Chapter 8

Useful Corollaries to Axioms

8.1 Diamond Simplification Lemmas

Lemma 8.1.1. Basic Diamond Simplification $\vdash \diamond_{\mathcal{L}}\left(\diamond_{\mathcal{L}, R_{1}}(\phi)\right) \rightarrow \diamond_{\mathcal{L}} \phi$

Proof. Suppose $\diamond_{\mathcal{L}}\left(\diamond_{\mathcal{L}, R 1}(\phi)\right)$. First we enter the outer $\diamond_{\mathcal{L}}$ context, beginning an $\operatorname{In} \diamond$ argument. Since we have $\diamond_{\mathcal{L}, R_{1}}(\phi)$ in this context, we can apply ignoring to deduce $\diamond_{\mathcal{L}}(\phi)$. Thus, leaving the above special context we have $\diamond_{\mathcal{L}}\left(\diamond_{\mathcal{L}}(\phi)\right)$. Now the inside statement is content-restricted to \mathcal{L}, so by $\diamond E$ we can infer from its logical possibility (given the facts about \mathcal{L} to its actuality). This gives us $\diamond_{\mathcal{L}} \phi$, as desired.

Lemma 8.1.2. Diamond Collapsing: If ϕ_{2} and θ are content restricted to $\mathcal{L}_{1}, \mathcal{L}_{2}$ and ϕ_{1} is content restricted to $\mathcal{L}_{0}, \mathcal{L}_{1}$, then we have

$$
\vdash \diamond_{\mathcal{L}_{0}}\left(\phi_{1} \wedge \diamond_{\mathcal{L}_{1}}\left(\phi_{2} \wedge \theta\right)\right) \leftrightarrow \diamond_{\mathcal{L}_{0}}\left(\phi_{1} \wedge \phi_{2} \wedge \theta\right)
$$

Proof. LTR direction:
Assume $\diamond_{\mathcal{L}_{0}}\left(\phi_{1} \wedge \diamond_{\mathcal{L}_{1}}\left(\phi_{2} \wedge \theta\right)\right)$. Enter the $\diamond_{\mathcal{L}_{0}}$ context. We have $\diamond_{\mathcal{L}_{1}}\left(\phi_{2} \wedge\right.$ $\theta)$. Because $\phi_{2} \wedge \theta$ is content restricted to $\mathcal{L}_{1}, \mathcal{L}_{2}$, we can use ignoring to turn this into $\diamond_{\mathcal{L}_{0}, \mathcal{L}_{1}}\left(\phi_{2} \wedge \theta\right)$. Now enter this $\diamond_{\mathcal{L}_{0}, \mathcal{L}_{1}}$ context. We can import ϕ_{1} because it is content restricted to $\mathcal{L}_{0}, \mathcal{L}_{1}$. Thus we can deduce $\phi_{1} \wedge \phi_{2} \wedge \theta$.

Leaving this \diamond context (completing our inner \diamond argument), we have $\diamond_{\mathcal{L}_{0}, \mathcal{L}_{1}} \phi_{1} \wedge \phi_{2} \wedge \theta$. Hence we can deduce $\diamond_{\mathcal{L}_{0}} \phi_{1} \wedge \phi_{2} \wedge \theta$ by Ign. Noting that this latter claim is content-restricted to \mathcal{L}_{0} lets us complete our larger $\diamond \mathrm{E}$ argument by pulling the fact that $\diamond_{\mathcal{L}_{0}}\left(\phi_{1} \wedge \phi_{2} \wedge \theta\right)$ outside of the outer $\diamond_{\mathcal{L}_{0}}$ context.

RTL direction:

Conversely, suppose that $\diamond_{\mathcal{L}_{0}}\left(\phi_{1} \wedge \phi_{2} \wedge \theta\right)$. Enter this $\diamond_{\mathcal{L}_{0}}$ for Inn \diamond. By \diamond I we can infer from $\phi_{2} \wedge \theta$ to $\diamond_{\mathcal{L}_{0}}\left(\phi_{2} \wedge \theta\right)$. Thus we have $\phi_{1} \wedge \diamond_{\mathcal{L}_{0}}\left(\phi_{2} \wedge \theta\right)$ and completing our $\operatorname{In} \diamond$ gives $\diamond_{\mathcal{L}_{0}}\left(\phi_{1} \wedge \diamond_{\mathcal{L}_{1}}\left(\phi_{2} \wedge \theta\right)\right)$ as desired.

