
Chapter 12

Defense of the ZFC Axioms

Finally, it remains to show that my potentialist translations of the ZFC

axioms of set theory can be proved using my inference rules for logical

possibility.

I will frequently use iterated applications of the ◻ and ◇ Collapsing

Lemmas (proved in sections 8.1 and 8.3) to simplify the translation of set

theoretic sentences. Recall that the ◻ Collapsing Lemma says:

“If φ2 and θ are content restricted to L1,L2 and φ1 is content restricted

to L0,L1, then we have

⊢ ◻L0(φ1 → ◻L1(φ2 → θ)) ↔ ◻L0(φ1 ∧ φ2 → θ)”

This lets us simplify the translation of set theoretic statements with

repeated ∀ quantifiers by replacing a string of ◻ statements with a single ◻

statement (and similarly with ◇ statements.1.

So, for instance, a set theoretic claim of the form (∀x)(∀y)(φ) gets

1Translations for strings of repeated ∃ quantifiers which becomes strings of ◇ statements
are collapsed into a single ◇ using the ◇ collapsing lemma similarly
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translated as follows,

◻(V (V⃗0) → ◻V⃗0[V⃗1 ≥x V⃗0 → ◻V⃗1(V⃗2 ≥y V⃗1 → t2(φ))])

However, it is provably equivalent to the following simpler sentence, via

two applications of the ◻ Simplification Lemma2. (The fact that that the

sentence inside each ◻Vi or ◇Vi subformula in the translation of a set theoretic

sentence φ is always content-restricted to Vi, Vi+1 ensures that the premises

of the above Lemma are satisfied).

◻(V (V⃗0) ∧ V⃗1 ≥x V⃗0 ∧ V⃗2 ≥y V⃗1 → t2(φ)])

In what follows, I will sketch the reasoning used to prove relevant proposi-

tions, but leave it to the reader to fill in the technical details such as applying

the wrapping trick or subscripting relations to mimic quantifying in.

[note that by my abbreviations in f(y) = y, ONLY the right hand token

is a genuine variable ]

12.1 Foundation and Other Easy Cases

Proposition 12.1.1. Foundation (∀x)[(∃a)(a ∈ x) → (∃y)(y ∈ x∧¬(∃z)(z ∈

y∧z ∈ x))] Translating this and then simplifying with ◇-Collapsing Lemma as

above yields: ◻[V (V⃗0)∧ V⃗1 ≥x V⃗0∧◇V⃗1
[V⃗2 ≥a V⃗1∧f2(a) ∈ f2(x)] → ◇V⃗1

[V⃗2 ≥y

V⃗1 ∧ f2(y) ∈ f2(x) ∧ ¬◇V⃗2
(V⃗3 ≥z V⃗2 ∧ f(z) ∈3 f3(y) ∧ f3(z) ∈3 f3(x))])]

This essentially says: if V1, f1 can be extended such that f1(a) is ∈2 f2(x),

then it could alternatively be extended by a V2, f2 whose assignment for

y ensures that no further extension V3, f3 can assign f3 of z such that

2The trick is to first use the ◻ Simplifying Lemma to simplify the innermost statement,
in this case,◻V0[V1 ≥x V0 → ◻V1(V2 ≥y V1 → φ)], and then to proceed progressively outward
[SAY MORE?]
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f3(z) ∈3 f3(y) ∧ f3(z) ∈3 f3(x).

To this end, we prove the following lemma.

Lemma 12.1.2. V (V ) → (∀x)[(∃a)(a ∈ x) → (∃y)(y ∈ x∧¬(∃z)(z ∈ y ∧ z ∈

x))]

Proof. Assume that V (V ). Consider an arbitrary x, such that set(x) and

(∃a)(a ∈ x). By the fact that the ords are well ordered by ≤ (as defined in

7.1), there will be some ≤-least member of ord o with the following property:

there exists y at level o and y ∈ x. Any z ∈ y occurs at some level o′ < o, by

the fact that V (V ). Thus, by minimality of o, ¬z ∈ x. Thus we have y ∈ x

such that ¬(∃z)(z ∈ y ∧ z ∈ x), as desired.

Proof. Now we will prove the proposition using the lemma above. Consider an

arbitrary situation in which V (V⃗0)∧ V⃗1 ≥x V⃗0 ∧◇V⃗1
[V⃗2 ≥a V⃗1 ∧f2(a) ∈ f2(x)].

Note that if f1(x) is the empty set, then it is not possible (fixing the facts

about V⃗1) to have V⃗2 ≥a V⃗1 with f2(a) ∈ f2(x). Thus, we may assume f1(x)

is not the empty set. Thus, by the above lemma (and simplified choice), we

can choose a y such that y ∈1 x ∧ ¬(∃z)(z ∈1 y ∧ z ∈1 x).

[can finish by just using new lemma here]

We can then let V2 = V1 and f2 to be just like f1, except that f2(y) = y.

Thus we have f2(y) ∈ f2(x) ∧ (∀z)¬(z ∈2 f2(y) ∧ z ∈2 f2(x).

Now, suppose for contradiction that it were ◇V⃗2
to have V⃗3 ≥z V⃗2 with

f3(z) ∈3 f3(y) ∧ f3(z) ∈3 f3(x). Then we would have f3(z) ∈3 f2(x) and

f3(z) ∈2 f2(y) [by the fact that V⃗3 ≥z V⃗2]. But this contradicts our choice for
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f2(y), specifically, the fact that (∀z)¬(z ∈2 f2(y) ∧ z ∈2 f2(x)3.

Thus we can conclude that ◇V⃗1
[V⃗2 ≥y V⃗1 ∧ f2(y) ∈ f2(x) ∧ ¬◇V⃗2

(V⃗3 ≥z

V⃗2 ∧ f(z) ∈3 f3(y) ∧ f3(z) ∈3 f3(x))], as desired.

Potentialist versions of Extensionality, Pairing, Powerset, Union and

Choice can be proved in much the same way noted above, by using the fact

that the corresponding principle must hold within any initial segment Vi

such that V (Vi).

Proposition 12.1.3 (Extensionality). (∀x)(∀y)[(∀z)(z ∈ x↔ z ∈ y) → x =

y] Translating this and then simplifying via ◻ collapsing (and a little FOL)

yields ◻[V (V⃗0) ∧ V⃗1 ≥x V⃗0 ∧ V⃗2 ≥y V⃗1 ∧ ◻V⃗2(V⃗3 ≥z V⃗2 → [f3(z) ∈3 f3(x) ↔

f3(z) ∈3 f3(y)]) → f2(x) = f2(y)]

Informally, this says that f2(x) and f2(y) are assigned in such a way

that any extending V⃗3 ≥z V⃗2 must satisfy f3(z) ∈ f3(x) ↔ f3(z) ∈ f3(y), then

f2(x) = f2(y).

Proof. I will prove this claim by exploiting the fact that extensionality

holds inside any relevant V2 such that V (V⃗2) (because Thinness includes an

extensionality requirement) to argue that f2(x) = f2(y).

