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Section 1

Introduction



Overview

In this talk I will
Review a Putnamian model theoretic worry about realism
and reference

Note that it’s fashionable to:

take this worry seriously for mathematics

while accepting unapolegetic realism about physical objects
and physical laws/possibility facts

Argue this combination of views is untenable



Section 2

Nonstandard Models of Number Theory



Theories and Models I

Not all mathematical theories determine a unique structure
under consideration.
Consider this simple observation about the natural
numbers: Every number has a successor different than
itself.

(∀x) ((S(x) 6= x) (S1)

In addition to the natural numbers this could be satisfied
(modeled by) by the two element structure 0,1 with
S(0) = 1,S(1) = 0 or represented graphically

0 1



Theories and Models II

Add the observation that the successor of the successor of
x can’t be x .

(∀x) ((S(S(x)) 6= x) (S2)

In addition to the natural numbers, this is satisfied by the
three element structure 0,1,2 with
S(0) = 1,S(1) = 2,S(2) = 0 or represented graphically

0

12



Theories and Models III

What if we consider the infinite theory T containing the
observations about the natural numbers Sn for each n > 1

(∀x)((S(. . .S(x))︸ ︷︷ ︸
n times

6= x) (Sn)

Taking S(x) = x + 1, T still has both the natural numbers
(0,1,2, . . .) and the integers . . . ,−2,−1,0,1,2, . . . as
models (and even the reals).



Theories and Models IV

What if we create T ′ by adding to T the observation that
there is a unique element (0) that isn’t a successor?

(∃!y)(∀x)(S(x) 6= y) (Zero)

However, T ′ still has multiple (non-isomorphic1) models,
e.g., both the natural numbers and the natural numbers
with a copy of the integers tacked on after.

0,1,2,3, . . . . . .− 2∗,−1∗,0∗,1∗,2∗,3∗, . . .

1See appendix



Theories and Models V

We might try and make our language more expressive by
adding more relations < and axioms involving this, but it
turns out2 that ..

No matter what first order axioms we take our ‘theory of
the numbers’ to consist of, there will be multiple distinct
structures which satisfy this theory.

2by the Löwenheim–Skolem Theorem



Section 3

Putnam’s Challenge(s)



A Mathematical Realist Intuition

Intuition

We can reference the natural numbers not merely some
alternate structure.

At least we seem to be able to reference them up to
isomorphism,

i.e., we can reference the structure of the natural numbers
but perhaps not know if 0 is identified with a particular set
or some other object.
Going forward, I will sometimes omit the ‘up to
isomorphism’ caveat.



Worry About Determinate Number Theory

Putnam: It must be our theory of the numbers that secures
the right reference, i.e., the acceptable references must
make (most of?) our theory true.

Model Theoretic Argument: Our first order theory can’t rule
out non-standard models as the reference of ‘the natural
numbers’.



Note About Importance

Note: this worry doesn’t just challenge definite reference
(up to isomorphism) for our talk of the natural numbers. It
also challenges

Intuition (Number Theoretic Truthvalue Realism)

Every number theoretic3 statement is either true or false
(whether we can prove it or not.)

For without securing reference how do we secure
truthvalues?

3That is a first order statement about the natural numbers expressed in
terms of 0,+, ∗, <.



Gödel Incompletness

Theorem (Gödel’s First Incompletness Theorem)

Any first order theory T extending basic number theory4 whose
axioms are algorithmically listable fails to prove or disprove
some formula.

Equivalently5 there is a sentence φ such that T has some
models which make φ true and others which make φ false.

So our first order theories can’t secure truth-values for all
number theoretic claims.
However, determinate reference to the natural numbers
would suffice to pin down number theoretic truth.

4Such as Q or Peano Arithmetic.
5By the completeness theorem.



Analogous Challenge to Scientific Realism

Putnam raises a similar worry about our ability to refer to
physical objects and grasp scientific conceps in a way that
makes it possible for an ideal scientific theory to be wrong.

Any consistent first order scientific theory can be
interpreted as speaking truly about (some of) the sets.

So why don’t we count as speaking truely of this model?



A Common Combination of Views

It’s currently common to:

Take Putnam’s argument as a serious challenge to our
ability to reference structures like the natural numbers.

Accept unproblematic realism about concrete objects,
physical laws/possibility and objective probability.

But I will argue that this combination of views is untenable.



Section 4

Using Induction to Rule out Nonstandard
Models?



Second Order Logic

Second order logic extends first order by adding quantifiers
(∃X ), (∀X ) ranging over all subsets of a given domain.

