Chapter 6

Example: Lemmas about

Well-Orderings

To give a more visceral sense of how the above axioms work, I will now
present two proofs in my system of logical possibility that that mirror results
in set theory (which can be found in elementary texts like [4]).

In later chapters I will present proofs in a more informal style. However
I will try to make it clear to the reader how each of these proofs can be
expanded out into the fully formal proofs demonstrated below.

In what follows, I will sometimes use Ipx¢(z) to abbreviate 3xF(z) A ¢

and Vpz¢g(x) to abbreviate (Vz)(F(x) - ¢(x)).

6.1 Lemma A

Jech’s version of the first lemma I am going to prove says the following:

“If (W, <) is a well-ordered set and f: W — W is an increasing
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function, then = < f(x) for each x e W .7

We can express something like the same idea in the language of logical

possibility by making the following definitions:
Definition A two-place relation < well-orders the objects which satisfy F
iff

e < linearly orders the objects which satisfy F

— < is anti-symmetric
(Vo)(Vy)(x <ynry<z >x=y)
— < is transitive
(Vo)(Vy)(V2)(z<yrny<z-a<2)
— <is total on F

(Vo) (Vy)(F(z) A F(y) »x<yvy<z)

e F' < satisfy the Least Element Condition: If some element satisfying F

also satisfies G then there is a least element in F satisfying G:

Op<[(32)(F(z) A G(2)) = Q) (F(y) AG(y) A (V2)(F(2) A
G(z) »y<2))]

Definition A two place relation R behaves like an increasing function

from some F,< to G, <’ if
o (Vo)[F(z) > (Fy)(G(y) r R(x,y))]

o (Va)(Vy)[R(z,y) - (V2)(R(z,2) =y = 2)]
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o (Vz)(Vy)(Va')(Vy')[z <y AR(z,2") AR(y,y') - 2’ <y'].

I will sometimes abbreviate the above claim as F' <~p ;n. G <" since it
says that R behaves like an increasing function which maps from F < (the
Fs under <) to G <’ (the Gs under <’).

As usual, I will sometimes abbreviate the claim that x < y A -2 = y as
x<y.

Thus we can write a version of Jech’s Lemma follows:

Lemma A: “If R behaves like an increasing function from F, <

to F,< and the objects satisfying F' are well ordered by <, then

(Va)(VY)[F(x) A F(y) A R(z,y) > ~y<z]”

Proof. To prove Lemma A, we will use essentially the same reasoning which
Jech uses to prove his set theoretic version of this claim. He says: Let F' be
well-ordered by < and let R behave like an increasing function from F' to F
<. Suppose the conclusion of the lemma does not hold. Then by the fact
that F is well-ordered by <, there must be a least x such that f(z) <z, (i.e.
(Jy)(R(z,y) Ay <z). Consider y = f(x). Because y < x and R is increasing,
f(y) < f(x) =y. This contradicts the claim that x is the <-least z such that
F(z)n f(2)<z.

To mimic this reasoning, we first suppose that < well-orders the F's and
R behaves like an increasing function from the F's to the F's. Now we want to
consider the collection of objects satisfying F' which R maps below themselves
(just as in Jech’s proof). Our main difficulty will be in using the fact that

the F's are well-ordered by < (in the sense specified by the modal definition
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of well ordering above) to show that if there are any such objects, there must

be an <-least one.

By Simple Comprehension it is possible (while holding fixed the facts
about how the relations F, R and < indicated in curly braces apply) for the
otherwise-unused predicate G to apply to exactly those objects satisfying
F' and which R maps below themselves. Within this context, our initial
assumptions that < well-orders the F's and R behaves like an increasing
function from the F's to the F's must remain true (because they are content
restricted to F, R and <). So we can use the fact that the F,< satisfy the
Least Element condition, i.e. Op<(if G applies to any object satisfying F', it
applies to an <-least such object) to deduce the needed claim. So we have: if
R maps any object satisfying F' below itself, then then G applies to exactly

these objects, and there is a <-least object satisfying G.

Once we have this fact, we can derive the truth of the desired claim
that (Va)(Vy)[F(x)AF(y) AR(z,y) > -y < z] holds true within this special
context by exactly the same first order reasoning which Jech uses. Suppose
for contradiction that there were some such x that got mapped below itself
(in the sense above). Then we’d have a y such that R(z,y) Ay < x. By the
fact that R is a one-to-one increasing function, y < x and R maps z to y, we
know that R must map y to something strictly less than y'. But then G
must also apply to y, which contradicts the claim that z is the <-least object
satisfying G.

Thus we know that (Vz)(Vy)[F(x)AF(y)AR(z,y) > -y < x] holds true

Tt must map y to something < y because it is increasing and something # y because it
is one-to-one and R(x,y) and -z =y.
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within the special modal scenario being considered above. However, we can
note the above claim is content-restricted to F, R,<. Thus we can infer from
the mere fact that it could be true (while holding fixed the behavior of F, R

and <) to the conclusion that it is actually true.

Now the desired conclusion, and the overall conditional to be proved

follows immediately.