Assume that V⃗0, V⃗1, V⃗2 satisfy V (V⃗0) ∧ V⃗1 ≥x V⃗0 ∧ V⃗2 ≥y V⃗1 and ◻V⃗2(V⃗3 ≥z

V⃗2 → [f3(z) ∈3 f3(x) ↔ f3(z) ∈3 f3(y)]).

Now suppose for contradiction that¬f2(x) = f2(y). By the fact that V2

satisfies extensionality there is some set2(k) such that ¬(k ∈2 f2(x) ↔ k ∈2
3Note that this sentence is content restricted to V2 so it must remain true in our current

context
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f2(y)). Thus, it is possible (holding V⃗2 fixed) that V⃗3 ≥z V⃗2 and f3(z) applies

to such a set2 k.4 However, (by unpacking the definition of V⃗3 ≥z V⃗2) it follows

that this scenario must be one in which ¬[f3(z) ∈3 f3(x) ↔ f3(z) ∈3 f3(y)]),

contrary to the ◻V⃗2 assumption above.5

Thus, we have a our desired proof by contradiction that f2(x) = f2(y).

And since V⃗0, V⃗1, V⃗2 are arbitrary, we can derive that the above statement

holds with logical necessity.6

Proposition 12.1.4 (Union). “∀z ∃a∀y∀x[(x ∈ y ∧ y ∈ z) ⇒ x ∈ a].”

Translating and then applying the ◻ Collapsing Lemma gives

◻(V (V⃗0)∧V⃗1 ≥z V⃗0 →◇V⃗1
[V⃗2 ≥a V⃗1∧◻V⃗2(V⃗3 ≥x ∧V⃗2∧V4 ≥y V⃗3 → [f4(x) ∈4

f4(y) ∧ f4(y) ∈ f4(z) → f4(x) ∈ f4(a)])]).

Thus it essentially says that for any V1, f1 assigning z, there is an exten-

sion V2, f2 which assigns a to a ‘union set’ for f1(z).7

Proof. As before, we will prove the needed conclusion by exploiting the fact

that Union holds true within within any V1 such that V (V⃗1). Consider an

4We know this by Simple Choice and the Multiple Definitions Lemma.
5Specifically, by the Simpler Choice Lemma it is logically possible that the otherwise

unused predicate P (z) applies to a unique object z satisfying the formula above. Entering
this ◇V⃗2,P

context and applying simple comprehension a few times (as per the Multiple
Definitions Lemma), it is logically possible that V3 =set V2 and (∀k)(f3(z) = k ↔ P (z))
and that (∀y)(¬y = z) → f3(y) = f2(y)) for all other values of y.

Enter this ◇V⃗0,V⃗1,V⃗2,P
context. The fact that (∀k)[P (k) → ¬(z ∈2 f2(x) ↔ z ∈2 f2(y))]

is content-restricted to V2 so it can be imported into this context. Combining this with
our specification that f3(z) is the unique object satisfying P (x) and f3 = f2 on all other
values, we get ¬[V⃗3 ≥z V⃗2 → [f3(z) ∈3 f3(x) ↔ f3(z) ∈3 f3(y)].

Leaving this ◇V⃗0,V⃗1,V⃗2,P
context, Inn◇ allows us to conclude that ◇V⃗1,V⃗2

¬[V⃗3 ≥z V⃗2 →

[f3(z) ∈3 f3(x) ↔ f3(z) ∈3 f3(y)]. But our ◻V⃗1,V⃗2
(V⃗3 ≥z V⃗2 . . .) assumption above is the

negation of this claim.
6That is, we can derive this conclusion via ◻I because all the 0 assumptions used to

secure this result are content restricted to the empty list.
7in the sense that extending V3, f3, V4, f4 which assign x and then y so that f4(x) ∈4

f4(y) ∈4 f4(z) must also satisfy f4(x) ∈4 f4(a))
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arbitrary scenario in which V (V⃗0) ∧ V⃗1 ≥z V⃗0. We can derive the fact that

there is unique set1(w) such that (∀k)[k ∈1 w↔ (∃k′)(k ∈1 k′ ∧ k′ ∈ f1(x)]

from the fact that V (V1) as follows. It is logically possible that, [review

wording] letting H stand fo some otherwise-unused one place relation symbol,

(given the facts about V⃗1) that (∀k)(H(k) ↔ ∃k′k ∈1 k′ ∧ k′ ∈ f1(x)) by

comprehension. We can deduce that f1(o) occurs at some ordinal level and

everything everything that satisfies H occurs at a lower level than o. Thus,

by the thickness property of V (V⃗1), we have that there is a set1 w occuring

at level o which contains exactly the elements of H. Thus we have that there

is a set1(w) such that (∀k)(k ∈1 w ↔ (∃k′)k ∈1 k′ ∧ k′ ∈ f1(x)). Now the

above claim is this sentence is content-restricted to V1 it must have been

true in our original scenario.

Thus, there is aset1(w) which behaves like a union set for f1(x) as above.

By Simple Comprehension (and the Multiple Definition Lemma) and it is

logically possible (given the facts about V1, f1) to have V⃗2 ≥a V⃗1 such that

V2 =set V1 and f2(a) is this set.8

It now is straightforward to verify that V1, V2 witness the desired rela-

tionship.9

Proposition 12.1.5 (Pairing). “∀x∀y∃z(x ∈ z ∧ y ∈ z)” Translating and

8i.e, it is the unique set1 w such that (∀k)(k ∈1 w↔ (∃k′)k ∈1 k′ ∧ k′ ∈ f1(x))
9To check that this choice for f2(a) behaves as desired, consider an arbitrary scenario

(holding facts about V⃗2 fixed) in which V⃗3 ≥x V⃗2 ∧ V4 ≥y V⃗3 such that f4(x) ∈4 f4(y) ∧
f4(y) ∈4 f4(z)). By the fact that f4(z) = f3(z) = f2(z) we have f4(y) ∈2 f2(z), and thus
f4(x) ∈2 f4(y). Now, our characterization of f2(a) above is content-restricted to V⃗2, so
it must remain true in the current context. Thus we have: (∀k)(k ∈2 f2(a) ↔ (∃k′)k ∈2
k′ ∧ k′ ∈ f2(z)). Putting these facts together we can derive f4(x) ∈2 f2(a) and hence
f4(x) ∈4 f4(a), as desired.

The reader can now see how the result follows.
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then applying the ◻ Collapsing Lemma gives ◻[V (V⃗0)∧ V⃗1 ≥x V⃗0 ∧ V⃗2 ≥y V⃗1 →

◇V⃗1
(V⃗3 ≥z V⃗3 ∧ f3(x) ∈3 f3(z) ∧ f3(y) ∈3 f3(z)))

Thus it essentially says that any V2, f2 assigning x and y can be extended

by a V3, f3 assigning z such that f3(z) contains exactly f2(x) and f2(y)

Proof. Consider an arbitrary situation in which V (V⃗0) ∧ V⃗1 ≥x V⃗0 ∧ V⃗2 ≥y V⃗1.

