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Abstract. In this paper I will propose a new answer to classic model-

theoretic worries about how we can grasp a definite natural number

concept. I review some problems for existing ‘indefinite extensibility’

proposals, which answer this worry by saying that our expectations

about the relationship between number theory and all possible ‘logic

preserving’ expansions of our language rule out non-standard interpre-

tations of number theory. I will argue that one can avoid these problems

by instead appealing to our expectations about the relationship between

mathematics and physical (or metaphysical) possibility to rule out non-

standard models.

1. Introduction

Do we have determinate (categorical) conceptions of mathematical struc-

tures like the natural numbers? It intuitively seems like we do. But there’s

a classic worry (inspired by considering non-standard models of first order

Peano Arithmetic) that this is not so, which Putnam raised in [8] and War-

ren and Waxman have recently emphasized in [9].

In this paper I will propose a new answer to this challenge. First I will

review some problems for existing proposals, including ‘indefinite extensibil-

ity’ based responses to the model theoretic challenges, which maintain that

certain expectations about the relationship between number theory and all

possible ‘logic preserving’ expansions of our language suffice to rule out

non-standard interpretations of number theory. Then I argue that we can
1
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cleanly avoid these problems by claiming that our expectations about the

relationship between mathematics and physical (or metaphysical) possibility

to suffice to rule out non-standard models.

Specifically, I will argue that if one grants that we can (somehow!) latch

on to a definite notion of physical or metaphysical possibility, then this fact

together with our dispositions to assert that it would be physically impos-

sible for certain concrete first order definable properties to apply counter-

inductively (i.e. to 0 and the successor of 0 but not to all numbers) suffices

to rule out non-standard interpretations of our number talk.

Admittedly, it would be very strange if our ability to think about the

natural numbers depended on our ability to grasp the concept of physical

or metaphysical possibility. So, I should stress, I don’t claim the above-

mentioned facts about us constitute our only grip on the intended structure

of the natural numbers, or a necessary condition for thinking about this

structure. I (only) claim that they provide a sufficient condition for grasping

a determinate number concept.

However, I think that recognizing this sufficient condition is very im-

portant because of the connection it revels between realism about physical

possibility and realism about mathematics. By highlighting this scenic side-

route to having a definite number theoretic concepts (while allowing that

the royal road lies elsewhere) I hope to convince metaphysicians who happily

accept robust facts about metaphysical or physical possibility but are agnos-

tic about mathematical realism that resources they are already committed

to accepting suffice to answer Putnam’s model theoretic challenges – so they

shouldn’t be deterred from accepting truthvalue realism about mathematics

on these grounds.
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2. Putnam’s Model-Theoretic Challenge

Let me begin by laying out Putnam’s model-theoretic challenge, as it

applies to our conception of the natural numbers.

The standard first order axioms of arithmetic (PA) plausibly articulates

part of our concept of numbers (in delineating restrictions on how the sym-

bols N, S,+, ∗, < can relate). However, these axioms can also be satisfied by

non-standard models with a different structure and may change the truth-

value of some arithmetic sentences. For instance, PA requires that every

number besides 0 both have and be a successor, but this leaves open the

possibility of non-standard interpretations which (under <) look like the

following (where each additional ∗ indicates a disjoint copy of the integers):

0, 1, 2, 3, . . . ,−2∗,−1∗, 0∗, 1∗, 2∗, 3∗, . . . ,−2∗∗,−1∗∗, 0∗∗, 1∗∗, 2∗∗, 3∗∗, . . .

The resulting structure looks like a copy of the natural numbers followed by

two copies of the integers. Note that by ensuring there is no least ‘infinite’

number such a structure can satisfy the requirement about every element

besides 0 both being and having a successor.

This alone isn’t enough to create a non-standard model of PA1. However,

if we instead consider the structure consisting of a copy of the natural num-

bers followed by infinitely many copies of the integers densely ordered (i.e.,

the resulting structure has the form N+ (Z) ·Q where Z is just the integers

and Q is the rationals)[5], then there is a way for the relations +, ∗, < to

apply so that all so that all the Peano axioms are satisfied – including all

instances of the first order induction schema2.

