
Chapter 4

The Formal System I: Basic

Rules

4.1 Rules Inherited from First Order Logic

With the language of logical possibility L in place, I will now introduce some

inference rules for reasoning about logical possibility. I will recursively define

the set of strings which constitute proofs in my deductive system by listing

closure conditions in this chapter and the next.1 Let �,�
1

,�
2

be finite sets

of formulas, and � � ✓ express the claim that one can prove ✓ given the

assumptions in � .

My closure conditions begin, boringly, with the following principles

1As usual, I will say that all variables that occur in an atomic formula are free. If a
variable occurs free (or bound) in ✓ or in  , then that same occurrence is free (or bound)
in ¬✓, (✓ ∧  ), (✓ ∨  ), and (✓ →  ) and �✓ and �✓ . That is, the (unary and binary)
connectives do not change the status of variables that occur in them. All occurrences of
the variable v in ✓ are bound in ∀v✓ and ∃v✓. Any free occurrences of v in ✓ are bound by
the initial quantifier. All other variables that occur in ✓ are free or bound in ∀v✓ and ∃v✓,
as they are in ✓.
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24 CHAPTER 4. THE FORMAL SYSTEM I: BASIC RULES

corresponding to standard inference rules for first order logic,(which I take

from the Stanford Encyclopedia article on classical logic2).

(As) If � is a member of � , then � � �.
(∧I) If �

1

� ✓ and �
2

�  , then �
1

,�
2

� (✓ ∧  ).
(∧E) If � � (✓ ∧  ) then � � ✓; and if � � (✓ ∧  ) then � �  .
(∨I) If � � ✓ then �

1

� ✓ ∨  ; if � �  then � � ✓ ∨  .
(∨E) If �

1

� (✓ ∨  ), �
2

, ✓ � � and �
3

, � �, then �
1

,�
2

,�
3

� �.
(→I) If �, ✓ �  , then � � (✓ →  ).
(→E) If �

1

� (✓ →  ) and �
2

� ✓ , then �
1

,�
2

�  .
(¬I) If �

1

, ✓ �  and �
2

, ✓ � ¬ , then �
1

,�
2

� ¬✓.
(DNE) If � � ¬¬✓ then � � ✓.
(∀E) If � � ∀v✓ , then � � ✓(v�v′), provided that v’ is free for v in ✓.3

(∀I) If � � ✓ and the variable v does not occur free in any member of � ,

then � � ∀v✓.
(=I) � � v = v, where v is any variable.

(=E) If �
1

� v
1

= v
2

and �
2

� ✓, then �
1

,�
2

� ✓′, where ✓′ is obtained

from ✓ by replacing zero or more occurrences of v
1

with v
2

, provided that no

bound variables are replaced, and all substituted occurrences of v
2

are free.

(� I) If � �  ∧ ¬ then � � �.
(� E) If �, ✓ � � then � � ¬✓.

For convenience, I will also include the following inference rules for ∃
2http://plato.stanford.edu/entries/logic-classical/ , with straightforward simplifications

arising from the fact that my language L does not contain any constants
3That is, if substituting v with v’ does not lead to any variable which was antecedently

free becoming bound. Here ✓(v�v′) stands for the result of substituting all free instances
of v in ✓ with instances of v′.
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whose validity is straightforward to demonstrate using the definition of ∃ (as

an abbreviation for ¬∀¬).
(∃I) If � � ✓, then � � ∃v✓′, where ✓′ is obtained from ✓ by substituting

the variable v′ for zero or more occurrences of a variable v, provided that (1)

all of the replaced occurrences of v are free in ✓, and (2) all of the substituted

occurrences of v′ are free in ✓.

(∃E) If �
1

� ∃v✓ and �
2

, ✓ � �, then �
1

,�
2

� �, provided that v does not

occur free in �, nor in any member of �
2

.

In order to state analogous inference rules for the � and �, I will define a

sense in which a sentence can be content restricted to a finite list of relations

L. Note that, just like the relations subscripted by a � or �, the order of

the relations in L does not matter, so we may freely take intersections or

talk of one list containing another without concern for order.

4.2 Basic � Rules

4.2.1 Content-restriction

In reasoning about logical possibility, it will be useful to distinguish a class

of sentences whose truth depends only on the facts about a list L of re-

lations, i.e., those sentences � such that �L� intuitively entails �. We

will call such a sentence content restricted to L. For example, if L is the

list Person(⋅),Loves(⋅, ⋅) then the claim ‘every person loves something’, i.e.,

(∀x) [Person(x) �⇒ (∃y)Loves(x, y)], is content restricted to L. In con-

trast the sentence ‘every thing loves some thing’, i.e., (∀x)(∃y)(Loves(x, y)),
is not content restricted as it’s truth depends on the existence of objects that
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neither Person nor Loves4 applies to. As these examples suggest, sentences

are content restricted if only the relations from L are mentioned and every

quantifier is restricted to range over elements that belong to some tuple

in the extension of a relation in L. The following definitions capture this

intuition.