By the fact that V (V2) and the One More Layer Lemma??, we can

have (while holding fixed the facts about V2) a V3 which extends V2 by

adding one more layer of classes 10. By simple comprehension, it would be

possible (holding fixed the facts about V⃗2, V⃗3) for a predicate P to apply to

exactly those objects z such that z = f2(x) ∨ z = f2(y). Thus V3 includes a

(unique) set3 k whose sole elements are f2(x) and f2(y).11 Now by Simple

Comprehension and the Multiple Definitions Lemma, it is ◇V⃗2
to have f3

such that V⃗3 ≥z V⃗3 except for f3(z) = the unique set3 whose elements are

exactly f2(x) and f2(y).

Entering this ◇V⃗2
context and using first order logic to unpack definitions

yields the desired conclusion that V⃗3 ≥z V⃗3 ∧ f3(x) ∈3 f3(z) ∧ f3(y) ∈3 f3(z).

Exiting this ◇V⃗2
context [inc? and pulling out the above, suitably

content-restricted conclusion], and completing our conditional argument

yields V (V⃗0) ∧ V⃗1 ≥x V⃗0 ∧ V⃗2 ≥y V⃗1 →◇V⃗2
(V⃗3 ≥z V⃗3 ∧ f3(x) ∈3 f3(z) ∧ f3(y) ∈3

f3(z)). Finally, since we proved this from empty assumption, it holds with

logical necessity, as above.

10In essence this is a scenario where we have a layer of classes over all the objects in
Ext(V2) and then take set3 apply to all the set2s plus all of the classes which are not
co-extensive with some already existing set2, and define everything else in the obvious way

11[make full sntence]since there is a class with this property, and that class is either a
set3 itself or has exactly the same elements as some set2
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Proposition 12.1.6 (Powerset). “∀x∃y∀z[z ⊆ x→ z ∈ y]” That is, “∀x∃y∀z[(∀w)(w ∈

z → w ∈ x) → z ∈ y]”

Translating and simplifying this with ◻ collapsing yields: ◻[V (V⃗0)∧ V⃗1 ≥x

V⃗0 → ◇V⃗1
[V⃗2 ≥y V⃗1 ∧ ◻V⃗2(V⃗3 ≥z V⃗2 → ◻V⃗3[V4 ≥w V⃗3 → (f4(w) ∈4 f4(z) →

f4(w) ∈4 f4(x))] → f3(z) ∈3 f3(y)])]).

This intuitively says that for any initial segment and assignment V1, f1

we can have an extending V⃗2 ≥y V1 which assigns f2(y) to the powerset of

f1(x) (where the latter notion is understood in a modal sense).12

Proof. Consider an arbitrary situation in which V (V⃗0)∧ V⃗1 ≥x V⃗0. As before,

we know by V (V⃗1) and the One More Layer of Classes Lemma?? we can

have a V2 which contains a set2 whose elements are exactly the set1s such

that [(∀a)(a ∈1 b→ b ∈1 f1(x))]13. By making this choice for f2(y), we can

have: ◇V⃗1
(V⃗2 ≥y V⃗1 ∧ V2 contains a single layer of classes over V⃗1 ∧ f2(y)

contains all subsets of f1(x) in the sense of V1).

Entering this ◇ scenario, we can deduce that f2(y) also contains all

subsets of f2(x) in the sense of V2, i.e., ◻V⃗2[(∀k)(C(k) → k ∈2 f2(x)) →

(∃k′)(k′ ∈2 f2(y) ∧ (∀k)[C(k) ↔ k ∈2 k′])], ([review wording] proving this

fact will be helpful, because it is context-restricted to V2, hence can be

imported into into any context where the V2 facts are held fixed.) .14.

12Specifically, if any extending V⃗3 ≥z V⃗2 which assigns f3(z) to something that behaves like
a subset of x (in the sense that any V⃗4 ≥w V⃗3 must satisfy f4(w) ∈4 f4(z) → f4(w) ∈4 f4(x))
must satisfy f3(z) ∈3 f3(y).

13Specifically, by Simple Comprehension it’s possible that the otherwise unused predicate
H applies to exactly those a such that set1(a) ∧ [(∃b)(a ∈1 b ∧ b ∈1 f1(x)). So by our
characterization of V2 as containing one more layer of sets there is a unique k which
contains all and only the a satisfying the condition above.

14To show this, consider an arbitrary situation (holding V⃗1, V⃗2 fixed) in which
(∀k)(C(k) → k ∈2 f2(x)). By the fact that V⃗2 ≥y V⃗1 we have (∀k)(k ∈2 f2(x) →
k ∈1 f1(x)). Then every object satisfying C is available at a level below the level
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Informally, this says: it’s logically necessary (given the facts about V2) that

if C only applies to objects in f2(x) then there is some set2 in f2(y) which

has exactly the objects satisfying C as elements.

Now, it remains to consider an arbitrary situation (holding the facts

about our V⃗2 fixed) in which V⃗3 ≥z V⃗2 ∧ ◻V⃗3[V4 ≥w V⃗3 → (f4(w) ∈4 f4(z) →

f4(w) ∈4 f4(x))] (call this hypothesis α) and show that f3(z) ∈3 f2(y). From

the ◻V⃗3 claim in our hypothesis, we can deduce that f3(z) is a subset of

f3(x) in the sense of V3
15. And because V⃗3 ≥z V⃗2, we can further deduce that

everything which is ∈3 f3(z) is also ∈2 f2(x) 16. In this way, the elements of

f3(z) correspond to a logically possible subset of f2(x).

Since any V3 extending V2 can’t add any elements to f2(x), it is straight-

forward to verify that f3(z) ∈3 f3(y).17

where f2(x) = f1(x) first occurs. Thus there is a set1 with exactly these elements,
call it k. Now by our characterization of f2(y) as containing exactly those k′ such that
set1(k

′
) ∧ [(∀k′′)(k′′ ∈1 k′ → k′′ ∈1 f1(x)) we can deduce that k′ ∈2 f2(y). Thus we have

(∃k′)(k′ ∈2 f2(y) ∧ (∀k)[C(k) ↔ k ∈2 k
′
]) as desired.

15[this is way too long...you just should say something like..this follows by blah] Suppose
for contradiction that (∃k′′)(k′′ ∈3 f3(z) ∧ ¬k′′ ∈3 f3(x)). Then (by simplified choice and
various applications of simple comprehension combined as per the Multiple Definitions
Lemma) it is ◇V⃗3

that V4 ≥w V⃗3 with V4 =set V3 and f4(w) applies to a unique object k′′

such that k” ∈3 f3(z) ∧ ¬k
′′
∈3 f3(x). In this ◇V⃗3

context, it must also be true that that
f4(w) ∈4 f4(z) ∧ ¬f4(w) ∈4 f4(x).

