L′Φ 3, ♢ I [2*]

4 ♢L(♢L′Φ) 1, 2-3 In ♢ E [1]
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We also observe that there is a corresponding □ version of the above lemma.

Lemma 13.6.3 (Box Collapsing). If L′ ⊇ L then

□LΦ↔ □L□L′Φ

Proof. Note that this is equivalent to proving

¬□LΦ↔ ¬□L□L′Φ

which is just

♢L¬Φ↔ ♢L♢L′Φ

This is true by Diamond Collapsing.
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Chapter 14

The Formal System II: Other

Inference Rules

14.1 Cutback

Axiom 14.1.1 (Cutback). If For any list of relations L = R1, . . . , Rm,

[(∃x)P (x) ∧ (∀x | Ext(L)(x))P (x)]→ ♢L,P (∀x)P (x)

This axiom schema expresses the idea that if a predicate P applies to all the

objects which relations in L apply to (and P applies to at least one thing),

then it is logically possible to have a cut back universe which preserves how

P and relations in L apply, and contains no objects outside the extension of

P .

227
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14.2 Modal Comprehension

Our next axiom schema, Modal Comprehension, expresses a somewhat sim-

ilar idea to the Simple Comprehension axiom schema above. Modal Com-

prehension expands on the idea behind Simple Comprehension by ensuring

the logical possibility of a relation which applies to exactly those objects

picked out by some modal sentence. Informally, the idea is that Modal

Comprehension lets us make inferences like the following

SIBLINGS: Holding fixed the facts about the relations Married(x, y)

and Sibling(x, y) it is logically possible to have a relation R(x)

that applies to exactly those married individuals x with more

siblings than their spouse.

Note that having more siblings than one’s spouse has to be cashed out in

terms of the logical possibility of a surjective but not injective map from

their siblings to those of their spouse. On first glance, it would appear

this would require passing x (the individual for whom we wish to compare

their siblings to those of their spouse) into the logical possibility operator

evaluating the possibility of such a pairing. However, our language of logical

possibility does not allow this kind of quantifying in.

Instead, we do this by using a special, otherwise-unused, n-place relation Q

to label and preserve a choice for an n-tuple of objects in Ext(L ). We say

that it is possible (fixing the L facts) for R to apply in such a way that,

necessarily (fixing the L , R facts), R only relates objects in Ext(L ) and

however Q chooses a unique n-tuple of objects in Ext(L ) for consideration,
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R applies to this n-tuple iff a certain modal claim ϕ describing the behavior

of L and Q is true. In this case, the relevant L is {Married, Sibling}, and

the modal sentence ϕ is ♢Married,Sibling,Q ((∃x)Q(x) ∧ (∃y)Married(x, y) and

Z(·, ·) is a surjective but not injective map from the siblings of x to those of

y.

We can thus express the informal claims like siblings with a sentence of the

following form:

(14.1)
♢Married,Sibling,Q□Married,Sibling,Q,R(∃!x | Q(x))→

(∃x)(Q(x) ∧ [R(x)↔ x ∈ Ext(L ) ∧ ϕ)]

Since it is possible for Q to apply to any single object x, the necessity

operator above ensures that R applies to exactly those x which have more

siblings than their spouse. Or, to put the point differently, if there was

some x in the extension of one of Married, Sibling, Q where R(x)↔ ϕ then,

intuitively, it would be possible for Q to apply to such an x contradicting

the assumption. With this motivation in place, I can now state the Modal

Comprehension Schema as follows.

Axiom 14.2.1 (Modal Comprehension). If

• R does not occur in L,Ψ or ϕ

• Q does not occur in L or Ψ

• ϕ is content restricted to L, Q
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then

Ψ→ ♢L

(
Ψ∧□L,R

[
(∃!x⃗ | Q(x⃗))→ (∃x⃗ | Q(x⃗))

[
R(x⃗)↔ Ext(L )(x⃗)∧ϕ(x⃗

]])

where (∃!x⃗ | Q(x⃗)) means there is a unique tuple x⃗ satisfying Q. Note that

we take (∃!x⃗ | Q(x⃗))[φ(x⃗)] to mean that Q applies to a unique n-tuple of

objects x⃗ and those objects satisfy (not necessarily uniquely) φ(x⃗).

14.3 Possible Infinity

We now adopt an axiom asserting the logical possibility of infinitely many

objects.