Definition Let y ∈ Ext(R
1

, . . .Rn) abbreviate the formula

�
1≤i≤n
1≤j≤l

i

(∃x
1

) . . . , (∃xj−1), (∃xj+1), . . . , (∃xl
i

)Ri(x1, . . . , xj−1, y, xj+1, . . . , xl
i

)

where li is the arity of Ri and �1≤i≤n
1≤j≤l

i

�i,j indicates the disjunction �i,j

over all indicated values for i and j.

Thus, y ∈ Ext(R
1

, . . .Rn) is the formula asserting that some tuple �v
including y satisfies some Ri(�v).
Definition I will say that a sentence � is explicitly content-restricted

to a list L if it is a member of the smallest set S satisfying:

• � is in S

• If vi, vj are variables the formula vi = vj is in S

• If vi is a variable and Ri ∈ L then Ri(vj) is in S

• If  ∈ S and ⇢ ∈ S then ¬ ,  ∨ ⇢,  ∧ ⇢ and  → ⇢ are all in S

• If  ∈ S and L is non-empty then ∃y(y ∈ Ext(L) ∧  ) is in S

4By this, I mean objects which are not part of any pair in the extension of Loves.
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• If  ∈ S and L is non-empty then ∀y(y ∈ Ext(L)→  ) is in S

• If � =�L′ , where  is a sentence and L′ ⊆ L then � ∈ S. Note that

 need not be in S

The last clause is motivated by the fact that the truthvalue of �L′ is

completely determined by facts about the relations in L′. Furthermore, as

no free variables are allowed in �L′ its truth value is una↵ected by any

external quantification.

Thus, for example, if L is a list that contains (exactly) a two-place

relation R and a one place relation Q, then (∀x)(∀y)(x = y) is not content-
restricted to L. Neither is (∃x)(Q(x) ∧K(x)). But (∀x)[x ∈ Ext(R) →
(∀y)(y ∈ Ext(R)→ [R(x, y)→ Q(y)]])5 (which is first order logically equiv-

alent to (∀x)(∀y)[R(x, y) → Q(y)]) is content-restricted to L. And so is

�R[(∀x)(R(x,x) ∧ (∃y)S(x, y))].
Also note the following consequences of the definition above:

• If L is a sublist of L′, then all formulae � which are content restricted

to L are also content restricted to L′.

• A sentence is content restricted to the empty list E i↵ it is a truth

functional combination of unsubscripted � or � sentences or �.
As you may have noticed, explicitly content-restricted sentences are

generally long and unwieldy. This can be annoying when writing up proofs

whose inference steps can only (strictly speaking) be applied to sentences

5i.e. (∀x)[(∃k)(R(x, k) ∨ R(k, x)) → (∀y)[(∃k′)(R(y, k′) ∨ R(k′, y)) → (R(x, y) →
Q(x))]]
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which are content-restricted to some list L. To avoid this annoyance, I make

the following definition.

Definition A sentence � is implicitly content-restricted to L if there is

a sentence  explicitly content restricted to L and � ↔  can be derived

(using no assumptions) using the above inference rules.

I will then frequently use the short hand of applying rules which (strictly

speaking) can only be applied to content-restricted sentences to implicitly

content restricted sentences – taking the work of using first order logic to

deduce the explicitly content-restricted form of a sentence before applying

the relevant rule (and then transforming it back after applying the rule) for

granted.

4.2.2 Rules

I can now introduce the core inference rules and axiom schemas which govern

reasoning with � and � in my formal system.

(� I ) Diamond Introduction. If � � ✓ and ✓ is a sentence, then

� ��L✓

This rule captures the idea that what is actual must also be logically

possible, even while holding fixed the facts any list of relations L one might

care to specify.

Examples:

• “There are two cats” ⇒ “It is logically possible, given what cats there

are, that there are two cats”.
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• “There are two cats” ⇒ “It is logically possible, given what dogs there

are, that there are two cats”.

(� E ) Diamond Elimination. If � ��L✓ and ✓ is content-restricted

to L then � � ✓
This rule expresses the idea that when ✓ is content-restricted to L, the

truth value of ✓ is totally determined by the facts about L.

For instance:

• “It is logically possible, given what cats there are, that there are two

cats” ⇒ “There are two cats”

• BUT NOT: “It is logically possible, given what dogs there are, that

there are two cats” ⇒ “There are two cats”

Note that the second inference is not permitted by my rule because ✓ (“there

are two cats”) is not content-restricted to the list {dog(⋅)}
(In�) Inner Diamond.