But the logical possibility of such a scenario (holding fixed the facts about V⃗3) contradicts
our prior assumption ◻V⃗3

[V4 ≥w V⃗3 → (f4(w) ∈4 f4(z) → f4(w) ∈4 f4(x))].
Thus f3(z) is a subset of f3(x) (in the sense of V3).
16Any k ∈2 f3(z) must also be in ∈3 f3(z) hence in ∈3 f3(x) = f2(x) hence ∈2 f2(x)
17We can import the fact that f2(y) contains all logically possible subsets of f2(x) in

the sense of V2, since this claim is content restricted to V⃗2. By Simple Comprehension,
it is possible (holding fixed the facts about V⃗2, V⃗3 and hence the facts about f2(y) and
f3(z) just proved above) for C to apply to exactly the elements of ∈3 f3(z). Because
(∀k)[k ∈3 f3(z) → k ∈2 f2(x)]) remains true in this context, it follows that that C only
applies to objects ∈2 f2(x). Because our characterization of f2(y) remains true in this
context (note that it is content restricted to V⃗2), we know that (necessarily, given V2

facts) if C only applies to objects ∈2 f2(x) there is some set2, k, such that k ∈2 f2(y)
whose elements are exactly the objects satisfying C. Thus there is some set2 which has
exactly the same elements as f3(z). Now, by the thinness/extensionality requirement
built into V⃗3 ≥z V2, we know that f3(z) = this set2, so we have f3(z) ∈2 f2(y), and hence
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From this proof of ◻V2(α → f3(z) ∈3 f3(y)), the desired conclusion follows

straightforwardly.

Proposition 12.1.7 (Choice). “∀x [∅ ∉ x→ ∃f ∶x→ ⋃x ∀a ∈ x (f(a) ∈ x)]”

Writing out almost all the abbreviations, and applying FOL to this yields:

(∀x)[(∀y)(y ∈ x→ (∃z)(z ∈ y)) →

(∃f)(∀a)[a ∈ x→ ∃y(⟨a, y⟩ ∈ f ∧ (∀y′)[⟨a, y′⟩ ∈ f → y = y′])]]

thus it gets translated as something with the following form [inc: footnote

that I’m not expanding out the brackets for pairing?]:

[fix linebreaks]

◻[V (V⃗0) ∧ V1 ≥x V⃗0 → [

◻V⃗1(V2 ≥y V⃗1 ∧ f2(y) ∈2 f2(x) → ◇V⃗2
[V3 ≥z V⃗2 ∧ f(z) ∈ f(y)]) →

◇V⃗1
(V2 ≥f V⃗1 ∧ t2((∀a)[a ∈ x→ ∃y(⟨a, y⟩ ∈ f ∧(∀y′)[⟨a, y′⟩ ∈ f → y =

y′])]))

So it says: if V1 assigns f1(x) to something which doesn’t contain

the empty set18, then one can have an extending V2, f2 which assigns f2(f)

to a set which codes up a choice function for f1(x)19.

Proof. Unsurprisingly, we will use an instance of the Choice Axiom Schema

to prove this claim.

Consider an arbitrary situation in which V (V⃗0) ∧ V⃗1 ≥x V⃗0.

Now suppose that the antecedent of the conditional we need to prove.

That is, suppose that ◻V⃗1(V2 ≥y V⃗1 ∧ f2(y) ∈2 f2(x) → ◇V⃗2
[V⃗3 ≥z V⃗2 ∧ f(z) ∈

f3(z) ∈3 f3(y).
18in the sense that for any extending V2, f2 assigning y to something in f1(x) there could

be a V3, f3 assigning z to something in f2(y))
19in the sense that for any extension V3, f3 assigning a to something in f1(x) makes

t3(∃y(⟨a, y⟩ ∈ f ∧ (∀y′)[⟨a, y′⟩ ∈ f → y = y′])]) come out true
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f(y)]).

Our first step will be to deduce from the above assumption that the

empty set is not an element of f1(x), (i.e. (∀k)k ∈1 f1(x) → ∃k′k′ ∈1 k ). We

will argue by contradiction.

If an empty set were in f1(x), then it would be possible (holding fixed

the facts about V1) to have an extending V2 where f2(y) is this empty set,

hence it is impossible for there to be an extending V3 where f3(z) ∈3 f3(y).

But this contradicts the ◻V1 assumption above. 20

Thus we know that the empty set is not in f1(x). Now we will (un-

surprisingly!) use the Choice Axiom in my formal system to construct a

suitable logically possible V2, f2, and then show it behaves as desired. By

three applications of the One More Layer Lemma, we can have a V2 which

adds three layers of classes to V1. By Simple Comprehension, it is possible

to have an index property I apply to exactly the elements of f1(x) and a

relation R (which we intend to apply Choice to) which applies to exactly

pairs a, b consisting of an element a ∈1 f1(x) and b ∈1 a. By an application of

Choice to R (importing the fact that f1(x) does not contain an empty set),

we can conclude it is possible that R̂(a, b) associates each a in f1(x) with

a unique b in a. By the Multiple Definitions Lemma we can put all these

stipulations together, and then enter a single ◇V1 context in which all the

characterizations of V2, I,R, R̂ above remain true.

20More pediantically, suppose an empty set were in f1(x). Then it would be ◇V1 to
have V⃗2 ≥y V⃗1, where V1 =set V2 and f2(y) is the empty set (in the sense of ∈1). Since
f2(y) ∈1 f1(x), we have set1(f2(y)) and hence this f2(y) is an empty set in the sense of
∈2 as well, i.e., ¬(∃k)(k ∈2 f2(y)). So we also have ¬◇V⃗2

[V3 ≥z V⃗2 ∧ f3(z) ∈3 f3(y)], since
any such f3(z) ∈3 f3(y) = f2(y) would have to be ∈2 f2(y). Thus we get the possibility of
a scenario is ruled out by the ◻V1 assumption above.
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Now we can show (laboriously but straightforwardly) that this V2 contains

a set2 which is the graph of the the choice function R̂ specified above. (With

a suitable use of Wrapping Trick to mimic ∀I arguments involving modality)

we can note that for each b ∈2 f1(x) there is a c such that R̂(b, c) within V1.

Then we can exploit the fact that V2 contains three layers of classes over V1

to show that it contains a pair set ⟨b, c⟩, and a set2 which collects together

all such pairs.21

Finally, it remains to check that this assignment f2(f) ensures the truth

of t2((∀a)[a ∈ x → ∃y(⟨a, y⟩ ∈ f ∧ (∀y′)[⟨a, y′⟩ ∈ f → y = y′])]). This

is somewhat laborious, but we can do it via exactly the same technique

demonstrated in the simpler proofs above. Specifically, we argue that all

extending Vi, fi which satisfy relevant antecedents must assign variables to

objects at or below f2(f) and/or f2(x) (hence to objects in V2), and then

exploit the fact that f2(f) is the graph of a choice function for f2(x) [in the

sense restricted to V2]. This completes our Inn ◇ argument that a suitable

extending V2, f2 is possible.

21More pedantically: by our characterization of V2, there is (one layer above V1) a
w = {c},w′

= {b} w′′
= {b, c}, and hence (two layers above V1) a w′′

= ⟨b, c⟩. Since this is true
for each b in the domain of R̂, there will be (three layers above V1) a set2 which is the graph of
R̂ i.e., {⟨b, c⟩ such that R̂(b, c)}.Consider applying Simple Choice to specify the application
a property K (∀x)[K(x) ↔ ∃b∃c(R̂(b, c)∧∃w∃w′

∃w′′w = {c}∧w′
= {b}∧w′′

= {b, c}] (with
all abbreviations written out in the usual way). By the reasoning above, there will be for
each b, c such that R̂(b, c) a corresponding element of K. Also (again, by the reasoning
above) all these elements will occur below the last layer of V2, so by our construction of
V2 there will be a set2 whose elements are exactly those in the extension of K. By our
construction of R̂, this set2 is the graph of a choice function for f1(x) (i.e., it contains,
for each b ∈2 f2(x), exactly one set of the form ⟨b, c⟩, with c such that b ∈2 c). So, (by the
multiple definitions lemma and ignoring) it is ◇V⃗1

to have V⃗2 ≥f V⃗1 with f2(f) the graph
of a choice function for f1(x) = f2(x). [in the sense restricted to V2]
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12.2 Comprehension

Proposition 12.2.1. Comprehension “Let φ(x,w1, . . . ,wn) be a formula

in the language of ZFC with free variables x,w1, . . . ,wn. Then:

∀z∀w1∀w2 . . .∀wn∃y∀x[x ∈ y⇔ (x ∈ z ∧ φ)].”

