Chapter 4

The Formal System I: Basic Rules

4.1 Rules Inherited from First Order Logic

With the language of logical possibility \mathcal{L} in place, I will now introduce some inference rules for reasoning about logical possibility. I will recursively define the set of strings which constitute proofs in my deductive system by listing closure conditions in this chapter and the next.¹ Let $\Gamma, \Gamma_1, \Gamma_2$ be finite sets of formulas, and $\Gamma \vdash \theta$ express the claim that one can prove θ given the assumptions in Γ .

My closure conditions begin, boringly, with the following principles

¹As usual, I will say that all variables that occur in an atomic formula are free. If a variable occurs free (or bound) in θ or in ψ , then that same occurrence is free (or bound) in $\neg \theta$, $(\theta \land \psi)$, $(\theta \lor \psi)$, and $(\theta \rightarrow \psi)$ and $\Diamond \theta$ and $\Box \theta$. That is, the (unary and binary) connectives do not change the status of variables that occur in them. All occurrences of the variable v in θ are bound in $\forall v\theta$ and $\exists v\theta$. Any free occurrences of v in θ are bound by the initial quantifier. All other variables that occur in θ are free or bound in $\forall v\theta$ and $\exists v\theta$, as they are in θ .

corresponding to standard inference rules for first order logic, (which I take from the Stanford Encyclopedia article on classical logic²).

(As) If
$$\phi$$
 is a member of Γ , then $\Gamma \vdash \phi$.

- (\wedge I) If $\Gamma_1 \vdash \theta$ and $\Gamma_2 \vdash \psi$, then $\Gamma_1, \Gamma_2 \vdash (\theta \land \psi)$.
- (\wedge E) If $\Gamma \vdash (\theta \land \psi)$ then $\Gamma \vdash \theta$; and if $\Gamma \vdash (\theta \land \psi)$ then $\Gamma \vdash \psi$.
- (\vee I) If $\Gamma \vdash \theta$ then $\Gamma_1 \vdash \theta \lor \psi$; if $\Gamma \vdash \psi$ then $\Gamma \vdash \theta \lor \psi$.
- $(\vee E)$ If $\Gamma_1 \vdash (\theta \lor \psi)$, $\Gamma_2, \theta \vdash \phi$ and $\Gamma_3, \psi \vdash \phi$, then $\Gamma_1, \Gamma_2, \Gamma_3 \vdash \phi$.
- $(\rightarrow I)$ If $\Gamma, \theta \vdash \psi$, then $\Gamma \vdash (\theta \rightarrow \psi)$.
- $(\rightarrow E)$ If $\Gamma_1 \vdash (\theta \rightarrow \psi)$ and $\Gamma_2 \vdash \theta$, then $\Gamma_1, \Gamma_2 \vdash \psi$.
- $(\neg I)$ If $\Gamma_1, \theta \vdash \psi$ and $\Gamma_2, \theta \vdash \neg \psi$, then $\Gamma_1, \Gamma_2 \vdash \neg \theta$.
- (DNE) If $\Gamma \vdash \neg \neg \theta$ then $\Gamma \vdash \theta$.
- $(\forall E)$ If $\Gamma \vdash \forall v\theta$, then $\Gamma \vdash \theta(v|v')$, provided that v' is free for v in θ .³

 $(\forall I)$ If $\Gamma \vdash \theta$ and the variable v does not occur free in any member of Γ , then $\Gamma \vdash \forall v \theta$.

(=I) $\Gamma \vdash v = v$, where v is any variable.

(=E) If $\Gamma_1 \vdash v_1 = v_2$ and $\Gamma_2 \vdash \theta$, then $\Gamma_1, \Gamma_2 \vdash \theta'$, where θ' is obtained from θ by replacing zero or more occurrences of v_1 with v_2 , provided that no bound variables are replaced, and all substituted occurrences of v_2 are free.