Suppose �
1

��L✓. If �2, ✓ � �, where �2 = �1...�m is a list of sentences

which are content-restricted to L. Then �
1

,�
2

��L′� for any L′ ⊆ L.
This inference rule captures reasoning of the following form. Given the

facts about L, it’s possible that ✓. Any scenario where ✓ is true while the

facts about L are held fixed must also be one in which the premises �
1

∧...∧�m
are true (because these sentences are content-restricted to L). Thus it must

be possible, given the facts about L, that ✓ ∧ �
1

∧ ... ∧ �m. As a matter of

logic, any scenario in which ✓ ∧ �
1

∧ ...∧ �m is one in which �. So, it must be
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possible given the facts about L that �. And since L′ ⊆ L, � must also but

possible holding fixed only the facts about L′.
I will use some visually suggestive notation to keep track of inferences of

this form, as follows:

1 � Assump [1]

2 �L✓ Assump [2]

3 � ✓ [L] 2, In�I [2]
4 � 1, import [1]

5 ...

6 � [1,2]

7 �L� 2,3-6 In�E [1,2]

Intuitively speaking, the forked line going from 3-6 above separates o↵ a

location for reasoning about a logically possible scenario in which ✓ is true

while all the facts about L in our current context are preserved.

A line ⇢ can be written down inside the “�L context” governed by the

claim that �L✓ if

• ⇢ = ✓
• ⇢ = � for some � which is content-restricted to L and occurs on an earlier

line in the proof which is in the same context as the �L✓ statement

used to introduce this inner diamond context.
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• ⇢ follows from previous lines within this � context by one of the

inference rules for reasoning about logical possibility presented in this

paper.

One can leave �L context above by going from knowledge that � holds

within this context to the conclusion that �L′� holds outside it, provided

that L′ is a sublist of L.

Example of Deploying In�:
Consider the following very short argument.

Given what cats and hunters there are, its logically possible that

something is both a cat and a hunter.⇒ Given what cats there

are, its logically possible that something is both a cat and a

hunter.

We can capture this argument in my system as follows.

1 �cat,hunter(∃x)(cat(x) ∧ hunter(y)) [1]

2 � (∃x)(cat(x) ∧ hunter(y)) [cat, hunter] 1 In�I, [1,2]
3 (∃x)(cat(x) ∧ hunter(y)) 2 repetition6 [1,2]

4 �cat(∃x)(cat(x) ∧ hunter(y)) 2-3, In�E [1]

Thus�cat,hunter(∃x)(cat(x)∧hunter(y)) ��cat(∃x)(cat(x)∧hunter(y)).
6strictly speaking this repetition is not necessary
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Note that {cat} is a sublist of {cat, hunter} and no extra premises are used

in the deduction of � from �, so the requirements for Inn�E are satisfied.

Note: the requirement that each �i be content-restricted to L prevents us

from importing facts about objects which don’t satisfy any of the relations

in L into our reasoning about what the relevant scenario L must be like. For

example, consider the following invalid inference.

“There is something that is not a cat.” “It is logically possible,

given what cats there are, that everything is a cat.” ⇒ “It is

logically possible given what cats there are, that everything is a

cat and something is not a cat.”

1 (∃x)¬cat(x) [1]

2 �cat(∀y)cat(y) [2]

3 � (∀y)cat(y) [cat] 2, In�I
4 (∃x)¬cat(x) 2 import [1] (INVALID)

5 (∃x)¬cat(x) ∧ (∀y)cat(y) 3,4 ∧ I [1,2,3]

6 �[(∃x)¬cat(x) ∧ (∀y)cat(y)] 1, 3-5 In� E [1,2]

We cannot import [4] from line 1 because only sentences content restricted

to [cat()] can be imported.
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(� Ign) � Ignoring. Suppose ✓ is content-restricted to L,R
1

, . . .Rn

and S
1

. . . Sm are relations not among L,R
1

, . . .Rn. If �1 � �L✓ then �
1

�
�L,S1...Sm

✓. Conversely, if �
1

��L,S1...Sm

✓ then �
1

��L✓.

Remember that when a formula is content-restricted to L, its truth

depends only on facts about L. This principle reflects this intuition by

allowing one to ignore other facts.

Examples:

• It is possible, given what cats there are, that there every cat admires a

distinct dog ↔ It is possible, given what cats and dolphins there are,

that every cat admires a di↵erent dog.

• But NOT: It is possible, given what cats there are, that there are

exactly 3 objects ↔ It is possible, given what cats and dolphins there

are, that there are exactly 3 objects.

This inference is not permitted because the claim that there are exactly

3 objects is not content restricted to any list of relations including

cats() but not dolphin().
• And NOT: It is possible, given what cats there are, that every cat

admires a distinct dog ↔ It is possible, given what cats and dogs there

are, that every cat admires a distinct dog.