Translating and then applying ◻ simplification yields: [fix double sub-

scripts] ◻[V (V⃗0) ∧ V⃗1 ≥z V⃗0 ∧ V⃗2 ≥w1 V⃗1V⃗1 ∧ . . . Vn+1 ≥wn Vn → ◇Vn+1[Vn+2 ≥y

Vn+1 ∧ ◻Vn+2(Vn+3 ≥x Vn+2 → [fn+3(x) ∈n+3 fn+3(y) ↔ fn+3(x) ∈n+3 fn+3(z) ∧

tn+3(φ)])]

This says approximately the following. Fix assignments for for z,w1, . . . ,wn

from setn+1 within some Vn+1. It’s logically possible to have an extending

Vn+2 ≥y Vn+1 which assigns y to a set which collects together exactly those x

in fn+2(z) such that that any extending Vn+3, fn+3 which assigns fn+3(x) to

one of these x must make tn+3(φ(z,w1, . . . ,wn, x)) true.

Proof. Suppose that V⃗0... ⃗Vn+1 are as above.

Our first task will be to establish the logical possibility of a suitable

fn+2(y) and Vn+2. Let tn+3∗∗ represent the result of replacing all occurrences

of relations in Vn+3, fn+3 in tn+3, with occurrences of relations in V∗, f∗.22

By using the Modal Comprehension Schema, we can show that a predicate

P could apply to exactly x ∈n+1 fn+1(z) with the following modal property:

there could be an extension ⃗Vn+3∗ ≥x ⃗Vn+1 such that fn+3 ∗ (x) = x and

tn+3∗∗(φ) comes out true (note that tn+3∗∗(φ) makes mention of fn+3∗(x)).23

22So, as in the proof of lemma ?? occurrences of setn+3 are replaced with occurrences of
set∗, but occurrences of setn+4 inside ◻es and ◇s are unchanged.

23To see why this is true more formally, consider the formula asserting that it is logically
possible that fn+3 matches fn+1 everywhere but on the variable x which it takes the unique
value satisfying Q (where Q is the predicate from the Modal Comprehension axiom) and
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These will turn out to be exactly the objects we want our set fn+2(y) to

collect. By the fact that V (Vn+1), there’s a setn+1 y, whose elements are

exactly those those satisfying P . This will be our choice for fn+2(y) and we

will let Vn+2 be equal to Vn+1.

Now it remains to check that Vn+2, fn+2 behaves as desired. We need to

show that ◻Vn+2 if V⃗3 ≥x V⃗2, assigns fn+3(x) to something in fn+3(y) iff it

satisfies tn+3(φ(z,w1, . . . ,wn, x)). By Ign we know that if there could be a

counterexample to the claim above, then there could be a counterexample

which holds fixed Vn+1, P as well as Vn+2. So consider an arbitrary scenario

(holding fixed Vn+1, P, Vn+2) in which ⃗Vn+3 ≥x ⃗Vn+2. It suffices to show that

fn+3(x) ∈n+3 fn+3(y) ↔ fn+3(x) ∈n+3 fn+3(z)∧tn+3(φ) in this scenario. There

are two directions to check.

→ Suppose fn+3 assigns x to something in fn+3(y) (our supposed com-

prehension set). Then our characterization of fn+2(y)24 implies that this

object is in fn+1(z) (the set we are comprehending over). So we have

fn+3(x) ∈n+3 fn+3(z) immediately. Now we need tn+3(φ). Our characteriza-

tion of fn+2(y) also says [via the wrapping trick for mimicing quantifying in]

that because fn+3(x) ∈n+2 fn+2(y), it is possible (holding fixed V1 ) for an ex-

tension ⃗Vn+3∗ ≥x ⃗Vn+1 which assigns fn+3 ∗(x) = to (an object in structurally

the same position w.r.t. Vn+1, fn+1 as our) fn+3(x) to make tn+3 ∗ ∗(φ) true.

tn+3(φ) comes out true.
◇ ⃗Vn+1,Q

[(∀r ≠ ⌜x⌝)fn+3(r) = fn+1(r)∧
(∀q)(fn+3(⌜x⌝) = q↔ Q(q))∧
tn+3(φ)]
This formula can be plugged directly into the Modal Comprehension axiom, and we can

derive that the resulting property P applies to all and only those x ∈n+1 fn+1(z) with the
property informally described above.

24This must remain true in our current context because it is content-restricted to
Vn+1, Vn+2.
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We can infer that the same scenario is possible while holding fixed the

⃗Vn+1, ⃗Vn+2 facts as well, by Ignoring.25. So we can enter this ◇ ⃗Vn+1, ⃗Vn+2, ⃗Vn+3

context, and import all previously established facts about Vn+2 and Vn+3.

Now it remains to use the Translation Lemma to go from tn+3 ∗ ∗(φ) to

tn+3(φ).

The trick will be to cook up a Vn+1, fn+1∗ which agrees with tn+3 and

tn+3 ∗ ∗ on the assignment of x and all other variables free in ψ, and then

use a version of the Translation Lemma to go from tn+3 ∗ ∗(φ) to tn+1@(φ)

to tn+3(φ). For, note that we have Vn+3 ≥ Vn+1 and Vn+3∗ ≥ Vn+1 and

that fn+3 agrees with fn+3∗ in assigning all variables free in φ to objects

in V1: y is not free in φ, fn+3 agrees with f∗n+3 on the assignment of

x to something ∈ fn+1(x) hence in V1 by construction, and on all other

free variables w1...wn in φ both fn+3 and fn+3∗ agree with fn+1). Thus

if we use modal comprehension to let fn+1@ = fn+1 everywhere except in

assigning x to fn+3(x) = fn+3∗(x), inside this ◇ ⃗Vn+1,f∗, ⃗Vn+2, ⃗Vn+2 scenario we

will have V (Vn+1, f@). Thus we will try to use the Translation lemma to get

tn+3 ∗ ∗(φ) ↔ tn+1@(φ) ↔ tn+3(φ), as desired.

Once we have done this, we are finished. For, from the fact that tn+3(φ)

in the above ◇ ⃗Vn+1,f∗, ⃗Vn+2, ⃗Vn+3 scenario, we can infer that it holds in our

original scenario as well.

[Now it just remains to deal with the wrinkle that (as before) the Trans-

lation Lemma doesn’t directly say anything about tn+3 ∗ ∗(φ) or tn+1@(φ).