1Note that we’ve only said that the basic first order Peano axioms about S applies are
satisfied in the structure above, not that any of the other ones (i.e. those for +, · and <)
are.
2That is, all sentences of the following form in the language of arithmetic φ(0) ∧
(∀n)[φ(n)→ φ(S(n))]→ (∀m)φ(m).
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However, such non-standard models of PA don’t satisfy the full second or-

der induction axiom, (∀X) [(X(0) ∧ (∀n)(X(n)→ X(S(n))))→ (∀m)X(m)].

Indeed, the set X consisting of just the standard integers (i.e., the ob-

jects represented by ‘1, 2, 3 · · · ’ in the example above) satisfies (∀n)[X(n)→

X(S(n))] but doesn’t satisfy (∀n)X(n).

In view of the existence of such non-standard models, one can ask (as

Putnam does) the following question. Do we really have a definite concept

of ‘the structure of the natural numbers’ which is not satisfied by any non-

standard interpretations? What can such a concept consist of? What is

it about us which (perhaps together with facts about the world, intrinsic

eligibility etc.) lets us our words like “number” and “plus” take on meanings

which rule out such non-standard models? For reasons I won’t discuss here,

Putnam takes our ability to give standard meanings to the first order logical

vocabulary for granted in his challenge. I will follow him in doing so.

With this in mind, we can dramatize Putnam’s challenge as follows. Imag-

ine some all-knowing interpreter who is dedicated to interpreting our talk

about the natural numbers in some unintended fashion. This malign [mis-

chevious] interpreter has full access to ordinary determinate mathematics

and uses that knowledge to construct non-standard models for our talk of

the natural numbers to refer to.

Can we cite plausible constraints which our mischievous interpreter must

honor which prevent him from giving an unintended interpretation? Note

that classic results in mathematical logic [4] tell us that no further math-

ematical specification (i.e., extending PA or embedding the numbers in a

larger structure) could provide such a constraint. And note that people of-

ten invoke our causal contact with objects like rabbits and electrons as part

of an answer to Putnam’s more general model-theoretic challenge (which
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applies to scientific and everyday objects just as much as mathematical ab-

stracta). But plausibly (even if it works generally) this appeal to causal

contact isn’t available for answering Putnam’s challenge with respect to the

natural numbers.

If we can give no satisfying answer to Putnam’s challenge, then, perhaps,

we must allow that our conception of the structure of the natural numbers

is vague and allows for a range of acceptable precicifications (corresponding

to different structures satisfying the Peano axioms, much like the range of

acceptable precisifications of ‘bald()’ and ‘heap()’). As Field[2] has empha-

sized, this view would still allow us to use classical logic when reasoning

about the natural numbers (because, e.g., formulas of the form ‘P ∨¬P ’ will

be true on all acceptable precicifications). But admitting our conception of

the natural numbers is vague involves significant bullet biting with regard

to the idea that all statements of arithmetic (even ones we can’t decide)

have definite truth-values – as the most common way of ensuring such def-

inite truth values is through reference (up to isomorphism) to the natural

numbers 3.

So I will try to resist this unhappy conclusion, by providing an answer to

Putnam’s challenge here.

3. Background and Contrast with Open-endedness approaches

Let me begin by quickly reviewing the two closest proposals in the existing

literature.

3.1. The Language Expansion Approach. It would be very easy to an-

swer the challenge above if one could take for granted our ability to definitely

3In principle, one could take there to be non-isomorphic acceptable models, but only ones
that agree on all sentences in the language of arithmetic. However, any attempt to secure
reference to the theory of the natural numbers (without assuming we can reference (up to
isomorphism) the natural numbers themselves) would seem to run into exactly the same
kind of problems securing reference to the natural numbers involved in the first place.



6 SHARON BERRY

grasp second order quantification. In this case, one could use our acceptance

of second order Peano Arithmetic, (the version of Peano Arithmetic which

replaces the first order induction axiom schema with the second order in-

duction axiom repeated below) to explain what is wrong with non-standard

models of the natural numbers. For, as noted above, the non-standard mod-

els of PA don’t satisfy full second order induction.