- $(\perp I)$ If $\Gamma \vdash \psi \land \neg \psi$ then $\Gamma \vdash \bot$.
- $(\perp E)$ If $\Gamma, \theta \vdash \perp$ then $\Gamma \vdash \neg \theta$.

For convenience, I will also include the following inference rules for \exists

 $^{^2}http://plato.stanford.edu/entries/logic-classical/ , with straightforward simplifications arising from the fact that my language <math display="inline">\mathcal L$ does not contain any constants

³That is, if substituting v with v' does not lead to any variable which was antecedently free becoming bound. Here $\theta(v|v')$ stands for the result of substituting *all* free instances of v in θ with instances of v'.

whose validity is straightforward to demonstrate using the definition of \exists (as an abbreviation for $\neg \forall \neg$).

(\exists I) If $\Gamma \vdash \theta$, then $\Gamma \vdash \exists v \theta'$, where θ' is obtained from θ by substituting the variable v' for zero or more occurrences of a variable v, provided that (1) all of the replaced occurrences of v are free in θ , and (2) all of the substituted occurrences of v' are free in θ .

($\exists E$) If $\Gamma_1 \vdash \exists v \theta$ and $\Gamma_2, \theta \vdash \phi$, then $\Gamma_1, \Gamma_2 \vdash \phi$, provided that v does not occur free in ϕ , nor in any member of Γ_2 .

In order to state analogous inference rules for the \Box and \diamondsuit , I will define a sense in which a sentence can be *content restricted* to a finite list of relations \mathcal{L} . Note that, just like the relations subscripted by a \diamondsuit or \Box , the order of the relations in \mathcal{L} does not matter, so we may freely take intersections or talk of one list containing another without concern for order.

4.2 Basic \diamond Rules

4.2.1 Content-restriction

In reasoning about logical possibility, it will be useful to distinguish a class of sentences whose truth depends only on the facts about a list \mathcal{L} of relations, i.e., those sentences ϕ such that $\diamond_{\mathcal{L}} \phi$ intuitively entails ϕ . We will call such a sentence *content restricted to* \mathcal{L} . For example, if \mathcal{L} is the list Person(·), Loves(·, ·) then the claim 'every person loves something', i.e., $(\forall x)$ [Person(x) \Longrightarrow ($\exists y$)Loves(x, y)], is content restricted to \mathcal{L} . In contrast the sentence 'every thing loves some thing', i.e., $(\forall x)(\exists y)(\text{Loves}(x, y))$, is not content restricted as it's truth depends on the existence of objects that neither Person nor Loves⁴ applies to. As these examples suggest, sentences are content restricted if only the relations from \mathcal{L} are mentioned and every quantifier is restricted to range over elements that belong to some tuple in the extension of a relation in \mathcal{L} . The following definitions capture this intuition.

Definition Let $y \in \text{Ext}(R_1, \ldots, R_n)$ abbreviate the formula

$$\bigvee_{\substack{1 \le i \le n \\ 1 \le j \le l_i}} (\exists x_1) \dots (\exists x_{j-1}), (\exists x_{j+1}), \dots, (\exists x_{l_i}) R_i(x_1, \dots, x_{j-1}, y, x_{j+1}, \dots, x_{l_i})$$

where l_i is the arity of R_i and $\bigvee_{\substack{1 \leq i \leq n \\ 1 \leq j \leq l_i}} \phi_{i,j}$ indicates the disjunction $\phi_{i,j}$ over all indicated values for i and j.

Thus, $y \in \text{Ext}(R_1, \dots, R_n)$ is the formula asserting that some tuple \vec{v} including y satisfies some $R_i(\vec{v})$.