However, we can use the ◻ relabling to get what we need as before. First re-

25This inference is permitted because the inside of the ◇ ⃗Vn+1
claim is content restricted

to ⃗Vn+1, ⃗Vn+3∗ and there is no overlap between Vn+3∗ and Vn+2, Vn+3
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place all instances of fn+1 with fn+1@. Then replace all instances of Vn+3, fn+3

with corresponding V*,f*, but notice that there may be some collateral dam-

age. Any mentions of Vn+3 within tn+1(φ) will be replaced, so we have

more work to do if φ it contains any quantifiers nested 2 deep. Fortunately,

however, we can undo this damage, by entering into the tn+2 contexts housing

each instance of such nested quantification which got changed. The ◻ and

◇ relabeling let us derive that ◻tn+2(ρ) ↔ tn+2(ρ)[tn+3/tn+3 ∗ ∗] (or the

corresponding ◇ claim in each of these contexts, and hence to fix all such

collateral damage.] [FIX wording]

← Conversely, suppose fn+3 assigns x to something in fn+3(z) (the set

being comprehended over) and that tn+3(φ). By our characterization of

fn+2(y), we can show that the relevant object is also in fn+3(y) if we establish

two things. First, we need the object is ∈1 fn+1(z). This follows immediately,

because ⃗Vn+3 ≥x ⃗Vn+2 ≥y ⃗Vn+1.

Second, we need to show that it is ◇Vn+1 to have ⃗Vn+3∗ ≥x ⃗Vn+1 such that

[again, speaking loosely and using the Wrapping Trick to mimic quantifying

in] fn+3 ∗ (x) = this fn+3(x) and tn+3 ∗ ∗(φ).

I will prove this by proving the stronger corresponding ◇ ⃗Vn+1, ⃗Vn+2, ⃗Vn+3 ,

claim. By assumption, we have tn+3(φ). By simple comprehension, it is

◇ ⃗Vn+1, ⃗Vn+2, ⃗Vn+3 to have tn+3(φ) remain true while Vn+3∗ =set Vn+3 and fn+3∗

agrees with fn+3 everywhere, except that fn+3(y) = fn+1(y) it agrees with

fn+1 on the assignment of y. Now (just as above) we can use the generalized

Translation Lemma to go from the fact that Vn+3 and this Vn+3∗ both extend

Vn+1 and agree in assigning all variables free in φ (because y is not free in φ)

to objects in Vn+1 to the conclusion that tn+3(φ) ↔ tn+3 ∗ ∗(φ). This gives
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us tn+3(φ), as desired.

Combining the → and ← arguments above complete the desired proof

that fn+3(x) ∈ fn+3(y) ↔ fn+3(x) ∈n+3 fn+3(z) ∧ tn+3(φ).

12.3 Infinity

Proposition 12.3.1. Infinity“∃x [∅ ∈ x ∧ ∀y(y ∈ x→ S(y) ∈ x)] .”

where S(x) is x ∪ {x}.

Let

⌜∅ ∈ f1(x)⌝ = ◇V⃗1
(V⃗2 ≥e V⃗1 ∧ ◻V⃗2[V⃗3 ≥z V⃗2 → ¬f3(z) ∈3 f3(e)] ∧ f2(e) ∈2 f2(x))

⌜S(f2(y)) ∈ f2(x)⌝ = ◇V⃗2
(V⃗3 ≥s V⃗2 ∧ ◻V⃗3[V4 ≥z V⃗3 → f4(z) ∈4 f4(s) ↔

f4(z) ∈ f4(y) ∨ f4(z) = f4(y)] ∧ f3(s) ∈2 f3(x)])

Using these suggestively named components, the translation of infinity

can be written as:

◻(V (V0) → ◇V⃗0
[V⃗1 ≥x V⃗0 ∧ ⌜∅ ∈ f1(x)⌝

∧ ◻V⃗1 (V⃗2 ≥y V⃗1 ∧ f2(y) ∈2 f2(x) → ⌜S(f2(y)) ∈ f2(x)⌝)]

Proof. Consider an arbitrary scenario in which V (V0) holds. On this as-

sumption, we can show that the suggestive names we used for parts of

the translation above are accurate: if V⃗1 ≥x V⃗0 then ⌜∅ ∈ f1(x)⌝ holds if

∅ ∈1 f1(x) and if, furthermore, V⃗2 ≥y V⃗1, then ⌜S(f2(y)) ∈ f2(x)⌝ holds if

S(f2(y)) ∈2 f2(x).
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For example, note that if ∅ ∈1 f1(x) then it’s possible to have V2 =set V1

and f2 equal to f1 everywhere except at e and f2(e) = ∅. It’s thus necessary,

holding V2, f2 fixed, that if V⃗3 ≥z V⃗2 then ¬f3(z) ∈3 f3(e) as f3(e) = f2(e) = ∅.

This establishes the claim about ⌜∅ ∈ f1(x)⌝. Similar elementary reasoning

establishes the above claim about ⌜S(f2(y)) ∈ f2(x)⌝.

I will establish the logical possibility claim that we need, by arguing

as follows. By the Infinite Well-Ordering Lemma (proved in section 9.0.1)

there can be a an infinite well ordering ω,≤ which contains only successor

stages. By the Fleshing Out Lemma (C.7), it is logically possible to have an

initial segment Vω, whose ordinals ordω,≤ω are isomorphic to ω,≤. Using the

Recursive Definition Lemma (proved in section B.1.1), we define a function F

from ω to Vω with F (0) = ∅ and F (n+ 1) = S(F (n)) and then use induction

establish the domain of F is ω. By the definition of ω, for each n ∈ ω there is

an n+ 1 ∈ ω such that F (n+ 1) = S(F (n)). We then establish the possibility

of an initial segment Vω+1 containing an extra layer of sets over those in Vω

and thus containing a set x whose members are exactly the elements in the

range of F . The theorem follows by observing that letting V1 be Vω+1 makes

the sentence true.

Now let us go into details. By the Infinite Well-Ordering Lemma, we can

have a well-ordering ω,≺ without a maximal element where every element

satisfying ω is either 0 or a successor.

By the Fleshing Out Lemma we can infer ◇ω,≺V (setω, ∈ω,@ω, ω,≺). As-

sume Vω is the tuple of relations having these properties. Next we can use

the Recursive Definition Lemma to establish the logical possibility of a two

place relation F (o, z) between objects satisfying ω and setω adopting the
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functional abbreviation F (o) = z for clarity

F (o) = z ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

o = 0 ∧ z = ∅

∨

o = n + 1 ∧ z = F (n) ∪ {F (n)}

Where ∅ is the element in setω containing no other elements under ∈ω

and F (n) ∪ {F (n)} is the element in setω whose elements are exactly the

members of F (n) and F (n).

[We can check that the premises needed for the Recursive Definition

Lemma are satisfied, as follows].Clearly, it is logically necessary (given the

facts about ω,≤ and Vω) that a unique object satisfies x = ∅ in Vω. And

for n s.t. ¬n = 0 and ω(n), we know that n is a successor ordinal (so

there is an m such t n = m + 1) by our characterization of ω,≤. Thus [

it is logically necessary (given the facts about ω,≤ and Vω) that] if F is

defined and functional below n, we have the existence of an x such that

(∃m)[n = m + 1 ∧ x = S(F (m))] because ordω include a successor ordinal

for every ordinal which it contains (and hence a stage above every stage it

contains) and S(F (m)) must occur a stage above wherever F (m) occurs

(by the fact that V (Vω) and our definition S). We the have uniqueness of

this x by the extensionality of the setω and the definition of S.