It’s well known that if we can determinately grasp second
order quantifiers then our acceptance of the Second Order
Induction Axiom

(∀X ) [(X (0) ∧ (∀n)(X (n)→ X (S(n))))→ (∀m)X (m)] (I2)

suffices to rule out all nonstandard models of first order
number theory.



Second Order Categoricity

Theorem

Basic first order number theory plus the Second Order
Induction Axiom

(∀X ) [(X (0) ∧ (∀n)(X (n)→ X (S(n))))→ (∀m)X (m)] (I2)

is satisfied only by the standard model of the natural numbers

Definition: X is counterinductive within a structure/model
if (restricting our quantifiers to that structure) X (0) and
(∀n)(X (n)→ X (S(n)) but not (∀m)(X (m))

Second order induction is just the claim that no subset of
the natural numbers is counterinductive.



Proof Idea

Every model of basic first order number theory6 has a
standard initial segment. Such a segment is called an ω
sequence.

Axioms tell us there is a first number 0 and every number
has a successor giving us a standard initial segment
0,1,2,3, . . .

If M is non-standard, the standard initial segment ω 6= M is
counterinductive. So M fails Second Order Induction.

6Again this means Q or Peano Arithmetic



Counterinductive Picture

Example (Putative Model of Natural Numbers)

0,1,2, . . . . . . -2*, -1*, 0*, 1*, 2* . . .

if X is in red in: 0,1,2, . . . . . . ,−2∗,−1∗,0∗,1∗,2∗, . . .

X is not counterinductive.

if Y is in blue in: 0,1,2, . . . . . . ,−2∗,−1∗,0∗,1∗,2∗, . . .

Y is not counterinductive.

if Z is in green in: 0,1,2, . . . . . . ,−2∗,−1∗,0∗,1∗,2∗, . . .

Z is counterinductive
(so rules out the above model)



Why This Doesn’t Answer Putnam

Thus, if we give second order quantification its intended
meaning and demand the numbers satisfy:

Basic first order number theory

The second order induction axiom

then we must give the natural numbers a standard
interpretation.

But our ability refer to ‘all the subsets’ can seem no less
mysterious than our ability to mean the standard model of
the natural numbers.



Why First Order Induction Isn’t Enough

Our basic first order number theory can include the
following induction induction schema

(φ(0) ∧ (∀n)(X (n)→ φ(S(n))))→ (∀m)φ(m) (I1)

But nonstandard models can satisfy all instances of this
schema.

In a non-standard model no number theoretic φ picks out ω.



Tantalizing Idea

We expect induction to hold for all formulas φ, including
ones that are not in the language of pure number theory

(φ(0) ∧ (∀n)(φ(n)→ φ(S(n))))→ (∀m)φ(m) (I1)

If we let φ use physical vocabulary maybe we can pick out
ω (a counterinductive collection) in non-standard models.

Remember, we assume that reference for physical
vocabulary is fixed unproblematically.



Section 5

My Proposal



The Big Picture

I’ll argue that, given determinate reference to physical objects
and possibility, our acceptance of the following principle
suffices to rule out nonstandard models of number theory:

Principle

It’s physically necessary that the natural numbers satisfy

the first order axioms of number theory and
induction on the property ‘there is an nth coinflip and it
comes up heads’.



Counting Physical Events

Observation (Counting Events)

We can unproblematically count events7 with numbers e.g., we
can talk about FLPCNT(x ,n) where FLPCNT(x ,0) holds if x is
the first coinflip, FLPCNT(x ,1) if x is the second coinflip etc...

At least when those events occur (temporarily) in a
discrete sequence8, i.e., .

There is a first event.

There is a well defined next event after every event
∀y∃x(y <t x) ∧ ∀z¬(y <t z <t x)

7See appendix for a more formal treatment of this
8We can restrict ourselves to events with a well defined temporal order in

Relativity, i.e., timelike separation.



Induction applies to nonmathematical properties

We can write formulas like φ(n) = (∃x)FLPCNT(x ,n)
(There is an n-th coinflip).

Note: the collection of numbers picked out by formulas
using physical vocabulary may differ from that picked out
by any purely mathematical vocabulary.

Principle

Induction holds for formulas using physical vocabulary. This is
(taking quantifiers to be restricted to the ‘natural numbers’

φ(0) ∧ (∀n) [φ(n) =⇒ φ(n + 1)] =⇒ (∀n)φ(n)



How this can rule out some nonstandard models I

We believe: if there is a first coinflip, and every flip is
followed by a next flip, then there is an n-th flip for every
natural number n.

If there are finitely many coinflips, this doesn’t rule out any
putative models of the natural numbers.