Definition I will say that a sentence ϕ is **explicitly content-restricted** to a list \mathcal{L} if it is a member of the smallest set S satisfying:

- \perp is in S
- If v_i, v_j are variables the formula $v_i = v_j$ is in S
- If v_i is a variable and $R_i \in \mathcal{L}$ then $R_i(v_j)$ is in S
- If $\psi \in S$ and $\rho \in S$ then $\neg \psi$, $\psi \lor \rho$, $\psi \land \rho$ and $\psi \to \rho$ are all in S
- If $\psi \in S$ and \mathcal{L} is non-empty then $\exists y (y \in \text{Ext}(\mathcal{L}) \land \psi)$ is in S

⁴By this, I mean objects which are not part of any pair in the extension of Loves.

- If $\psi \in S$ and \mathcal{L} is non-empty then $\forall y(y \in \text{Ext}(\mathcal{L}) \to \psi)$ is in S
- If $\phi = \diamondsuit_{\mathcal{L}'} \psi$, where ψ is a sentence and $\mathcal{L}' \subseteq \mathcal{L}$ then $\phi \in S$. Note that ψ need not be in S

The last clause is motivated by the fact that the truthvalue of $\diamond_{\mathcal{L}'}\psi$ is completely determined by facts about the relations in \mathcal{L}' . Furthermore, as no free variables are allowed in $\diamond_{\mathcal{L}'}\psi$ its truth value is unaffected by any external quantification.

Thus, for example, if \mathcal{L} is a list that contains (exactly) a two-place relation R and a one place relation Q, then $(\forall x)(\forall y)(x = y)$ is not contentrestricted to \mathcal{L} . Neither is $(\exists x)(Q(x) \land K(x))$. But $(\forall x)[x \in \operatorname{Ext}(R) \rightarrow$ $(\forall y)(y \in \operatorname{Ext}(R) \rightarrow [R(x,y) \rightarrow Q(y)]])^5$ (which is first order logically equivalent to $(\forall x)(\forall y)[R(x,y) \rightarrow Q(y)])$ is content-restricted to \mathcal{L} . And so is $\diamond_R[(\forall x)(R(x,x) \land (\exists y)S(x,y))].$

Also note the following consequences of the definition above:

- If *L* is a sublist of *L'*, then all formulae φ which are content restricted to *L* are also content restricted to *L'*.
- A sentence is content restricted to the empty list \mathcal{E} iff it is a truth functional combination of unsubscripted \Box or \diamondsuit sentences or \bot .

As you may have noticed, explicitly content-restricted sentences are generally long and unwieldy. This can be annoying when writing up proofs whose inference steps can only (strictly speaking) be applied to sentences

⁵i.e. $(\forall x)[(\exists k)(R(x,k) \lor R(k,x)) \to (\forall y)[(\exists k')(R(y,k') \lor R(k',y)) \to (R(x,y) \to Q(x))]]$

which are content-restricted to some list \mathcal{L} . To avoid this annoyance, I make the following definition.

Definition A sentence ϕ is **implicitly content-restricted** to \mathcal{L} if there is a sentence ψ explicitly content restricted to \mathcal{L} and $\phi \leftrightarrow \psi$ can be derived (using no assumptions) using the above inference rules.

I will then frequently use the short hand of applying rules which (strictly speaking) can only be applied to content-restricted sentences to implicitly content restricted sentences – taking the work of using first order logic to deduce the explicitly content-restricted form of a sentence before applying the relevant rule (and then transforming it back after applying the rule) for granted.

4.2.2 Rules

I can now introduce the core inference rules and axiom schemas which govern reasoning with \Box and \diamond in my formal system.

(\diamond I) Diamond Introduction. If $\Gamma \vdash \theta$ and θ is a sentence, then $\Gamma \vdash \diamond_{\mathcal{L}} \theta$

This rule captures the idea that what is actual must also be logically possible, even while holding fixed the facts any list of relations \mathcal{L} one might care to specify.

Examples:

"There are two cats" ⇒ "It is logically possible, given what cats there are, that there are two cats".

"There are two cats" ⇒ "It is logically possible, given what dogs there are, that there are two cats".