Axiom 14.3.1 (Infinity). ♢Ψ where Ψ is the conjunction of the following

claims:

1. The successor of an object is unique (∀x)(∀y)(∀y′) [S(x, y) ∧ S(x, y′)→ y = y′]

2. successor is one-to-one (∀x)(∀y)(∀x′)(S(x, y) ∧ S(x′, y)→ x = x′)

3. there is a unique object that has a successor and isn’t the successor of

anything (∃!x : (∃y)S(x, y) ∧ (∀y)¬S(y, x))

4. everything that is a successor has a successor (∀x)[(∃y)S(y, x) →

(∃z)S(x, z)]

5. S is anti-reflexive: (∀x)(∀y) [S(x, y)→ ¬S(y, x)]

Note that by 1 the relation S is a function.
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14.4 Possible Powerset

Axiom 14.4.1 (Possible Powerset). If F,C are distinct predicates, ∈C a

two-place relation, then ♢FC (C,∈C , F ).

Here C (C,∈C , F ) is the conjunction of the following claims:

• (∀x)¬ (C(x) ∧ F (x)), i.e., the objects satisfying F and C are disjoint.

• (∀x)(∀y) (x ∈C y → F (x) ∧ C(y)).

• □C,∈C ,F (∃x) [C(x) ∧ (∀y) ((F (y) ∧K(y))↔ y ∈C x)], i.e., it’s neces-

sary that however some predicate K applies to some objects satisfying

F , there exists a corresponding class C whose elements are exactly the

objects which F applies to.

• (∀y)(∀y′)(C(y) ∧ C(y′) ∧ ¬y = y′ → (∃x)¬(x ∈C y ↔ x ∈C y′), i.e.,

classes are extensional (no two members of C contain, in the sense of

∈C , the same elements).

Intuitively, this axiom schema says that it is always possible to add a layer

of classes to the objects satisfying some predicate F. Note that C (C,∈C , F )

is content restricted to C,∈C , F .

We now prove a simple lemma that we will often use in applying this axiom.

Since this strictly strengthens the above axiom, we will take invocations of

possible powerset to refer to applications of the following lemma.

Lemma 14.4.2 (Possible Powerset). Suppose that L′ ⊃ L and neither C
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nor ∈C are in L′ then

♢L′C (C,∈C ,Ext(L))

Proof. We note that it is enough to prove

♢L′(∀z)(F (x)↔ Ext(L)(x)) ∧ C (C,∈C , F )

for some new predicate F not in L′ since the formula inside the ♢L′ is first

order equivalent to the desired claim (hence the claimed result follows by

Logical Closure).

By Simple Comprehension we have

♢L′(∀x) [F (x)↔ Ext(L )(x)]

Enter this ♢L′ context, i.e., use Inner Diamond to reason about what else

must be true in this context, and invoke Possible Powerset to derive ♢F (C (C,∈C

, F )). Via ♢ Ignoring we can infer ♢L′,F (C (C,∈C , F )). By Importing and

Logical Closure we can infer

♢L′,F (∀z)(F (x)↔ Ext(L)(x)) ∧ C (C,∈C , F )

The desired conclusion follows by leaving the ♢L′ context and applying Di-

amond Collapsing.
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14.5 Choice

Axiom 14.5.1 (Choice). For all n ≥ 0,m > 0 if I is an n-ary relation (where

a 0-ary relation is assumed to be ¬⊥) and R, R̂ are n+m-ary relations with

R̂ not appearing in Φ or L (nor equal to I,R) then

Φ ∧ (∀x⃗)
[
I(x⃗)→ (∃y⃗)R(x⃗, y⃗)

]
→

♢L,I,RΦ ∧

[
(∀x⃗)(∀y⃗)

(
R̂(x⃗, y⃗)→ R(x⃗, y⃗)

)
∧ (∀x⃗)

[
I(x⃗)→ (∃!y⃗)R̂(x⃗, y⃗)

]]

This axiom schema captures the same intuition as the axiom of choice in set

theory. It says that if every x satisfying I is related to some y by R, then

(fixing I,R) another relation R̂ can behave like a choice function selecting

a unique such y for each x.

Note that in the case where n = 0 (when I becomes just a necessary truth)

the axiom asserts the possibility of an R̂ which applies to a unique m-tuple

in the extension of R. The utility of this special case is demonstrated in the

following lemma1.

Proposition 14.5.2 (Simplified Choice). Suppose R̂ /∈ L, R ∈ L (and R̂ is

not the same relation as R).

(∃x⃗) (R(x⃗)) ∧ Φ→ ♢L

(
Φ ∧ (∃x⃗)

[
R̂(x⃗) ∧ R̂(x⃗) ∧ (∀y⃗) (P (y⃗)→ x⃗ = y⃗)

])

Proof. This follows directly from Choice by letting n = 0 as we regard the

1Note that in actualist set theory this fact is guaranteed by applying comprehension
with parameters but our version of comprehension doesn’t allow this.
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0-ary relation I appearing in Choice as ¬⊥.