If there are infinitely many coinflips (ordered as below) this
rules out non-standard models longer than the structure of
ticks.

0,1,2, . . . (. . .− 1∗,0∗,1∗ . . .)︸ ︷︷ ︸
{n|(∃x)CLKCNT(x ,n)}

. . . (. . .− 2∗∗,−1∗∗,0∗∗,1∗∗,2∗∗ . . .)



How this can rule out some nonstandard models II

If some describable kind of events (e.g., the coin flips) form
an ω sequence, this will rule out all nonstandard models.

For, as we saw above, all non-standard models contain an
initial ω sequence, plus some extra stuff.

But: the actual world might not contain such an ω
sequence



Key Idea #2

Solution:
Appeal to our belief that the Inductive Principle above is
physically/metaphysically necessary.

If there’s a possible world where a formula like φ picks out
an ω sequence, this precludes nonstandard interpretations
of ‘the numbers’ provided (as per physical realism) we give
the usual meanings to:

‘physically necessary’/‘metaphysically necessary’

‘before’ and other physical vocabularly in φ.



On the Possibility of an ω Sequence

Metaphysical possibility is easy.

Surely it’s metaphysically possible for clock ticks to be an ω
sequence.

Physical possibility is harder.

Maybe it’s not even physically possible for time to be an ω
sequence (if infinite it must be non-standard).

But it’s surely physically possible for time to be infinite.

We just need some way of selecting the standard initial
segment.



One Last Little Trick I

Intuition

Given a discrete sequence of objectively random (and suitably
independent) ‘coinflips’, e.g. quantum spin measurements, it’s
possible for any collection of them to turn up heads.

Physics tells us (in the right circumstances) these
measurements are probabilistically independent so surely
past outcomes can’t physically necessitate the current
outcome.

Even if you don’t believe in objective randomness, it’s
plausible that the initial conditions are flexible enough to
still guarantee this result



One Last Little Trick II

So if there can be some infinite discrete series of coin tosses
(e.g., with this structure under <t ‘before’)

e0,e1,e2 . . . . . .e−2∗,e−1∗,e0∗,e1∗,e2∗ . . .

Then plausibly all logically/combinatorially possible
combinations of outcomes are physically possible, e.g.,

w1 : H,H,T . . . . . .T ,T ,T ,H,H . . .

wω : H,H,H . . . . . .T ,T ,T ,T ,T . . .

including one world, wω, where the coinflips coming up heads
form an ω sequence under <t and thus let us pick out a
standard initial segment of the numbers (as discussed above).



Upshot

Suppose that we can secure standard realist meanings for
physical vocabulary like ‘coinflip’, ‘before’ and
physical/metaphysical possibility talk.

Then we can uniquely describe the structure of the natural
numbers by saying:

Principle

It’s physically necessary that the natural numbers satisfy

the first order axioms of number theory and
induction on the property ‘there is an nth coinflip and it
comes up heads’.



Section 6

Conclusion



Conclusion I

I have argued that a popular combination of views is untenable.

We shouldn’t simultaneously

take model theoretic worries seriously for number theory

accept unapologetic realism about physical object and
possibility talk



Conclusion II

For if we can secure realist reference to physical objects and
possibility then we can rule out nonstandard models of number
theory by saying:

Principle

It’s physically necessary that the natural numbers satisfy

the first order axioms of number theory and
induction on the property ‘there is an nth coinflip and it
comes up heads’.



A Closing Note

A closing note
It would be strange if our ability to grasp the natural
number structure depended on our previously grasping a
notion of physical (or metaphysical) possibility.
So, I think that another - rather different- style of answer to
Putnam’s challenge must also be possible.
See my blog entry https:
//philosophyinprogress.blogspot.co.il/2017/
10/access-to-reference-magnets-bitter-pill.
html for details on this.

https://philosophyinprogress.blogspot.co.il/2017/10/access-to-reference-magnets-bitter-pill.html
https://philosophyinprogress.blogspot.co.il/2017/10/access-to-reference-magnets-bitter-pill.html
https://philosophyinprogress.blogspot.co.il/2017/10/access-to-reference-magnets-bitter-pill.html
https://philosophyinprogress.blogspot.co.il/2017/10/access-to-reference-magnets-bitter-pill.html
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Appendix



*Note About Isomorphism

Two structures M1 and M2 are isomorphic if they have the
same structure but may differ in what objects are used.