$8.2 \square$ Ignoring

$(\square \mathbf{I g n}) \square$ Ignoring. If θ is content-restricted to $\mathcal{L}, R_{1}, \ldots R_{n}$ and $S_{1} \ldots S_{m}$ are relations not among $\mathcal{L}, R_{1}, \ldots R_{n}$ then $\vdash \square_{\mathcal{L}, S_{1} \ldots S_{m}} \theta \leftrightarrow \square_{\mathcal{L}} \theta$.

1	$\square \square_{\mathcal{L}} \theta$	[1]
2	$\neg \diamond_{\mathcal{L}} \neg \theta$	[1]
3	$\diamond_{\mathcal{L}\urcorner} \neg$ ¢ $\left.\diamond_{\mathcal{L}, S_{1} \ldots S_{m}}\right\urcorner \theta$	Ign \diamond
4	$\neg \diamond_{\mathcal{L}, S_{1} \ldots S_{m}} \neg \theta$	2,3 FOL [1]
5	$\square_{\mathcal{L}, S_{1} \ldots S_{m}} \theta$	[1]
6	$\square_{\mathcal{L}} \theta \rightarrow \square_{\mathcal{L}, S_{1} \ldots S_{m}} \theta$	$5 \rightarrow \mathrm{I}$
7	$\square_{\mathcal{L}, S_{1} \ldots S_{m}} \theta$	[7]
8	$\neg \diamond_{\mathcal{L}, S_{1} \ldots S_{m}} \neg \theta$	[7]
9	$\neg \diamond_{\mathcal{L}} \neg \theta$	3,8 FOL [7]
10	$\square_{\mathcal{L}, S_{1} \ldots S_{m}} \theta \rightarrow \square_{\mathcal{L}} \theta$	$9 \rightarrow \mathrm{I}$
11	$\square_{\mathcal{L}} \theta \leftrightarrow \square_{\mathcal{L}, S_{1} \ldots . . S_{m}} \theta$	6,10 FOL

$8.3 \square$ Collapsing Lemma

If ϕ_{2} and θ are content restricted to $\mathcal{L}_{1}, \mathcal{L}_{2}$ and ϕ_{1} is content restricted to $\mathcal{L}_{0}, \mathcal{L}_{1}$, then we have
$\vdash \square_{\mathcal{L}_{0}}\left(\phi_{1} \rightarrow \square_{\mathcal{L}_{1}}\left(\phi_{2} \rightarrow \theta\right)\right) \leftrightarrow \square_{\mathcal{L}_{0}}\left(\phi_{1} \wedge \phi_{2} \rightarrow \theta\right)$

LTR direction:
Assume $\square_{\mathcal{L}_{0}}\left(\phi_{1} \rightarrow \square_{\mathcal{L}_{1}}\left(\phi_{2} \rightarrow \theta\right)\right)$.

To prove that $\square_{\mathcal{L}_{0}}\left(\phi_{1} \wedge \phi_{2} \rightarrow \theta\right)$, we consider an arbitrary scenario in which $\phi_{1} \wedge \phi_{2}$ (and the \mathcal{L}_{0} facts are held fixed). ${ }^{1}$ Our initial assumption that $\square_{\mathcal{L}_{0}}\left(\phi_{1} \rightarrow \square_{\mathcal{L}_{1}}\left(\phi_{2} \rightarrow \theta\right)\right)$ is content restricted to \mathcal{L}_{0}, so it must remain true in this scenario. But what is necessary must be actual, so by $\square \mathrm{E}$ we can infer $\phi_{1} \rightarrow \square_{\mathcal{L}_{1}}\left(\phi_{2} \rightarrow \theta\right)$. Combining this with our knowledge that ϕ_{1} (in the scenario now under consideration), gives $\square \mathcal{L}_{1}\left(\phi_{2} \rightarrow \theta\right)$. Again, what is necessary is actual, so we have $\left(\phi_{2} \rightarrow \theta\right)$, and hence we can derive that θ.