Now by the One More Layer Lemma (proved in section C.4) we can infer

the possibility of Vω+1 extending Vω and adding a single layer of classes. Now

all the objects in the image of F are sets in Vω. Thus Vω+1 contains a set I

whose members are exactly those elements of Vω such that (∃o)(ω(o)∧F (o) =
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x). This set contains ∅ (a set which has no elements in the sense of Vω+1 and

hence also none in the sense relevant to Vω+2) and is closed under application

of S.

Lastly, it remains to show that we can find a set like I in an initial

segment extending V⃗0. By the Hierarchy Extending Lemma (proved in C.5) if

is logically possible to have an extension V1 of V⃗0, such that Z isomorphically

maps from Vω+1 to an initial segment of V1. It is a straightforward, if

somewhat tedious, process to verify that the image of our I under Z also

behaves like a suitable infinite set: it contains an object ∅ which has no

elements in the sense of V1, and contains the the successor of every set1 it

contains.

To complete the proof, note that we can let f1(x) be Z(I). Clearly

⌜∅ ∈ f1(x)⌝ holds in this case and if V⃗2 ≥y V⃗1∧f2(y) ∈2 f2(x) then S(f2(y)) ∈

f2(x) so ⌜ S(f2(y)) ∈ f2(x)⌝ holds.

12.4 Replacement

Proposition 12.4.1. Replacement

“The axiom schema of replacement asserts that the image of a set under

any definable function will also fall inside a set.

Formally, let φ be any formula in the language of ZFC whose free variables

are among x, y,A,w1, . . . ,wn, so that in particular B is not free in φ. Then:

∀A∀w1∀w2 . . .∀wn[∀x(x ∈ A → ∃!y φ) → ∃B∀x(x ∈ A → ∃y(y ∈

B ∧ φ))].
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In other words, if the relation φ represents a definable function f, A

represents its domain, and f(x) is a set for every x in that domain, then the

range of f is a subset of some set B.”

Instances of this schema have a translation with the form

◻[V (V⃗0) ◻ (V⃗1 ≥a V⃗0 → ◻[V⃗2 ≥w1 V⃗1 . . . ◻ Vn+1 ≥wn Vn → (α → β)]...])]

which, by ◻ simplification, becomes:

◻[V (V⃗0) ∧ V⃗1 ≥a V⃗0 ∧ V⃗2 ≥w1 V⃗1 . . . ◻ Vn+1 ≥wn Vn → (α → β)]]

where:

• α = ◻Vn+1(Vn+2 ≥x Vn+1 ∧ fn+2(x) ∈n+2 fn+2(a) → ◇Vn+2[Vn+3 ≥y Vn+2 ∧

tn+3(φ(w1, . . .wn, x, y))∧◻Vn+3Vn+4 ≥z Vn+3∧tn+4(φ(w1, . . .wn, x, z)) →

fn+4(y) = fn+4(z))])

• β = ◇Vn+1(Vn+2 ≥b Vn+1 ∧ ◻Vn+2[Vn+3 ≥x Vn+2 ∧ fn+3(x) ∈n+3 fn+3(a) →

◇Vn+4 ≥y Vn+3 ∧ f(y) ∈ f(b) ∧ t4(φ(w1, . . .wn, x, y))])

Proof Sketch:

In essence, the translation of the Replacement Schema’s antecedent [α]

asserts that for every x in a there is a logically possible [it would be possible

to have an] initial segment Vx and an element y of that segment such that y

is the unique solution to t(φ(x, y)).

And the translation of Replacement’s consequent [β] demands that we

produce a single logically possible initial segment [(call it VΣ)] containing a

y for every x in a (technically containing a set b containing all such y’s but

that is fixed by one more layer)[satisfying tΣ(φ(x, y)).

Now, the Translation Lemma tells us that if tx(φ(x, y)) holds in some

Vx, then it holds in any extension of Vx which preserves the assignment of x
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and y and all the other free variables in φ. Thus, it is enough to demonstrate

the possibility of some VΣ extending each Vx.

To achieve this end, we first invoke Combinatorial Replacement to [get

(the logical possibility of) simultanioulsy having a collection of hierarchies Vx

parametrized to each x ∈n fn(a)] parameterized the Vx by x and then invoke

the Mass Hierarchy Combining Lemma (proved in C.6) to (essentially) get a

single initial segment extending them all. Adding one extra layer of sets on

top of that is enough to produce the desired set B.

Proof. Consider an arbitrary situation with V⃗0... ⃗Vn+1 as above. Assume that

our translation of the antecedent to replacement, α, is true.

Constructing the Vxs with Combinatorial Replacement

[fill in missing ”vec”s as per new notion]

Our first step will be to use the Combinatorial Replacement Schema to

establish that a single scenario could associate each x ∈n+1 fn+1(a) with a

corresponding initial segment Vx extending Vn+1 and containing a witness y

satisfying t(φ(x, y)).

Our assumption α guarantees that for any ⃗Vn+2 extending Vn+1 which

assigns x so as to satisfy tn+2(f(x) ∈ f(a)), there can be a ⃗Vn+3 extending

⃗Vn+2 and which assigns y so that tn+3(φ) comes out true (where tn+3(φ)

implicitly refers to x and y via fn+3).

It is logically possible that I applies to exactly those objects which are

∈n+1 fn+1(a). Entering this ◇ ⃗Vn+1 scenario, α will remain true. And it is easy

to see that α implies the following modal claim. For any way P could ‘select’
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a single object satisfying I (and hence for every possible choice of fn+2(x)

on which tn+2((f(x) ∈ f(a)) comes out true), there could be an extension Vx

which agrees with Vn+1 on everything but x and y, assigns x to the object

selected by P and makes tx(φ) come out true.

◻Vn+1(∃!xP (x))∧I(x) → ◇Vn+1,P [Vx ≥x,y Vn+1∧(∀k)(fx(x) = k → P (k))∧t(φ)]

This statement is in the form needed to apply the Combinatorial Replace-

ment Axiom Schema. Thus, by instantiating this schema we can derive the

corresponding consequent that it is logically possible (holding fixed I, Vn+1)

for there to simultaniously be a bunch of different Vx̂ indexed to each of the

different objects x̂ satisfying I, i.e., to the x̂ ∈n+1 fn+1(a). [More strictly we

get that it is possible for there to be a relation [fill in good notation for it

here] that codes up the behavior of each Vx̂]

Constructing Vn+2, fn+2

Next we want to argue that one can have an extending Vn+2 which

assigns b to an object that ‘gathers up’, for each possible assignment of x to

something x̂ ∈n+1 fn+1(a), (the images under isomorphism of) the choice for

y made by the corresponding Vx̂ in which t(φ(x, y)) come out true.