($\diamond \mathbf{E}$) Diamond Elimination. If $\Gamma \vdash \diamond_L \theta$ and θ is content-restricted to \mathcal{L} then $\Gamma \vdash \theta$

This rule expresses the idea that when θ is content-restricted to \mathcal{L} , the truth value of θ is totally determined by the facts about \mathcal{L} .

For instance:

- "It is logically possible, given what cats there are, that there are two cats" ⇒ "There are two cats"
- BUT NOT: "It is logically possible, given what dogs there are, that there are two cats" ⇒ "There are two cats"

Note that the second inference is not permitted by my rule because θ ("there are two cats") is not content-restricted to the list $\{dog(\cdot)\}$

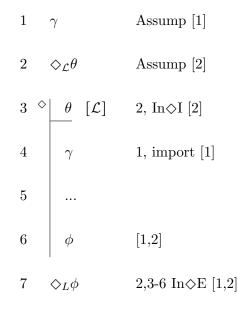
$(In\diamond)$ Inner Diamond.

Suppose $\Gamma_1 \vdash \Diamond_L \theta$. If $\Gamma_2, \theta \vdash \phi$, where $\Gamma_2 = \gamma_1 \dots \gamma_m$ is a list of sentences which are content-restricted to \mathcal{L} . Then $\Gamma_1, \Gamma_2 \vdash \Diamond_{\mathcal{L}'} \phi$ for any $\mathcal{L}' \subseteq \mathcal{L}$.

This inference rule captures reasoning of the following form. Given the facts about \mathcal{L} , it's possible that θ . Any scenario where θ is true while the facts about \mathcal{L} are held fixed must also be one in which the premises $\gamma_1 \wedge ... \wedge \gamma_m$ are true (because these sentences are content-restricted to \mathcal{L}). Thus it must be possible, given the facts about \mathcal{L} , that $\theta \wedge \gamma_1 \wedge ... \wedge \gamma_m$. As a matter of logic, any scenario in which $\theta \wedge \gamma_1 \wedge ... \wedge \gamma_m$ is one in which ϕ . So, it must be

possible given the facts about \mathcal{L} that ϕ . And since $\mathcal{L}' \subseteq \mathcal{L}$, ϕ must also but possible holding fixed only the facts about \mathcal{L}' .

I will use some visually suggestive notation to keep track of inferences of this form, as follows:



Intuitively speaking, the forked line going from 3-6 above separates off a location for reasoning about a logically possible scenario in which θ is true while all the facts about \mathcal{L} in our current context are preserved.

A line ρ can be written down inside the " $\diamond_{\mathcal{L}}$ context" governed by the claim that $\diamond_{\mathcal{L}} \theta$ if

- $\rho = \theta$
- $\rho = \gamma$ for some γ which is content-restricted to \mathcal{L} and occurs on an earlier line in the proof which is in the same context as the $\diamond_{\mathcal{L}} \theta$ statement used to introduce this inner diamond context.

• ρ follows from previous lines within this \diamondsuit context by one of the inference rules for reasoning about logical possibility presented in this paper.

One can leave $\diamond_{\mathcal{L}}$ context above by going from knowledge that ϕ holds within this context to the conclusion that $\diamond_{\mathcal{L}'}\phi$ holds outside it, provided that \mathcal{L}' is a sublist of \mathcal{L} .

Example of Deploying $In\diamondsuit$:

Consider the following very short argument.

Given what cats and hunters there are, its logically possible that something is both a cat and a hunter. \Rightarrow Given what cats there are, its logically possible that something is both a cat and a hunter.