In [7] [6] Parsons and McGee have offered an answer to the Putnamian

challenge centering on what McGee calls openendedness: the idea that we

expect all instances of the first order induction axiom schema to continue

holding true in any “logic preserving” extension of our language.

McGee argues (roughly4) as follows. Suppose (for contradiction) that

some nonstandard model M provided an acceptable interpretation of our

terms ‘natural number’, ‘successor’ etc. Then there could (in some sense)

be a god who is able to point to the non-standard model and introduce a

term “smee” which applied counter-inductively to this non-standard model

(i.e., smee applies to 0, and smee(n) =⇒ smee(S(n)), but smee doesn’t

apply to every ‘natural number’). If we met such a god then we could

(logic-preservingly) extend our language by taking the term ‘smee’ from

their language and adding it to ours. In such a case, we would still expect

the induction axiom to hold for formulas involving smee which we got from

talking to this god. Therefore, interpreting us to mean a nonstandard model

is unacceptable because it would fail to satisfy induction in this extended

language.

This strategy has drawn a variety of criticisms. First, it might well be

metaphysically impossible for a god to introduce a term like smee. For in-

stance, It’s not clear how the god could refer sufficiently definitely to some

4McGee’s actual proposal is somewhat more complicated in ways that I claim don’t effect
any of the criticisms discussed here. See [6] pgs 56-68.
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proper initial segment of our non-standard model. What can the god do

to secure reference in a way we cannot? Are we to imagine a metaphysi-

cally impossible scenario where they fly into the realm of abstract objects

and point one by one to each of the infinitely many elements in the ini-

tial segment? Maybe we should imagine they perform some supertask with

physical objects that pins down this initial segment5. Perhaps this is close

to what Field and in mind when he expressed a worry about something like:

why can’t we just say that we secure definite reference by whatever we are

imagining the god to do to secure her reference? in [2]6.

McGee seems happy to accept the metaphysical impossibility of the sce-

narios he envisages and instead appeals to a the idea that we are committed

to the first order induction schema being true in all logically ‘possible’ ex-

tensions of our language. He writes:

To say what individuals and classes of individuals the rules

of our language permit us to name is easy: we are permitted

to name anything at all. For any collection of individuals

K there is a logically possible world-though perhaps not a

5If the god just introduces standard explicit definitions this doesn’t seem to increase the
expressive power. Maybe we are supposed to imagine them introducing a truth predicate
for our language and then another on and on. But there’s much debate over what happens
with such truth predicates. Relatedly, the usual answer to Kaplan’s paradox (if there are
α worlds then there are 2α possible propositions so, e.g., it can’t be the case that for each
proposition there is a distinct possible world at which only that proposition is expressed)
provides strong reason to think many ‘combinatorially possible’ ways a language could
work are actually not metaphysically possible for anyone to have.
6Field writes, “...how can adopting McGee’s rich view of schemas help secure determinacy?
That view of schemas merely allows me to add an instance of induction whenever I add
new vocabulary. But the relevant vocabulary for McGee’s argument would seem to be
‘standard natural number’, and we’ve already seen that that is no help. Of course, it’s
true that if I could add a predicate that by some magic has as its determinate extension
the genuine natural numbers, then I will be in a position to have determinately singled
out the genuine natural numbers. That’s a tautology, and has nothing to do with whether
I extend the induction schema to this magical predicate. But if you think that we might
someday have such magic at our disposal, you might as well think we have the magic at
our disposal now; and again, it won’t depend on schematic induction. So the only possible
relevance of schematic induction is to allow you to carry postulated future magic over to
the present; and future magic is no less mysterious than present magic.”
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theologically possible world-in which our practices in using

English are just what they are in the actual world and in

which K is the extension of the open sentence ‘x is blessed

by God’. So the rules of our language permit the language

to contain an open sentence whose extension is K[6].

However, one might worry that our dispositions in metaphysically impos-

sible scenarios like the above are not clearly enough understood to be invoked

in this context. Additionally, one might worry that such counter-possible

conditionals don’t so much explain our ability to determinately refer to the

natural numbers as package the intuition that we do.