Somewhat more formally, a domain D considered under
some relations R1, ...,Rn on that domain is isomorphic to a
domain D′ considered under relations R′1, ...,R

′
n on that

domain iff a function f can map D to D′ such that:
f is one to one (∀x)(∀y)(f (x) = f (y)→ x = y)
f is onto (∀y))D′(y)→ (∃x)f (x) = y)
for each Ri , we have
(∀x1)...(∀xm)[Ri(x1, , , xm)↔ R′

i (f (x1), ...f (xm))]

e.g., the structures 0,1,2, . . . and −1,0,1,2, . . . under <
are isomorphic (n in the first structure plays the same role
as n − 1 in the second).



Details About Counting Events

Let
flip(x) denote ‘x is a coinflip’
FLPCNT (n, x) denote x is the n-th coinflip
H(x) denote that coinflip x has the heads outcome
x <t y denote that the coinflip x occurs temporally prior to
coinflip y .

Then, I take the fact that �p (COUNTING RULES) to be
somthing like an analytic truth, where COUNTING RULES is
the conjunction of the following claims.



Definition of COUNTING RULES part 1

An object x is the 0th coinflip, i.e., FLPCNT (0, x) iff x is a
coinflip and all other coinflips happen after x .
(∀x)[FLPCNT (0, x)↔ flip(x) ∧ (∀y)(flip(y)→ x <t y ∨ x =
y))]

If x is the nth coinflip, then y is the S(n)th coinflip iff y
occurs after x and no other coinflip occurs between x and
y . That is,

(∀n, x , y)
(

FLPCNT (n, x)→[
(FLPCNT (S(n), y)↔

flip(y) ∧ x <t y ∧ (∀z)¬ (flip(z) ∧ x <t z ∧ z <t y)
])



Definition of COUNTING RULES part 2

Only coinflips can be the nth coinflip, i.e.,
(∀x)(∃n)(FLPCNT (n, x)→ flip(x))

No two distinct numbers correspond to the same coin flip.
(∀n)(∀m)[FLPCNT (n, x) ∧ FLPCNT (m, x)→ m = n]



How this prevents nonstandard interpretations of N I

Consider the interpreter’s predicament when interpreting
‘countflip’ in the world where there is a discrete sequence of
coin flips and only the initial ω sequence comes up heads.

The principles governing FLPCNT tell us that 0 has to be
assigned to the temporally first coinflip in w , 1 to the next,
and so on for all the objects in the standard initial segment
of the nonstandard model.
Thus if φ(n) ⇐⇒ (∃x) [FLPCNT (x ,n) ∧ H(X )]

So we have φ applying to (at least) the standard initial
segment of our nonstandad model.



How this prevents nonstandard interpretations of N II

To make the induction axiom come out true we’d have to
find some objects n to relate by FLPCNT to additional
numbers to either

make the antecedent that φ applies to the sucessor of
everything it applies to false,
or to make the conclusion that it applies to all ‘numbers’
true).

But COUNTING RULES imply FLPCNT relates each
number to a different coinflip.
But we have already ‘used up’ all the ω sequence of
successive coinflips that actually turned out heads by
pairing them with the standard initial segment of our
nonstandard model,



Upshot

We can write down a first order theory, which we expect to hold
necessarily,

basic first order axioms of number theory, e.g., the Peano
Axioms
COUNTING RULES
the sentence you get by instantiating the first order
induction schema with
φ(n) = (∃x)(FLPCNT (n, x) ∧ head(x))

but which no nonstandard interpretation of ‘number’ which
interprets ‘heads’, ‘coinflip’ ‘before’ etc standardly at wω can
make come out true at wω



In the existing lit: McGee

McGee argues that that we expect instances of the induction
schema to remain true in all ‘logic preserving’ expansions of
our language.

If we met a god and adopted their term ‘smee’ which
applied only to the standard initial segment of our
non-standard model, induction would fail.

But what can the god do to secure reference to a collection
of would-be numbers in a way we cannot?

Our ability to grasp McGee’s space of ‘logically possible
logic preserving language changes’ is no less mysterious
than our ability to second order logic (or the intended
structure of the natural numbers).



In the existing lit: Hartry Field

Hartry Field (rather ambivalently) proposes an alternative
account:

If seconds since the epoch forms a genuine ω sequence,
i.e., has the intended structure of the natural numbers
under <.

and we believe this to be true.

then we can rule out non-standard interpretations.



Problem for Field’s proposal

Time could be finite or non-standard, e.g., maybe there are
times after an infinite duration.

Even if time has the right structure, this is (at best) a
contingent hypothesis and not sufficiently analytic/central
to our use to rule out alternative models.

Compare: If I believed that the number of gumballs in the
jar is 70, this belief presumably wouldn’t commit a
mischievous interpreter to interpret the concept ‘natural
number’ so this statement come out true.
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