We can capture this argument in my system as follows.

$$1 \quad \diamondsuit_{cat,hunter}(\exists x)(cat(x) \land hunter(y)) \qquad [1]$$

$$2 \quad \diamondsuit \qquad (\exists x)(cat(x) \land hunter(y)) \quad [cat,hunter] \qquad 1 \quad In \Diamond I, \ [1,2]$$

$$3 \quad (\exists x)(cat(x) \land hunter(y)) \qquad 2 \quad repetition^{6} \ [1,2]$$

$$4 \quad \diamondsuit_{cat}(\exists x)(cat(x) \land hunter(y)) \qquad 2-3, \ In \Diamond E \ [1]$$

Thus $\diamond_{cat,hunter}(\exists x)(cat(x) \land hunter(y)) \vdash \diamond_{cat}(\exists x)(cat(x) \land hunter(y)).$

⁶strictly speaking this repetition is not necessary

Note that $\{cat\}$ is a sublist of $\{cat, hunter\}$ and no extra premises are used in the deduction of ϕ from ϕ , so the requirements for Inn \diamond E are satisfied.

Note: the requirement that each γ_i be content-restricted to \mathcal{L} prevents us from importing facts about objects which don't satisfy any of the relations in \mathcal{L} into our reasoning about what the relevant scenario \mathcal{L} must be like. For example, consider the following *invalid* inference.

"There is something that is not a cat." "It is logically possible, given what cats there are, that everything is a cat." \Rightarrow "It is logically possible given what cats there are, that everything is a cat and something is not a cat."

1
$$(\exists x) \neg cat(x)$$
 [1]

$$2 \quad \diamondsuit_{cat}(\forall y)cat(y) \qquad [2]$$

$$3 \quad \diamond \qquad (\forall y)cat(y) \quad [cat] \qquad 2, \text{ In} \diamond \text{I}$$

$$4 \quad (\exists x) \neg cat(x) \qquad 2 \text{ import } [1] \text{ (INVALID)}$$

$$5 \quad (\exists x) \neg cat(x) \land (\forall y)cat(y) \qquad 3, 4 \land \text{I} \ [1,2,3]$$

$$6 \quad \diamondsuit[(\exists x) \neg cat(x) \land (\forall y)cat(y)] \qquad 1, 3-5 \text{ In} \diamondsuit \text{ E} \ [1,2]$$

We cannot import [4] from line 1 because only sentences content restricted to [cat()] can be imported. $(\diamond \text{ Ign}) \diamond \text{ Ignoring. Suppose } \theta \text{ is content-restricted to } \mathcal{L}, R_1, \dots, R_n$ and $S_1 \dots S_m$ are relations not among $\mathcal{L}, R_1, \dots, R_n$. If $\Gamma_1 \vdash \diamond_{\mathcal{L}} \theta$ then $\Gamma_1 \vdash \diamond_{\mathcal{L}} S_1 \dots S_m \theta$. Conversely, if $\Gamma_1 \vdash \diamond_{\mathcal{L}} S_1 \dots S_m \theta$ then $\Gamma_1 \vdash \diamond_{\mathcal{L}} \theta$.

Remember that when a formula is content-restricted to \mathcal{L} , its truth depends only on facts about \mathcal{L} . This principle reflects this intuition by allowing one to ignore other facts.

Examples:

- It is possible, given what cats there are, that there every cat admires a distinct dog ↔ It is possible, given what cats and dolphins there are, that every cat admires a different dog.
- But NOT: It is possible, given what cats there are, that there are exactly 3 objects ↔ It is possible, given what cats and dolphins there are, that there are exactly 3 objects.

This inference is not permitted because the claim that there are exactly 3 objects is not content restricted to any list of relations including *cats()* but not *dolphin()*.

 And NOT: It is possible, given what cats there are, that every cat admires a distinct dog ↔ It is possible, given what cats and dogs there are, that every cat admires a distinct dog.

Here θ is content restricted to {cat, dog, admires}, but for this inference to be permitted θ would have to be content restricted to a list that didn't include the relation dog. For each of the \diamondsuit principles above, an analogous inference involving \Box can be justified, exploiting the fact that $\Box_{\mathcal{L}}\phi$ abbreviates $\neg \Box_{\mathcal{L}} \neg \phi$. See Appendix 4.4 for details. Also like \exists the choice to define \Box_{\dots} in terms of \diamondsuit_{\dots} rather than vice-versa was arbitrary and either choice yields the same results.

