Chapter 6

Example: Lemmas about Well-Orderings

To give a more visceral sense of how the above axioms work, I will now present two proofs in my system of logical possibility that that mirror results in set theory (which can be found in elementary texts like [4]).

In later chapters I will present proofs in a more informal style. However I will try to make it clear to the reader how each of these proofs can be expanded out into the fully formal proofs demonstrated below.

In what follows, I will sometimes use $\exists_F x \phi(x)$ to abbreviate $\exists x F(x) \land \phi$ and $\forall_F x \phi(x)$ to abbreviate $(\forall x)(F(x) \rightarrow \phi(x))$.

6.1 Lemma A

Jech's version of the first lemma I am going to prove says the following:

"If (W, \leq) is a well-ordered set and $f: W \to W$ is an increasing

function, then $x \leq f(x)$ for each $x \in W$."

We can express something like the same idea in the language of logical possibility by making the following definitions:

Definition A two-place relation \leq **well-orders** the objects which satisfy F iff

- \leq linearly orders the objects which satisfy F
 - \leq is anti-symmetric

$$(\forall x)(\forall y)(x \le y \land y \le x \to x = y)$$

 $- \leq$ is transitive

$$(\forall x)(\forall y)(\forall z)(x \le y \land y \le z \to x \le z)$$

- \leq is total on F

$$(\forall x)(\forall y)(F(x) \land F(y) \to x \le y \lor y \le x)$$

F, ≤ satisfy the Least Element Condition: If some element satisfying F also satisfies G then there is a least element in F satisfying G:

$$\Box_{F,<}[(\exists x)(F(x) \land G(x)) \to (\exists y)(F(y) \land G(y) \land (\forall z)(F(z) \land G(z) \to y \le z))]$$

Definition A two place relation R behaves like an increasing function from some F, \leq to G, \leq' if

- $(\forall x)[F(x) \rightarrow (\exists y)(G(y) \land R(x,y))]$
- $(\forall x)(\forall y)[R(x,y) \rightarrow (\forall z)(R(x,z) \rightarrow y = z)]$

6.1. LEMMA A

•
$$(\forall x)(\forall y)(\forall x')(\forall y')[x \le y \land R(x,x') \land R(y,y') \to x' \le y'].$$

I will sometimes abbreviate the above claim as $F \leq \mapsto_{R,inc} G \leq '$ since it says that R behaves like an increasing function which maps from $F \leq$ (the Fs under \leq) to $G \leq '$ (the Gs under $\leq '$).

As usual, I will sometimes abbreviate the claim that $x \leq y \land \neg x = y$ as x < y.

Thus we can write a version of Jech's Lemma follows:

Lemma A: "If R behaves like an increasing function from F, \leq to F, \leq and the objects satisfying F are well ordered by \leq , then $(\forall x)(\forall y)[F(x) \land F(y) \land R(x, y) \rightarrow \neg y < x]$ "

Proof. To prove Lemma A, we will use essentially the same reasoning which Jech uses to prove his set theoretic version of this claim. He says: Let F be well-ordered by < and let R behave like an increasing function from F to F<. Suppose the conclusion of the lemma does not hold. Then by the fact that F is well-ordered by <, there must be a least x such that f(x) < x, (i.e. $(\exists y)(R(x,y) \land y < x))$. Consider y = f(x). Because y < x and R is increasing, f(y) < f(x) = y. This contradicts the claim that x is the \leq -least z such that $F(z) \land f(z) < z$.

To mimic this reasoning, we first suppose that < well-orders the Fs and R behaves like an increasing function from the Fs to the Fs. Now we want to consider the collection of objects satisfying F which R maps below themselves (just as in Jech's proof). Our main difficulty will be in using the fact that the Fs are well-ordered by \leq (in the sense specified by the modal definition

of well ordering above) to show that if there are any such objects, there must be an \leq -least one.

By Simple Comprehension it is possible (while holding fixed the facts about how the relations F, R and \leq indicated in curly braces apply) for the otherwise-unused predicate G to apply to exactly those objects satisfying F and which R maps below themselves. Within this context, our initial assumptions that < well-orders the Fs and R behaves like an increasing function from the Fs to the Fs must remain true (because they are content restricted to F, R and \leq). So we can use the fact that the F, \leq satisfy the Least Element condition, i.e. $\Box_{F,\leq}$ (if G applies to any object satisfying F, it applies to an \leq -least such object) to deduce the needed claim. So we have: if R maps any object satisfying F below itself, then then G applies to exactly these objects, and there is a \leq -least object satisfying G.