Now, discharging our assumption for $\rightarrow \mathrm{I}$ gives us $\phi_{1} \wedge \phi_{2} \rightarrow \theta$. And since we considered an arbitrary situation in which the facts about \mathcal{L}_{0} were held fixed, we have $\square_{\mathcal{L}_{0}}\left(\phi_{1} \wedge \phi_{2} \rightarrow \theta\right)$ as desired, by $\square \mathrm{I}$.

[^0]| 1 | $\square_{\mathcal{L}_{0}}\left(\phi_{1} \rightarrow \square_{\mathcal{L}_{1}}\left(\phi_{2} \rightarrow \theta\right)\right)$ | $[1]$ |
| :--- | :--- | :--- |
| 2 | \square | $\left[\mathcal{L}_{0}\right]$ |
| 3 | $\phi_{1} \wedge \phi_{2}$ | $[3]$ |
| 4 | $\square_{\mathcal{L}_{0}}\left(\phi_{1} \rightarrow \square_{\mathcal{L}_{1}}\left(\phi_{2} \rightarrow \theta\right)\right)$ | 1, import [1] |
| 5 | $\phi_{1} \rightarrow \square_{\mathcal{L}_{1}}\left(\phi_{2} \rightarrow \theta\right)$ | $4 \square \mathrm{E}[1]$ |
| 6 | $\square_{\mathcal{L}_{1}}\left(\phi_{2} \rightarrow \theta\right)$ | $3,5 \mathrm{FOL}[1,3]$ |
| 7 | $\phi_{2} \rightarrow \theta$ | $6 \square \mathrm{E}[1,3]$ |
| 8 | θ | $3,7 \mathrm{FOL}[1,3]$ |
| 9 | $\phi_{1} \wedge \phi_{2} \rightarrow \theta$ | $3,8 \rightarrow \mathrm{I}[1]$ |
| 10 | $\square_{\mathcal{L}}\left(\phi_{1} \wedge \phi_{2} \rightarrow \theta\right)$ | $2-5 \square \mathrm{I}[1]$ |

RTL direction:
Conversely, assume $\square_{\mathcal{L}_{0}}\left(\phi_{1} \wedge \phi_{2} \rightarrow \theta\right)$
To prove that $\square_{\mathcal{L}_{0}}\left(\phi_{1} \rightarrow \square_{\mathcal{L}_{1}}\left(\phi_{2} \rightarrow \theta\right)\right.$), we consider an arbitrary scenario in which ϕ_{1} and the \mathcal{L}_{0} facts are held fixed. Our initial assumption above is content-restricted to \mathcal{L}_{0}, so it must remain true in this scenario.

Then we consider a further arbitrary scenario in which ϕ_{2} (while the application of $\mathcal{L}_{0}, \mathcal{L}_{1}$ in the scenario above is held fixed). Since ϕ_{1} held true in the previous scenario, and it is content restricted to $\mathcal{L}_{0}, \mathcal{L}_{1}$ it must remain true in this second scenario. Thus we have $\phi_{1} \wedge \phi_{2}$. Similarly, since our
initial assumption that $\square_{\mathcal{L}_{0}}\left(\phi_{1} \wedge \phi_{2} \rightarrow \theta\right)$ was true in the previous scenario and it is content-restricted to $\mathcal{L}_{0}, \mathcal{L}_{1}$, it must also remain true in the scenario currently under consideration. And since what is necessary is actual, we can derive $\phi_{1} \wedge \phi_{2} \rightarrow \theta$. Putting this together with $\phi_{1} \wedge \phi_{2}$ gives us that θ is true in the scenario under consideration.

Now in the previous paragraph, we have shown that an arbitrary scenario in which the $\mathcal{L}_{0}, \mathcal{L}_{1}$ facts from our first scenario are preserved and ϕ_{2} holds true must also be one in which θ. Thus we know that our first scenario was one in in which $\square \mathcal{L}_{0}, \mathcal{L}_{1}\left(\phi_{2} \rightarrow \theta\right)$, by conditional proof and then \square I. And since $\phi_{2} \rightarrow \theta$ is content-restricted to \mathcal{L}_{1}, we can use (the \square version of) ignoring deduce that $\square_{\mathcal{L}_{1}}\left(\phi_{2} \rightarrow \theta\right)$.