14.6 Possible Amalgamation

My last, and most complex, axiom schema articulates a modal version of

the set theorist’s Axiom of Replacement. This axiom captures the intuition

that if the most general laws of logic permit a certain scenario ϕ(x) for each

x in some logically possible I then they don’t forbid the ‘disjoint union’ of

these scenarios.

Crudely speaking, this axiom takes us from the logical possibility (given

some starting structure L), of satisfying a certain formula ϕ(x) for any single

x in a base collection of objects (those satisfying some I in L), to the logical

possibility of an expanded universe where for every object x satisfying I,

there is a corresponding structure (indexed to this object x) within which a

version of ϕ(x) is true.

For example, if we take I to be the predicate person(·) and the L to be the

list person(·), childOf(x, y) Possible Amalgamation licenses claims like:

If, for any choice of a person, there could be (holding fixed the

facts about people and parentage) as many ghosts as that per-

son has children, then (holding fixed the facts about people and

parentage) it could be that, for every person x, there are as many

ghosts-haunting-x (disjoint from everyone else’s ghosts) as x has

children.
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While this principle in some sense serves the same purpose as the set theo-

rist’s axiom of replacement it differs in a critical way from actualist Axiom of

Replacement. Actualist replacement acts as a closure condition on a single

structure (the hierarchy of sets) and it’s this aspect which makes its consis-

tency non-obvious. However, the Amalgamation axiom merely asserts the

possibility of a scenario in which this disjoint union is realized. This possi-

bility is obviously logically possible in a way that assuming the existance of

a single structure closed under replacement is not2.

As before, articulating this principle can seem to require quantifying in to

the ♢ of logical possibility. However, we can use the same trick (involving an

otherwise unused predicate Q) to get around it, as we did when formulating

modal comprehension above.

Axiom 14.6.1 (Amalgamation). If

• L is a list of relations which contains the predicate I but not Q or

R1...Rn

• Φ is content-restricted L, Q,R1 . . . Rn. (where P , R1 . . . Rn and L

share no relations)

• R̂1 . . . R̂n are otherwise unused relations such that if Ri is an n-place

relation R̂i is an n+ 1 place relation.

Let Ψ(x) be the formula

2While earlier potentialist approaches, e.g., Hellman [44], did try to justify their uses
of replacement I believe this axiom is more clearly guaranteed not to contravene the most
general laws of logic.
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∧
1≤i≤n

(∀v⃗)(Ri(v⃗)↔ R̂i(v⃗, x))

asserting that R̂i with x inserted into the last place behaves exactly the

same as Ri. Let π(x, y) be the formula

∨
1≤i≤n
1≤j≤li

(∃z1) . . . , (∃zj−1), (∃zj+1), . . . , (∃zli)R̂i(z1, . . . , zj−1, x, zj+1, . . . , zli , y)

which asserts that x appears in some tuple ending with y satisfying some R̂i

then

□L [(∃!x | Q(x))(I(x))→ ♢L,QΦ]→

♢L
[
(∀x)(∀y)(∀y′)

[
(¬y = y′ ∧ π(x, y) ∧ π(x, y′)→ x ∈ Ext(L)

]
∧

□L,R̂1...R̂n
[(∃!x)(Q(x)) (Q(x) ∧ I(x) ∧Ψ(x))→ Φ]

]

Remember that (∃!x | Q(x))(I(x)) indicates that there is a unique x such

that Q and that this x also satisfies I.

To see how this captures the intuition from the start of the section, note that

(informally) the antecedent merely asserts that for each x satisfying I (with

the value of x conveyed by Q) it is logically possible that Φ(x). The conse-

quent, in turn, asserts that it’s logically possible to have a single logically

possible structure which can be broken up into disjoint ’domains’Mx for each
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x satisfying I such that Mx |= Φ. Note that Mx here is just a way of talking

about the objects satisfying R̂i(·, . . . , ·, x) and we capture talk of modelling

by considering the logically possible scenario in which Ri(y1, . . . , yn) holds

iff R̂i(y1, . . . , yn, x). In other words this complex sentences merely expresses

the relatively straightforward intuition that if we can index logically possible

scenarios by I then it’s logically possible to have a disjoint union of scenarios

witnessing all the logical possibility facts indexed by I.



238 CHAPTER 14. THE FORMAL SYSTEM II