Once we have this fact, we can derive the truth of the desired claim that $(\forall x)(\forall y)[F(x) \land F(y) \land R(x, y) \rightarrow \neg y < x]$ holds true within this special context by exactly the same first order reasoning which Jech uses. Suppose for contradiction that there were some such x that got mapped below itself (in the sense above). Then we'd have a y such that $R(x, y) \land y < x$. By the fact that R is a one-to-one increasing function, y < x and R maps x to y, we know that R must map y to something strictly less than y^1 . But then G must also apply to y, which contradicts the claim that x is the \leq -least object satisfying G.

Thus we know that $(\forall x)(\forall y)[F(x) \land F(y) \land R(x, y) \rightarrow \neg y < x]$ holds true

¹It must map y to something $\leq y$ because it is increasing and something $\neq y$ because it is one-to-one and R(x, y) and $\neg x = y$.

within the special modal scenario being considered above. However, we can note the above claim is content-restricted to F, R, \leq . Thus we can infer from the mere fact that it could be true (while holding fixed the behavior of F, Rand \leq) to the conclusion that it is actually true.

Now the desired conclusion, and the overall conditional to be proved follows immediately.

1 < well-orders the
$$Fs \wedge F \leq \mapsto_{R,inc} F \leq [1]$$

$$2 \qquad \diamondsuit_{F,\leq,R} \forall z [G(z) \leftrightarrow \exists_F y R(z,y) \land y < z] \qquad \qquad \text{SC}$$

$$3 \diamond | \forall z[G(z) \leftrightarrow \exists_F yR(z, y) \land y < z] \{F, \leq, R\}$$
 In \diamond I

$$4 \langle \text{well-orders the } Fs \land F < \mapsto_{R,inc} F \leq \rangle$$
 2 import [1]

$$5 \Box_{F,\leq}(\exists_F xG(x) \rightarrow \exists_F x[G(x) \land (\forall_F zG(z) \rightarrow x \leq z)])$$
 4 FOL [1]

$$6 \exists x(F(x) \land G(x)) \rightarrow (\exists_F x[G(x) \land (\forall_F zG(z) \rightarrow x \leq z)])$$
 5 \Box E [1]

$$7 [\exists_F x \exists_F y(R(x, y) \land y < x)]$$
 3,4,6 FOL [1,4]

$$8 \diamond_{F,\leq,R} \neg [\exists_F x \exists_F yR(x, y) \land y < x]$$
 2-7 In \diamond E [1]

$$9 \neg [\exists_F x \exists_F yR(x, y) \land y < x]$$
 8 \diamond E [1]

$$10 \forall_F x \forall_F y(R(x, y) \rightarrow \neg y < x)$$
 9 FOL [1]

$$11 \forall_F x \exists_F yR(x, y) \land (y = x \lor y > x)$$
 1, 10 FOL [1]

6.2 Lemma B

"No well-ordered set is isomorphic to an initial segment of itself"

Definition I will say that the $R_1, \ldots R_m$ are isomorphic to the $\langle R'_1, \ldots R'_m \rangle$ under some relation Z (henceforth written $\langle R_1, \ldots R_m \rangle \cong_Z \langle R'_1, \ldots R'_m \rangle$) iff:

• Z behaves like a bijection between the domain of objects in $Ext(R_1, \ldots, R_m)$ and the domain of objects in $Ext(R'_1, \ldots, R'_n)$. More formally:

$$- (\forall x)(x \in Ext(R_1, \dots, R_m) \to (\exists !ys.t.Z(x, y)) \land y \in Ext(R'_1, \dots, R'_m)])$$

i.e., Z is functional over $Ext(R_1, \dots, R_m)$ with a range within
 $Ext(R'_1, \dots, R'_m)$ and

- $(\forall y)(y \in Ext(R'_1, \dots, R'_m) \to (\exists !xs.t.Z(x, y) \land y \in Ext(R_1, \dots, R_m)]),$ i.e., Z maps one-to-one and onto all of $Ext(R'_1, \dots, R'_m)$
- Z applies in a way that respects each R_i , i.e., $(\forall \vec{x})(\forall \vec{y})[Z(x_1, y_1) \land \dots \land Z(x_n, y_n) \to (R_i(\vec{x_i})) \leftrightarrow R'_i(\vec{y_i}))]$, where if R_i is an n-place relation then $\vec{x_i} = x_1, \dots x_n$ and $\vec{y_i} = y_1, \dots y_n$

We can then state a modal version of this claim as follows.