Thus we have shown that an arbitrary scenario in which ϕ_{1} is true and the \mathcal{L}_{0} facts are held fixed must be one in which $\square_{\mathcal{L}_{1}}\left(\phi_{2} \rightarrow \theta\right)$. From this it follows by $\square \mathrm{I}$ and conditional proof that $\square_{\mathcal{L}_{0}}\left(\phi_{1} \rightarrow \square_{\mathcal{L}_{1}}\left(\phi_{2} \rightarrow \theta\right)\right)$ as desired.

1	$\square_{\mathcal{L}_{0}}\left(\phi_{1} \wedge \phi_{2} \rightarrow \theta\right)$	assump. [1]
2	[$\left.\mathcal{L}_{0}\right]$	
3	$\square_{\mathcal{L}_{0}}\left(\phi_{1} \wedge \phi_{2} \rightarrow \theta\right)$	1 import [1]
4	ϕ_{1}	assump. [3]
5	$\square\left[\mathcal{L}_{0}, \mathcal{L}_{1}\right]$	
6	ϕ_{2}	assump. [6]
7	ϕ_{1}	4 import [3]
8	$\phi_{1} \wedge \psi$	6, 7 FOL [3,6]
9	$\square_{\mathcal{L}_{0}}\left(\phi_{1} \wedge \phi_{2} \rightarrow \theta\right)$	3 import [1]
10	$\phi_{1} \wedge \phi_{2} \rightarrow \theta$	$9 \square \mathrm{E}[1]$
11	θ	8,10 FOL [1,3,6]
12	$\phi_{2} \rightarrow \theta$	6,11 \rightarrow I [1,3]
13	$\square_{\mathcal{L}_{0}, \mathcal{L}_{1}}\left(\phi_{2} \rightarrow \theta\right)$	$5-12 \square \mathrm{I}[1,3]$
14	$\square_{\mathcal{L}_{1}}\left(\phi_{2} \rightarrow \theta\right)$	$13 \square \mathrm{Ign}[1,3]$
15	$\phi_{1} \rightarrow \square_{\mathcal{L}_{1}}\left(\phi_{2} \rightarrow \theta\right)$	$3,14 \rightarrow \mathrm{I}[1]$
16	$\square_{\mathcal{L}_{0}}\left(\phi_{1} \rightarrow \square_{\mathcal{L}_{1}}\left(\phi_{2} \rightarrow \theta\right)\right)$	2-15 $\square \mathrm{I}[1]$

Putting these two arguments together in the obvious first order logical way gives us $\square_{\mathcal{L}_{0}}\left(\phi_{1} \rightarrow \square_{\mathcal{L}_{1}}\left(\phi_{2} \rightarrow \theta\right)\right) \leftrightarrow \square_{\mathcal{L}_{0}}\left(\phi_{1} \wedge \phi_{2} \rightarrow \theta\right)$.

8.4 Box Relabeling

Lemma 8.4.1. Box Relabling If $R_{1} \ldots R_{n}$ are relations that occur in θ but not in \mathcal{L}, and $R_{1}^{\prime} \ldots R_{n}^{\prime}$ are relations with the same arities (i.e., the arity of R_{i} and R_{i}^{\prime} are the same) that don't occur in \mathcal{L} or θ, then $\Gamma \vdash \square_{\mathcal{L}} \theta \leftrightarrow$ $\square_{\mathcal{L}} \theta\left[R_{1} / R_{1}^{\prime} \ldots R_{n} / R_{n}^{\prime}\right]$.