One might also object that availing ourselves of the space of all logically

possible extensions of our language to explain how we have a determinate

conception of the natural numbers is question begging. We wouldn’t accept

an explanation that presumed we have a determinate conception of second

order quantification and it’s not clear that considering all logically possible

linguistic extensions is materially different. And if we can somehow intend

that the induction schema remain true in languages corresponding to all

possible ways of choosing a subset of individuals for a predicate to apply to,

why can’t we use the same faculty to directly expect that our second order

quantifiers range over every possible subset. Indeed, one might doubt that

we even have a definite conception of a logic preserving extensions of our

language7 at all.

3.2. Appealing to the Actual Structure of Time. Hartry Field (rather

ambivalently) proposes an alternative account, on which he argues that if

7Hartry Field also raises a worry about whether (in the scenario above) the god’s term can
be permissibly added to our language which I’m not sure that I buy. However, whether
or not the objection is ultimately persuasive, clearly no analog applies to the proposal I
will offer below.
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time forms a genuine ω sequence8 (i.e., time has infinite duration and there

are only a finite number of seconds between any two times) then our be-

lief that this is true can be used to rule out nonstandard interpretations of

our number talk (given standard interpretations of our temporal and event

talks). I don’t think this proposal works, as we treat the assumption that

time forms a genuine ω sequence as a contingent hypothesis and not a con-

ceptual truth constraining what we mean by ‘the natural numbers’. Thus,

I don’t see why acceptable interpretation of our language must make this

hypothesis about the numbers true. For example, if I believed that the num-

ber of gumballs in the jar is 70, this belief presumably wouldn’t commit a

mischievous interpreter to interpret the concept ‘natural number’ in such a

way as to make this statement come out true. Moreover, even if one accepts

Field’s argument it only claims to establish a determinate reference (up to

isomorphism) of the natural numbers if time forms a genuine ω sequence.

4. My Proposal

4.1. Expectations about physical possibility instead. I will now present

a different answer to Putnam’s challenge, which avoids all the difficulties

above. The key idea will be that the interaction of physical possibility and

mathematical facts provide a new route to excluding non-standard models.

More precisely, I will argue that if our mischievous interpreter is well be-

haved (in the sense of satisfying the following conditions) then they will be

unable to trick us into talking about a non-standard model of the natural

numbers.

Say an interpreter is well behaved iff

8An ω sequence refers to a collection of elements which, under some relation <, has the
same structure as the intended model of the natural numbers, i.e., is comprised of a first
element, the successor of that element and so forth. Note that the claim time forms an
ω sequence (assuming it is linearly ordered) is equivalent to the claim that if we start
marking off one second intervals at any point those marks form an ω sequence.
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• They select a single model as the referent of our concept ‘natural

number’ at all physically possible worlds.

• They cannot tamper with extension of the following non-mathematical

vocabulary: ‘coinflip’ ‘heads’ ‘temporally after’ at any of these phys-

ically/metaphysically possible worlds.

• They give the usual meaning to logical vocabulary and physical (or

metaphysical) necessity operator, e.g., the existential quantifier and

the physical necessity operator �p must contribute to truth condi-

tions in the usual fashion. However, the interpreter is free to choose

any model for the natural numbers by selecting a domain (the ob-

jects masquerading as the natural numbers), a ‘natural number’ for

the constant 0 from that domain and functions S,+, ∗ on the ‘natural

numbers’9.

• They must make all statements which we are willing to endorse as

conceptually required by our grasp of the natural numbers (such

as the Peano axioms) come out true. Note that this requirement

extends beyond purely mathematical vocabulary by extending the

induction schema to encompass any total (definitely true or false for

every input) property on the ‘natural numbers’ describable in our

current language10. Thus, if Q(n) abbreviates “the n-th coinflip is

heads,”, there is a k-th coinflip for each ‘natural number’ k then

from Q(0) ∧ (∀n) [Q(n) =⇒ Q(S(n))] we can infer (∀n)Q(n)

• They must vindicate the conceptual truths relating the numbers and

the practice of counting a sequence of events in time (specifically it

suffices to vindicate those truths specified in section 4.2). In other

9We will also make use of the relation < but regard x < y merely as an abbreviation for
(∃z)(x+ S(z) = y).
10More restrictively, it suffices to augment the mathematical vocabulary with the terms
in 4.1 and 4.1
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words the interpreter must allow us to match up a sequence of events

to natural numbers in a way that obeys the usual rules for counting

(first event corresponds to 0, the next event always corresponds to

1 plus it’s predecessor etc..) .