Claim to Prove: If the objects satisfying F are well-ordered by $\leq \text{then } \neg \diamondsuit_{F,\leq} (\exists x) [F(x) \land \langle F; \rangle) \cong_R \langle G; \rangle \land \forall z (G(z) \leftrightarrow [F(z) \land z < x])]$ Proof. Assume that the objects satisfying F are well-ordered by \leq . Suppose for contradiction that $\diamond_{F,<}[(\exists x)(F(x) \land (\forall z)(G(z) \leftrightarrow F(z) \land z < x) \land \langle F, >$ $\rangle \cong_R \langle G, > \rangle)]$. Consider any such scenario. The fact that the objects satisfying F are well-ordered by < must remain true in this scenario (because it is content-restricted to F, G, R and >). By first order logic and unpacking definitions we can deduce that R therefore behaves like an increasing function from F, \leq to F, \leq (the key fact is that R must respect \leq).

Now, to get contradiction, we can copy over Lemma A (we have just seen that it can be proved from empty premises, so can we re-prove it as needed, within any \Box or \diamond context) and derive that R does not map any object satisfying F strictly below itself. On the other hand, we know there is an object x satisfying F which is > all objects satisfying G and that $\langle F, \rangle \cong_R \langle G, \rangle$. It follows from this by simple first order logic that R maps the any such x to a some object y < x. Thus contradiction/the false (\bot) would have to obtain in the (supposedly) logically possible scenario under consideration.

Finally, we can export this \perp to our original situation (remembering that the contradiction symbol \perp is content-restricted to every list of relations) and thereby complete our proof. Informally, this corresponds to reasoning that if it were $\diamond_{F,<}[(\exists x)(F(x) \land (\forall z)(G(z) \leftrightarrow F(z) \land z < x) \land \langle F, \rangle) \cong_R \langle G, \rangle)]$ then it would also be $\diamond_{F,<}\perp$, which is false, so the original $\diamond_{F,<}$ claim cannot be true.

1	F is well-ordered by $<$	[1]
2	$\Diamond_{F,<}[(\exists x)(F(x) \land (\forall z)(G(z) \leftrightarrow F(z) \land z < x) \land \langle F; \rangle) \cong_R \langle G; \rangle)]$	[2]
3 <	$(\exists x)(F(x) \land (\forall z)(G(z) \leftrightarrow F(z) \land z < x) \land \langle F; \rangle) \cong_R \langle G; \rangle) \{F, <\}$	In \diamond I [2]
4	F is well-ordered by $<$	1 import [1]
5	R behaves like an increasing function on F	4 FOL [2]
6	Well-Ord.: F < $\land R$ Inc. Func.: $F \rightarrow [\forall_F x \forall_F y R(x, y) \rightarrow \neg y < x]$	lemma A
7	$\forall_F x \forall_F y (R(x,y) \to \neg y < x)$	6,7,8 FOL [1,2]
8	$(\exists y)(R(x,y) \land G(y))$	5 FOL [5]
9	$(\exists x)(\exists y)(F(x) \land F(y) \land R(x,y) \land y < x)$	5,10 FOL [2,5]
10		9,11 FOL[1,2]
11	$\diamondsuit_{F,<}(\bot)$	2,3-10 In¢E [1
12	\bot	$11 \diamondsuit \mathrm{E} [1,2]$
13	$\neg \diamondsuit_{F,<} \left[(\exists x) (F(x) \land (\forall z) (G(z) \leftrightarrow F(z) \land z < x) \land \langle F, \rangle \right] \cong_R \langle G, \rangle \right]$	$\neg I \ [1,2]$

So \vdash F is well-ordered by $\prec \neg \diamond_{F, \prec} [\exists x F(x) \land \diamond_{F, \prec} \langle F; \rangle \cong_R \langle G; \rangle \land \forall z (G(z) \leftrightarrow [F(z) \land z \lt x])]$

57

58 CHAPTER 6. EXAMPLE: LEMMAS ABOUT WELL-ORDERINGS