Proof. We can prove this straighforwardly from Relabling and the fact that \square abbreviates $\neg \diamond \neg$

$$
\begin{array}{lll}
1 & \diamond_{\mathcal{L}} \neg \theta \leftrightarrow \diamond_{\mathcal{L}} \neg \theta\left[R_{1} / R_{1}^{\prime} \ldots R_{n} / R_{n}^{\prime}\right] & \text { ReL } \\
2 & \neg \diamond_{\mathcal{L}} \neg \theta \leftrightarrow \neg \diamond_{\mathcal{L}} \neg \theta\left[R_{1} / R_{1}^{\prime} \ldots R_{n} / R_{n}^{\prime}\right] & \text { 1, Fol } \\
3 & \square_{\mathcal{L}} \theta \leftrightarrow \square_{\mathcal{L}} \theta\left[R_{1} / R_{1}^{\prime} \ldots R_{n} / R_{n}^{\prime}\right] & \text { by def of box }
\end{array}
$$

8.5 Multiple Definitions Lemma

Lemma 8.5.1. Multiple Definition Lemma: Often we will want to make a chain of explicit definitions - to using Simple Comprehension or Modal Comprehension or Choice to specify the application of a series of relations $R_{1} \ldots R_{n}$ in turn. Thus we have

- ϕ
- $\diamond_{\mathcal{L}} \psi_{1}$, where ψ_{1} specifies a way that R_{1} could apply in terms of \mathcal{L} (so ψ_{1} content-restricted to \mathcal{L}, R_{1}),
- inside this \diamond context $\diamond_{\mathcal{L}, R_{1}} \psi_{2}$ where ψ_{2} specifies a way that R_{2} could apply in terms of \mathcal{L}, R_{1} (so ψ_{2} content-restricted to $\mathcal{L}, R_{1}, R_{2}$)
- etc.

And we can hence conclude that $\diamond_{\mathcal{L}}\left(\phi \wedge \psi_{1} \wedge \diamond_{\mathcal{L}, R_{1}}\left(\psi_{2} \wedge \diamond_{\mathcal{L}, R_{1}, R_{2}}\left(\psi_{3} \wedge \ldots\right)\right)\right)$.
In such cases we can infer the logical possibility of a single scenario $\diamond_{\mathcal{L}}\left(\phi \wedge \psi_{1} \wedge \ldots \psi_{n}\right)$

Proof. The desired conclusion follows immediately by repeated application of FOL to suitable instances of the \diamond-collapsing lemma above.

8.6 Simplified Choice

Simple Choice $\vdash(\exists x) P(x) \rightarrow \diamond_{P}\left(\exists x\left(P(x) \wedge P^{\prime}(x) \wedge(\forall y)\left[P^{\prime}(y) \rightarrow x=y\right]\right)\right.$

Suppose for $\rightarrow \mathrm{I}$, that $(\exists x) P(x)$.
We can use the Possible Powerset axiom schema to get the possibility that $\operatorname{class}()$ and ϵ behave like a layer of classes over the objects satisfying P and there is an object which behaves like the \varnothing alongside the objects satisfying P. Enter this \diamond_{P}-context and use Simple Comprehension to set $(\forall x)(F(x) \leftrightarrow$ $x=\varnothing)^{2}$ and then (entering this $\diamond_{P, \text { class }, \epsilon^{-}}$-context), the possibility that R

[^1]relates \varnothing to each object satisfying P [i.e., $(\forall x)(\forall y) R(x, y) \leftrightarrow x=\varnothing \wedge P(y)]$.
Enter that $\diamond_{P, c l a s s, \epsilon, F}$-context.
Now apply Choice to get the $\diamond_{F, R}$ of an R^{\prime} which takes the single object in its domain (\varnothing) to a single object. By Ignoring (and the fact that the formula $\forall x \forall y\left(R^{\prime}(x, y) \rightarrow R(x, y)\right) \wedge\left[\forall x F(x) \rightarrow \exists!y R^{\prime}(x, y)\right.$ is content restricted to $\mathrm{F}, \mathrm{R})$ we can conclude that the above scenario is also $\diamond_{P, c l a s s, \in, F, R}$. Enter the latter \diamond. By simple comprehension we can have $\diamond_{P, \text { class }, \epsilon, R, F, R^{\prime}} P^{\prime}$ applies to the single object which R^{\prime} relates \varnothing to.

Enter this final \diamond context. Because our biconditionals characterizing R, F and R^{\prime} are suitably content-restricted, we can import them through all the \diamond_{s} for use in the current $\diamond_{P, R, F, R^{\prime}}$ context. Thus we can deduce that $(\exists x)\left(P(x) \wedge P^{\prime}(x) \wedge(\forall y)\left[P^{\prime}(y) \rightarrow x=y\right]\right)$ is true in this $\diamond_{P, c l a s s, \in, R, F R^{\prime}}$ context.