Here ✓ is content restricted to {cat, dog, admires}, but for this inference
to be permitted ✓ would have to be content restricted to a list that

didn’t include the relation dog.
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For each of the � principles above, an analogous inference involving � can

be justified, exploiting the fact that �L� abbreviates ¬�L ¬�. See Appendix

4.4 for details. Also like ∃ the choice to define �... in terms of �... rather

than vice-versa was arbitrary and either choice yields the same results.

4.3 Example: Pasting Lemma

Let us now get a little experience with how these basic inference rules work

together, by using them to prove the following helpful lemma.

Lemma 4.3.1. (P) Pasting Let I, J and L be pairwise disjoint sets of

relations. If �L�, where � is content restricted to L,I and �L , where  is

content-restricted to L,J , then �L(� ∧  ).

One cannot generally infer from �L� and �L to �L(� ∧ ); consider
the case where � says there are exactly 8 million things and  says there are

exactly 9 million things. However, this principle says that one can make this

inference when � and  describe suitably disjoint aspects of the universe

(outside of the objects satisfying relations in L).

We can prove this lemma using the basic inference rules and axiom

schemas above as follows:

Proof. Let � be content restricted to L,I and  to L,J , as per the an-

tecedent.
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1 �L� [1]

2 �L [2]

3 � � [L] 1, In�I [1]
4 �L 2, import [2]

5 �L,I 4, Ign [2]

6 �  [L,I] 5, In�I [2]
7 � 3, import [1]

8 � ∧  5,6 &I [1,2]

9 �L(� ∧  ) 5,6-8 In�E [1,2]

10 �L(�L(� ∧  )) 1,3-9 In�E [1,2]

11 �L(� ∧  ) 10, �E [1,2]

Informally, this deduction corresponds to the following reasoning:

Assume that �L� and �L�. We can prove our claim by making two

nested In� arguments.

First enter the �L context associated with �L�. In this context we

clearly have �. But we also know that �L must remain true, because it

was true in our previous context and it is content restricted to L. We can
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deduce from this that �L,I by Ignoring.

Now enter this second, interior, �L,I context. Here we clearly have  .

But we can import the fact that � from the previous context, because it is

content restricted to L,I. So we can deduce � ∧  .
Now, leaving this inner �L,I context, we can conclude that �L(� ∧  )

(because L is clearly a sublist of L,I).

So, leaving the larger �L context we can conclude that �L(�L(� ∧  ))
holds in the situation we were originally considering.

Finally, because �L(� ∧ ) is content restricted to L, we can use �E to

draw the desired conclusion �L(� ∧  ).

4.4 � Inf. Rules

Although the � is not an o�cial item in our symbolism, but merely an

abbreviation for ¬� ¬, it is often helpful to reason in terms of it. Thus we

should note that the above inference rules can be used to vindicate analogous

inference rules involving the �:
(� I ) Box Introduction. If � � ✓, where � = �

1

...�m and for all i �i

is content-restricted to L then � � �L✓.
As with In�, I will use some visually suggestive notation to keep track

of inferences of this form, as follows:
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1 � Assump [1]

2 � [L]
3 � 1, import [1]

4 ...

5 � [1]

6 �L� 2-5 �I [1]
Intuitively speaking, the forked line going from 3-6 above demarcates

reasoning about what an arbitrary logically possible scenario in which all the

facts about L (in our current context) are held fixed would have to be like.

A line ⇢ can be written down inside this “�L introduction context” if

• ⇢ = � for some � which is content-restricted to L and occurs on an

earlier line in the proof in the same context as the intended conclusion

of this �LI argument.

• ⇢ follows from previous lines in this �L introduction context by one of

the inference rules for reasoning about logical possibility presented in

this paper.

One can leave �L context above by going from knowledge that � holds

within this context to the conclusion that �L′� holds outside it, provided

that L′ is a sublist of L.
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Proof. Suppose we have �
1

...�m � ✓ as above. Then we can derive �L✓ from

� as follows.

1 �
1

...�m [1]

2 �L¬✓ [2]

3 � ¬✓ In� I [2]

4 �
1

...�m import [� ]

5 ...

6 ✓ [2, � ]

7 � 3, 6 � I

8 �L� 2,3-7 In�E [2,� ]

9 � 8 �E [2,� ]

10 ¬�L ¬✓ 2-9 ¬I [� ]
11 �L✓ [� ]

(� E ) Box Elimination. If � � �L✓ then � � ✓
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1 �L✓ [� ]

2 ¬�L ¬✓ [� ]

3 ¬✓ Assump. [3]

4 �L¬✓ 4 � I [3]

5 � 2, 4 � I [3,� ]

6 ¬¬✓ 3-5 ¬I [� ]
7 ✓ 6 ¬E [� ]
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