4.3 Example: Pasting Lemma

Let us now get a little experience with how these basic inference rules work together, by using them to prove the following helpful lemma.

Lemma 4.3.1. (P) Pasting Let \mathcal{I} , \mathcal{J} and \mathcal{L} be pairwise disjoint sets of relations. If $\diamond_{\mathcal{L}} \phi$, where ϕ is content restricted to \mathcal{L}, \mathcal{I} and $\diamond_{\mathcal{L}} \psi$, where ψ is content-restricted to \mathcal{L}, \mathcal{J} , then $\diamond_{\mathcal{L}} (\phi \land \psi)$.

One cannot generally infer from $\Diamond_L \phi$ and $\Diamond_L \psi$ to $\Diamond_L (\phi \land \psi)$; consider the case where ϕ says there are exactly 8 million things and ψ says there are exactly 9 million things. However, this principle says that one *can* make this inference when ϕ and ψ describe suitably disjoint aspects of the universe (outside of the objects satisfying relations in \mathcal{L}).

We can prove this lemma using the basic inference rules and axiom schemas above as follows:

Proof. Let ϕ be content restricted to \mathcal{L}, \mathcal{I} and ψ to \mathcal{L}, \mathcal{J} , as per the antecedent.

$$1 \quad \diamond_{\mathcal{L}} \phi \qquad [1]$$

$$2 \quad \diamond_{\mathcal{L}} \psi \qquad [2]$$

$$3 \quad \diamond \quad \phi \quad [\mathcal{L}] \qquad 1, \text{ In} \diamond \text{I} [1]$$

$$4 \quad \diamond_{\mathcal{L}} \psi \qquad 2, \text{ import } [2]$$

$$5 \quad \diamond_{\mathcal{L}} \psi \qquad 4, \text{ Ign } [2]$$

$$6 \quad \diamond \quad \psi \quad [\mathcal{L}, \mathcal{I}] \qquad 5, \text{ In} \diamond \text{I} [2]$$

$$6 \quad \diamond \quad \psi \quad [\mathcal{L}, \mathcal{I}] \qquad 5, \text{ In} \diamond \text{I} [2]$$

$$7 \quad \phi \qquad 3, \text{ import } [1]$$

$$8 \quad \phi \land \psi \qquad 5, 6 \& \text{I} [1, 2]$$

$$9 \quad \diamond_{\mathcal{L}} (\phi \land \psi) \qquad 5, 6-8 \text{ In} \diamond \text{E} [1, 2]$$

$$10 \quad \diamond_{\mathcal{L}} (\phi \land \psi) \qquad 10, \diamond \text{E} [1, 2]$$

Informally, this deduction corresponds to the following reasoning:

Assume that $\diamond_{\mathcal{L}} \phi$ and $\diamond_{\mathcal{L}} \phi$. We can prove our claim by making two nested In \diamond arguments.

First enter the $\diamond_{\mathcal{L}}$ context associated with $\diamond_{\mathcal{L}}\phi$. In this context we clearly have ϕ . But we also know that $\diamond_{\mathcal{L}}\psi$ must remain true, because it was true in our previous context and it is content restricted to \mathcal{L} . We can

deduce from this that $\Diamond_{\mathcal{L},\mathcal{I}}\psi$ by Ignoring.

Now enter this second, interior, $\diamondsuit_{\mathcal{L},\mathcal{I}}$ context. Here we clearly have ψ . But we can import the fact that ϕ from the previous context, because it is content restricted to \mathcal{L}, \mathcal{I} . So we can deduce $\phi \wedge \psi$.

Now, leaving this inner $\diamond_{\mathcal{L},\mathcal{I}}$ context, we can conclude that $\diamond_{\mathcal{L}}(\phi \wedge \psi)$ (because \mathcal{L} is clearly a sublist of \mathcal{L},\mathcal{I}).