Leaving this context, we can conclude that $\diamond_{P}(\exists x)\left(P(x) \wedge P^{\prime}(x) \wedge\right.$ $\left.(\forall y)\left[P^{\prime}(y) \rightarrow x=y\right]\right)$ by $\diamond \mathrm{E}$. Now this claim is content restricted to P, so we can pull it out of all the various \diamond contexts (each of which holds fixed the application of P) one by one.

Thus, we can conclude $\vdash(\exists x) P(x) \rightarrow \diamond_{P}\left(\exists x\left(P(x) \wedge P^{\prime}(x) \wedge(\forall y)\left[P^{\prime}(y) \rightarrow\right.\right.\right.$ $x=y]$), as desired.

Simple Choice for N-tuples $\vdash(\exists \vec{x}) R(\vec{x}) \rightarrow \diamond_{R}\left(\exists \vec{x}\left(R^{\prime}(\vec{x}) \wedge(\forall \vec{y})\left[R^{\prime}(\vec{y}) \rightarrow\right.\right.\right.$ $\vec{x}=\vec{y}])$

We can prove all claims of this form by applying the following strategy. First suppose for $\rightarrow \mathrm{I}$, that $(\exists \vec{x}) R(\vec{x})$.

Now apply Possible Powerset a bunch of times (holding fixed R and
entering \diamond s after each time) until you have enough layers of sets to have sets corresponding to \vec{x} (as per the usual set theoretic way of associating ordered n -tuples with sets). By simple comprehension, P could apply to exactly those sets coding ntuples \vec{x} such that $R \vec{x}$. Enter this $\diamond_{R, \text { set } 1, \text { set } 2 \ldots \text { setn }}$ context. By the previous lemma we have $\diamond_{P}\left(\exists x\left(P(x) \wedge P^{\prime}(x) \wedge(\forall y)\left[P^{\prime}(y) \rightarrow x=y\right]\right)\right.$. By ignoring we can make this $\diamond_{P, R, \text { set }}^{1}$, set $_{2} \ldots$ set $_{n}$. Enter the latter \diamond context. All the facts characterizing the sets $_{i}$ are suitably content-restricted, so they can be imported. By simple comprehension, it is also logically possible (fixing all the relations mentioned above) that R^{\prime} applies to exactly single n-tuple \vec{x} coded by the unique set which P^{\prime} applies to. So, by importing all the previously mentioned facts characterizing R, P, P^{\prime} and the $s e t_{i}$, and then applying a bunch of first order logic we can derive that $\left(\exists \vec{x}\left(R(\vec{x}) \wedge R^{\prime}(\vec{x}) \wedge\right.\right.$ $\left.(\forall \vec{y})\left[R^{\prime}(\vec{y}) \rightarrow \vec{x}=\vec{y}\right]\right)$.

Finally, we can leave the above \diamond context and conclude that $\diamond_{R}\left(\exists \vec{x}\left(R^{\prime}(\vec{x}) \wedge\right.\right.$ $\left.(\forall \vec{y})\left[R^{\prime}(\vec{y}) \rightarrow \vec{x}=\vec{y}\right]\right)$, by $\operatorname{In} \diamond$. Since this formula is content restricted to R, so we can bring it out of all the \diamond contexts we have entered (all of which hold fixed R), just as above.

This gives us $\diamond_{R}\left(\exists \vec{x}\left(R^{\prime}(\vec{x}) \wedge(\forall \vec{y})\left[R^{\prime}(\vec{y}) \rightarrow \vec{x}=\vec{y}\right]\right)\right.$, and thus the desired conditional.

[^0]: ${ }^{1}$ That is to say, we enter a $\square \mathrm{I}$ context which holds fixed \mathcal{L}_{0} and assume for $\rightarrow I$ that $\phi_{1} \wedge \phi_{2}$.

[^1]: ${ }^{2}$ Here and in the rest of the proof I will use claims of the form $\phi(\varnothing)$ to abbreviate claims that everything which behaves like the empty set satisfies ϕ i,e. claims of the form $(\exists x)[\operatorname{class}(x) \wedge \forall y \neg y \in x \wedge \phi(x)]$.