1 <well-orders the Fs A F < pine F' < 1]

2 Op<rVz[G(z) < pyR(z,y) Ay < 2] SC

3 ° lz[G(z) < ApyR(z,y) Any<z] {F,<,R} Ino I

4 < well-orders the Fs A F <~ g ine F <) 2 import [1]
5 Or<(IpzG(x) - Ipz[G(z) A (Vp2G(2) > < 2)]) 4 FOL [1]

6 Jx(F(x) AG(z)) = (Fpz[G(z) A(VpzG(2) > < 2)] 50E[1]

7 -[IpxIpy(R(x,y) Ay <z)] 3,4,6 FOL [1,4]
8  Orpcr-[IrrIpyR(z,y) Ay <x] 2-7 InGE [1]
9 S[3pzdpyR(z,y) Ay < z] 8 OFE [1]

10 VpaVpy(R(z,y) > -y <x) 9 FOL [1]

11 VepadpyR(x,y)A(y=xzVvy>x) 1, 10 FOL [1]
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O]

6.2 Lemma B

“No well-ordered set is isomorphic to an initial segment of itself”

Definition Iwill say that the Ry,... R, are isomorphic to the (R},...R,)
under some relation Z (henceforth written (R1,...Ry) 2z (R},... R},))

iff:

e 7 behaves like a bijection between the domain of objects in Ext(Ry,... Ry,)

and the domain of objects in Ext(R],... R},). More formally:

— (Vz)(z € Ext(Ry,...Ry) —» (Qys.t.Z(z,y))ry € Ext(R],... R.,)])
i.e., Z is functional over Ext(Ry,...R,) with a range within
Ext(R},...R},)) and

— (Vy)(y € Ext(RY,... R,) > (Rzs.t.Z(x,y)ry € Ext(Ry,...Rm)]),

i.e., Z maps one-to-one and onto all of Ezt(R],...R},)

e Z applies in a way that respects each R;, i.e., (VZ)(Vy)[Z(z1,y1) A
o NZ(Xn,yn) = (Ri(@)) < Ri(y;))], where if R; is an n-place relation

then ©; = 1, ...y and ¥; = y1,...Yn
We can then state a modal version of this claim as follows.

Claim to Prove: If the objects satisfying F' are well-ordered by
<then ~Op () [F(z)A(F;>) 2p (G;>)AV2(G(2) < [F(2)Az <
z])]
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Proof. Assume that the objects satisfying F' are well-ordered by <. Suppose
for contradiction that Gp o[ (3z)(F(x) A (V2)(G(2) « F(z) Az <x) A(F,>
) 2r (G,>))]. Consider any such scenario. The fact that the objects satisfying
F are well-ordered by < must remain true in this scenario (because it is
content-restricted to F,G,R and >). By first order logic and unpacking
definitions we can deduce that R therefore behaves like an increasing function

from F,< to F,< (the key fact is that R must respect <).

Now, to get contradiction, we can copy over Lemma A (we have just
seen that it can be proved from empty premises, so can we re-prove it as
needed, within any O or < context) and derive that R does not map any
object satisfying I strictly below itself. On the other hand, we know there
is an object x satisfying F which is > all objects satisfying G and that
(F,>) =g (G,>). Tt follows from this by simple first order logic that R maps
the any such z to a some object y < . Thus contradiction/the false (1)
would have to obtain in the (supposedly) logically possible scenario under

consideration.

Finally, we can export this 1 to our original situation (remembering that
the contradiction symbol 1 is content-restricted to every list of relations) and
thereby complete our proof. Informally, this corresponds to reasoning that
if it were Op[(Fx)(F(2) A (V2)(G(2) < F(2) Az <z) A (F,>) 2R (G,>))]
then it would also be & <L, which is false, so the original &g« claim cannot

be true.
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1 F is well-ordered by < [1]

2 on(3)(F(2) A (V2)(G(2) & F(z) Az <2) AF3) 20 (Gi>))] 2

3 <>*(Elx)(F(a:)/\(VZ)(G(z) > F(z)nz<z) A (F;>) 2p (G >){F, <} InoT 2]

4 F is well-ordered by < 1 import [1]

5 R behaves like an increasing function on F 4 FOL [2]

6 Well-Ord.: F < AR Inc. Func.:F - [VpaVrpyR(z,y) - -y < x] lemma A

7| VeaVey(R(z,y) - —y <) 6,7,8 FOL [1,2]

8 (Fy)(B(z,y) A G(y)) 5 FOL [5]

9 (3x)(Fy)(F(z) A F(y) A R(z,y) Ay <) 5,10 FOL [2,5]
10 L 9,11 FOL[1,2]
11 Ope(1) 2,3-10 InoE [1
12 1 11 OE [1,2]

13 =Op<[(F)(F(2) A (V2)(G(2) « F(2) Az <z) ANF,>) =g (G,>))] -1 [1,2]

So + F is well-ordered by <= -~ Op< [FoF (x) A Op(F;>) 2 (G;>) A
Vz2(G(z) < [F(2) A z<x])]
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