So, leaving the larger $\diamond_{\mathcal{L}}$ context we can conclude that $\diamond_{\mathcal{L}}(\diamond_{\mathcal{L}}(\phi \wedge \psi))$ holds in the situation we were originally considering.

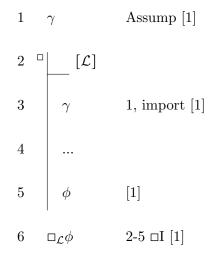
Finally, because $\diamond_{\mathcal{L}}(\phi \wedge \psi)$ is content restricted to \mathcal{L} , we can use $\diamond E$ to draw the desired conclusion $\diamond_{\mathcal{L}}(\phi \wedge \psi)$.

4.4 \Box Inf. Rules

Although the \Box is not an official item in our symbolism, but merely an abbreviation for $\neg \diamondsuit \neg$, it is often helpful to reason in terms of it. Thus we should note that the above inference rules can be used to vindicate analogous inference rules involving the \Box :

(\Box I) Box Introduction. If $\Gamma \vdash \theta$, where $\Gamma = \gamma_1 \dots \gamma_m$ and for all $i \gamma_i$ is content-restricted to \mathcal{L} then $\Gamma \vdash \Box_{\mathcal{L}} \theta$.

As with $In\diamondsuit$, I will use some visually suggestive notation to keep track of inferences of this form, as follows:



Intuitively speaking, the forked line going from 3-6 above demarcates reasoning about what an arbitrary logically possible scenario in which all the facts about \mathcal{L} (in our current context) are held fixed would have to be like.

A line ρ can be written down inside this " $\Box_{\mathcal{L}}$ introduction context" if

- $\rho = \gamma$ for some γ which is content-restricted to \mathcal{L} and occurs on an earlier line in the proof in the same context as the intended conclusion of this $\Box_{\mathcal{L}}$ I argument.
- ρ follows from previous lines in this $\Box_{\mathcal{L}}$ introduction context by one of the inference rules for reasoning about logical possibility presented in this paper.

One can leave $\Box_{\mathcal{L}}$ context above by going from knowledge that ϕ holds within this context to the conclusion that $\Box_{\mathcal{L}'}\phi$ holds outside it, provided that \mathcal{L}' is a sublist of \mathcal{L} . *Proof.* Suppose we have $\gamma_1 \dots \gamma_m \vdash \theta$ as above. Then we can derive $\Box_{\mathcal{L}} \theta$ from Γ as follows.

1	$\gamma_1\gamma_m$	[1]
	$\Diamond_{\mathcal{L}} \neg \theta$	[2]
3 <		In \diamondsuit I [2]
4		import $[\Gamma]$
5	 θ ⊥	
6	θ	$[2,\ \Gamma]$
7	1	3, $6 \perp I$
	$\diamondsuit_{\mathcal{L}}\bot$	2,3-7 In $\diamond E$ [2, \varGamma]
9	\bot	$8 \diamondsuit \mathrm{E} [2, \Gamma]$
10	$\neg \diamondsuit_{\mathcal{L}} \neg \theta$	2-9 ¬I $[\Gamma]$
11	$\Box_{\mathcal{L}} \theta$	$[\Gamma]$

(\square E) Box Elimination. If $\Gamma \vdash \square_{\mathcal{L}} \theta$ then $\Gamma \vdash \theta$

1	$\Box_{\mathcal{L}}\theta$	$[\Gamma]$
2	$\neg \diamondsuit_{\mathcal{L}} \neg \theta$	$[\Gamma]$
3	eg heta	Assump. [3]
4	$\Diamond_{\mathcal{L}} \neg \theta$	$4 \diamondsuit \mathrm{I} \ [3]$
5	Ţ	2, 4 \perp I [3, Γ]
6	$\neg \neg \theta$	3-5 ¬Ι [Γ]
7	θ	6 ¬E $[\Gamma]$