First we build a suitable hierarchy of sets. We use the V-Combining

Lemma to get a hierarchy of sets VΣ , which has initial segments isomorphic

to each of the scattered Vx̂ described above (under a certain relation Z [check

that def of iso only requires that Z behave like an iso when restricted to
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the relevant pair of objects]). Then we use One More Layer to argue for

the logical possibility of extending this hierarchy of sets by one more layer.

Finally we use the Hierarchy Extending Lemma to get that this structure is

isomorphic to one that extends Vn+1.

This structure will be the Vn+2 in our desired Vn+2, fn+2.
26 It contains

a setn+2 which collects together the setn+2 which are in the images of each

f(y) chosen by the Vx for x ∈n+1 fn+1(a) (under the relevant combination of

isomorphisms).27 Thus we can have ⃗Vn+2 ≥b ⃗Vn+1 with fn+2(b) as above.

Checking that Vn+2, fn+2 behaves as intended

Finally, we must show that the Vn+2, fn+2 we have constructed makes

β, the translation of the consequent of the replacement axiom schema true.

Consider an arbitrary extension Vn+3 which assigns x to something ∈n+2

fn+2(a). We need to show that there can be an extending Vn+4 which assigns

y to something in fn+2(b) and satisfies tn+4(φ).

26By the V-Combining Lemma, it is logically possible to have a VΣ , such that each of
the hierarchies of objects satisfying set ∗n+3 (⋅, k), ∈ ∗n+3(⋅, ⋅, k) for some k ∈n+1 fn+1(a) is
isomorphic to an initial segment of this VΣ via the relation Z. By the Hierarchy Extending
Lemma, we could have a VΣ∗ ≥set Vn+1, such that VΣ is isomorphic to an initial segment
of VΣ∗ via the relation Z′. Finally by the One More Layer lemma it is possible to have
Vn+2 ≥set VΣ∗ which adds one more layer of sets to VΣ∗.

27Specifically we define fn+2(b) as follows:
For each k ∈n+1 fn+1(a) there is a k′ = f3,k ∗ (y) the choice of fn+3(y) within the initial

segment associated with k. We want fn+2(b) to be a set which gathers up (the isomorphic
images of) all such sets. Specifically, note that each k′ above gets taken to something in
VΣ by Z and then to something in VΣ∗ by Z′. By simple comprehension a property P
could apply to exactly those k∗ in VΣ∗ such that ∃k∃k′Z′

(Z(f3,k ∗ (y))) = k∗. So by the
fact that the sets for our Vn+2 are generated by adding one more layer of classes to VΣ∗, we
know that there is a set2 with the above property, i.e., a setn+2 whose elements are exactly
those k∗ such that ∃k∃k′Z′

(Z(f3,k ∗ (y))) = k∗. Let fn+2(b) be this set, and otherwise let
fn+2 = fn+1, so that we have Vn+2 ≥b Vn + 1.

Finally by the Multiple Stipulations Lemma, it is ◇ ⃗Vn+1
to simultaniously have

⃗Vn+2, V⃗Σ , ⃗VΣ∗, Z,Z
′ satisfying all of the successive definitions above.
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To do this, we note that we must also have x ∈n+1 fn+1(a),28 hence

there is some Vx̂ indexed by x. This Vx̂ assigns x to f3(x) and assigns y

in such a way as to make tx̂(φ(x, y)) [i.e.tn+3@@(φ(x, y)) in the logically

possible scenario where V@, f@ behaves like Vx̂, fx̂] true. And this Vx̂ can

be isomorphically mapped to an initial segment of Vn+2 (by composing the

sequence of isomorphisms mentioned above). Thus we can have ⃗Vn+4 ≥y
⃗Vn+3 where Vn+4 =set Vn+3 and fn+4(y) is the image of fx̂(y)[f@] under this

isomorphism. This choice of fn+4(y) immediately ensures that tn+4(y ∈ b) is

true, by our characterization of fn+3(b).

Furthermore, there is an obvious extended isomorphism between some

V∗, f∗ (where V∗ is an initial segment of Vn+4) and Vx̂, fx̂ [i.e. V@, f@ ]29.

Thus by the Isomorphism Lemma we can infer from the fact that t(φ(x, y))

is true in Vx̂, fx̂ [i.e. the fact that tn+3@@(φ(x, y))] to the claim that it is

true in V∗, f∗.[i.e., tn+3∗∗(φ(x, y))]

Finally, we can use (a version of) the Translation Lemma to infer from the

truth of t(φ(x, y)) in V∗, f∗ [i.e., tn+3∗∗(φ(x, y))] to its truth in Vn+4, fn+4.

For we have Vn+4 ≥ V∗, and we know that fn+4 = f∗ on all variables free

in φ as follows. On w1...wn, fn+4 agrees with fn+1 and so does f∗, by

the fact that all the Vx̂, fx̂ agree with Vn+1 on these values, and some

reasoning involving the Isomorphism Agreement Lemma30. On x, we have

28since Vn+2 ≥ Vn+1
29The only issue is to blend the isomorphism between hierarchies with the possible iso-

morphism between different copies of structures satisfying PA◇. (Note that the categoricity
of PA◇ is an immediate correlary of the well ordering comprability lemma)

30Consider the isomorphism between initial segments of Vn+4 induced by restricting the
map from Vx̂ to V∗ to the portion of Vx̂ which is Vn+1. The domain of this map contains
fx̂(wi) for each wi, since V⃗x̂ ≥x,y

⃗Vn+1. Since this map must behave the same as the
identity automorphism from Vn+1 to Vn+1, it must map each f∗(wi) = f1(wi) to f1(wi).
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f∗(x) = fx̂(x)[= f@(x)] = fn+4(x), by our choice of which Vx̂ to consider.

And on y [the giant image set we have so arduously constructed] we have

f∗(y) = fn+4(y)= the isomorpic image of fx̂(y), by our characterizations of

fn+4(y) and f∗. Thus applying a version of the translation lemma will let us

infer from truth of t(φ(x, y)) in V∗, f∗ [i.e., tn+3∗∗(φ(x, y))] to the conclusion

that tn+4(φ(x, y)) in the scenario above, as desired.

[The only wrinkle is that, as in previous cases, the Translation Lemma

only directly tells us that ⊢ Vn+4 ≥ Vn+3∧fn+1(v) = fn+3(v)∧...→ (tn+4(ψ) ↔

tn+3(ψ)) claim. But, because of the box introduction rule, we also have

⊢ ◻() of the claim above. So by applying ◻ relabling, we can make the

needed substitutions to get ⊢ ◻(Vn+4 ≥ Vn+3∗∗ ∧ fn+1(v) = fn+3∗(v) ∧ ... →

(tn+4(ψ) ↔ tn+3∗∗(ψ))). Finally, inferring from necessity to truth gives us

the desired claim. ]

Leaving ◇ contexts and dropping subscripts as needed gives us ◇ ⃗Vn+3
⃗Vn+4 ≥y

⃗Vn+3 ∧ f(y) ∈ f(b) ∧ tn+4(φ(x, y)) and then β itself.

This gives us the conditional α → β, as desired. Now successively com-

pleting ◻I arguments and concluding conditional proofs (just as in all the

previous cases) gives us the full modal translation of the relevant instance of

the ZFC Replacement Schema.