Faced with a well behaved, but still infinitely devious, interpreter our

strategy will be to identify a sentence φ about the physically possibility

of a sequence of coin flips, which our opponent is bound to interpret as

true but would be false if the referent of natural number was non-standard.

Peeling back the evocative metaphor of our mischevious interpreter, it is

this sentence which provides us a determinant grip on the structure of the

natural numbers. Taking φ to be partially constitutive of the concept of

natural number this ensures that its reference is the intended model.

To ensure that φ has the correct truth conditions we will need the follow-

ing uncontroversial assumption about physical possibility:

Infinite Random Sequence (IRS): It is physically possible to

have a series of independent objectively random events lin-

early ordered in time11 with two possible outcomes (‘heads’

and ‘tails’) having a first event but no final event. Further-

more, every event in the series has a temporal successor, i.e.,

for any event x there is some other event y occurring after x

such that no event z occurs between x and y.

Informally, one can think of the events whose possibility IRS asserts as

being like the ticks of an indestructible watch which never needs repair or

11That is for any distinct events x, y in the series either x occurs before y or y occurs
before x. Moreover, from the point of view of relativistic physics, the measurements are
separated by time-like intervals (x is in the future lightcone of y or vice versa) so all
observers agree on their order. Given these constraints it is safe to simply work relative to
some fixed inertial reference frame and ignore relativistic complications for the remainder
of the paper.
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winding. There is a first tick, each tick is followed by a unique next tick and

there is no tick after which the watch breaks down.

To motivate accepting this principle note that it is only asserting that

it is physically possible to repeatedly perform (independent) textbook spin

measurements on an electron12[1] (or some other equivalent process) and

that the laws of physics don’t rule out time continuing infinitely into the

future (though possibly having non-standard ‘length’)13. I will abstract away

from the details of the measurement and simply refer to it as a ‘coinflip’ and

the two outcomes as ‘heads’ and ‘tails.’

4.2. Pinning Down The Natural Numbers. I propose to answer Put-

nam’s challenge by invoking the fact that we expect the induction schema

to hold at all possible worlds. Specifically I will note that if IRS there is a

physically possible world at which the coinflips that come up heads form a

genuine ω sequence. And, using this fact, I will argue that a certain natural

language property applies counter-inductively to any non-standard model of

the ‘natural numbers’ in this world14.

To see how the details work, note that our current mathematical lan-

guage allows us to use natural numbers to talk about events taking place

in time such as ‘the 4th U.S. President’ or ‘the 37th successful rickrolling’.

This practice of talking about the nth coinflip presumably includes accept-

ing principles like, ‘if no coinflip occurred before x, then x is the 0th coin-

flip.’ I take the following such principles to be conceptual truths regarding

counting (temporal) sequences of events using the natural numbers15, where

12That is perform a spin measurement along the x-axis on an electron whose spin has
just been measured (and thus collapsed) along the y-axis. Thanks to REDACTED for
suggesting these details.
13We will see that, ultimately, the use of objective randomness is just a way to establish it
would be physically possible for there to be a temporal ω sequence of of objects satisfying
some property (having a determinate extension) in our current language.
14That is containing 0, closed under successor but not to all the ‘numbers’
15C.f. [3].
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coinflip(x) denotes x is a coinflip, countflip(n, x) denotes x is the n-th coin-

flip, heads(x) denotes that coinflip x has the heads outcome and before(x, y)

denotes that the coinflip x occurs temporally prior to coinflip y.

• An object x is the 0th coinflip, i.e., countflip(0, x) iff x is a coin-

flip and all other coinflips happen after x. (∀x)[countflip(1, x) ↔

coinflip(x) ∧ (∀y)(countflip(y)→ before(x, y) ∨ x = y))]

• If x is the nth coinflip, then y is the S(n)th coinflip iff y occurs after

x and no other coinflip occurs between x and y. That is,

(∀n, x, y)(countflip(n, x)→

[(countflip(S(n), y)↔ coinflip(y) ∧ before(x, y) ∧ (∀z)¬ (coinflip(z) ∧ before(x, z) ∧ before(z, y))]

• Only coinflips can be the nth coinflip, i.e., (∀x)(∃n)(countflip(n, x)→

coinflip(x))

• No two distinct numbers correspond to the same coin flip. (∀n)(∀m)[coinflip(n, x)∧

coinflip(m,x)→ m = n]

Together with IRS the above conceptual truths regarding counting en-

sure16 that (at some physically possible world) our current vocabulary lets

us pick out a counter-inductive17 collection of numbers (thereby witnessing

that the restrictions on our interpreter should have prevented that choice of

non-standard model) .

16Note that in many physically possible situations there will be a ‘number’ n such that
these analyticities plus the facts about how countflip(), coinflip() and before() apply
insure that there is no nth coinflip for certain values of n. For example, if no coinflips
take place after the nth coinflip there will be no n+1th coinflip. Even in worlds whose
possibility is asserted by IRS it might be that there are only standard temporal durations,
e.g., n-seconds after only makes sense for standard integers n, in which case those worlds
wouldn’t have any n-th coinflip where n is non-standard.
17These conceptual truths do not necessarily uniquely determine which elements n in the
nonstandard model will be interpreted to satisfy ‘(∃x)coinflip(x, n) ∧ heads(x) but they
insure that all such interpretations will be counter-inductive.



14 SHARON BERRY

By IRS there is a physically possible world w where infinitely many coin-

flips (linearly ordered by temporally before) take place and all and only the

initial ω sequence of these coinflips come up heads. We claim that the above

conceptual truths force along with the constraints on our mischievous inter-

preter ensures she takes P (n)
def
= (∃x)(countflip(x, n)∧heads(x)) to hold for

just those n in the standard initial segment of the nonstandard referent of

the natural numbers. As only the initial ω sequence of coinflips land heads

P (n) can’t hold outside of the standard initial segment. Since IRS ensures

that there is an first coinflip and each coinflip is followed by an earliest sub-

sequent coinflip refzero-flip and 4.2 guarantee that every ‘standard’ coinflip

is counted by a standard number ensuring that P (n) holds for every element

in the standard initial segment. Therefore, induction fails at this physically

possible world for the property P (n) (expressed in terms of determinate

concepts in our current language as evaluated at that world). Consequently

the induction schema as applied to the above property fails to hold with

physical necessity if natural number has a non-standard interpretation.

Finally note that exactly the same argument would work if we replaced

appeal to a definite notion physical possibility �p with appeal to a definite

notion of metaphysical possibility �m.

Also, in contrast to previous approaches like that of Field, my proposal

to secure determinate reference doesn’t rely on any suspect notions like

‘isomorphic to’ or 1−1 function18. For, if we are worried about determinate

reference for the concept of natural number surely the more abstract concept

of function on the natural numbers is, itself, also at issue.

18Instead, I rely on conceptual truths about the natural numbers and their role in counting.
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5. Conclusion

In this paper I have argued that we can appeal to expected relationships

between mathematical facts and physical or metaphysical possibility to rule

out non-standard models of our number theoretic talk. I have also reviewed

some worries for previous ‘indefinite extensibility’ based accounts of our

ability to grasp a fully definite concept of the intended structure of the

numbers, and noted that this approach avoids them.

Let me close on a note of humility by reminding the reader of the two

caveats from the introduction. First, I admit that any philosopher of mathe-

matics who doesn’t think there are determinate right answers to all questions

in number theory will be inclined to doubt our determinate grip on physical

and metaphysical possibility which my response assumes. Rather, my aim is

merely to argue that realism about physical and/or metaphysical possibility

creates a lot more pressure to be truth-value realist about mathematics than

many metaphysicians realize. Second, it would be strange if our possession

of a definite conception of the natural numbers depended on our beliefs

about physical (or metaphysical) possibility. Thus, I suspect another kind

of answer to Putnam’s challenge must be possible.
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