
Chapter 6

Example: Lemmas about

Well-Orderings

To give a more visceral sense of how the above axioms work, I will now

present two proofs in my system of logical possibility that that mirror results

in set theory (which can be found in elementary texts like [4]).

In later chapters I will present proofs in a more informal style. However

I will try to make it clear to the reader how each of these proofs can be

expanded out into the fully formal proofs demonstrated below.

In what follows, I will sometimes use ∃Fx�(x) to abbreviate ∃xF (x) ∧ �
and ∀Fx�(x) to abbreviate (∀x)(F (x)→ �(x)).

6.1 Lemma A

Jech’s version of the first lemma I am going to prove says the following:

“If (W,≤) is a well-ordered set and f ∶W →W is an increasing
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function, then x ≤ f(x) for each x ∈W .”

We can express something like the same idea in the language of logical

possibility by making the following definitions:

Definition A two-place relation ≤ well-orders the objects which satisfy F

i↵

• ≤ linearly orders the objects which satisfy F

– ≤ is anti-symmetric

(∀x)(∀y)(x ≤ y ∧ y ≤ x→ x = y)
– ≤ is transitive

(∀x)(∀y)(∀z)(x ≤ y ∧ y ≤ z → x ≤ z)
– ≤ is total on F

(∀x)(∀y)(F (x) ∧ F (y)→ x ≤ y ∨ y ≤ x)
• F , ≤ satisfy the Least Element Condition: If some element satisfying F

also satisfies G then there is a least element in F satisfying G:

�F,<[(∃x)(F (x)∧G(x))→ (∃y)(F (y)∧G(y)∧ (∀z)(F (z)∧
G(z)→ y ≤ z))]

Definition A two place relation R behaves like an increasing function

from some F,≤ to G,≤′ if
• (∀x)[F (x)→ (∃y)(G(y) ∧R(x, y))]
• (∀x)(∀y)[R(x, y)→ (∀z)(R(x, z)→ y = z)]
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• (∀x)(∀y)(∀x′)(∀y′)[x ≤ y ∧R(x,x′) ∧R(y, y′)→ x′ ≤ y′].
I will sometimes abbreviate the above claim as F ≤�R,inc G ≤′ since it

says that R behaves like an increasing function which maps from F ≤ (the
Fs under ≤) to G ≤′ (the Gs under ≤′).

As usual, I will sometimes abbreviate the claim that x ≤ y ∧ ¬x = y as

x < y.
Thus we can write a version of Jech’s Lemma follows:

Lemma A: “If R behaves like an increasing function from F,≤
to F,≤ and the objects satisfying F are well ordered by ≤, then
(∀x)(∀y)[F (x) ∧ F (y) ∧R(x, y)→ ¬y < x] ”

Proof. To prove Lemma A, we will use essentially the same reasoning which

Jech uses to prove his set theoretic version of this claim. He says: Let F be

well-ordered by < and let R behave like an increasing function from F to F

<. Suppose the conclusion of the lemma does not hold. Then by the fact

that F is well-ordered by <, there must be a least x such that f(x) < x, (i.e.
(∃y)(R(x, y) ∧ y < x). Consider y = f(x). Because y < x and R is increasing,

f(y) < f(x) = y. This contradicts the claim that x is the ≤-least z such that

F (z) ∧ f(z) < z.
To mimic this reasoning, we first suppose that < well-orders the F s and

R behaves like an increasing function from the F s to the F s. Now we want to

consider the collection of objects satisfying F which R maps below themselves

(just as in Jech’s proof). Our main di�culty will be in using the fact that

the F s are well-ordered by ≤ (in the sense specified by the modal definition
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of well ordering above) to show that if there are any such objects, there must

be an ≤-least one.
By Simple Comprehension it is possible (while holding fixed the facts

about how the relations F,R and ≤ indicated in curly braces apply) for the

otherwise-unused predicate G to apply to exactly those objects satisfying

F and which R maps below themselves. Within this context, our initial

assumptions that < well-orders the Fs and R behaves like an increasing

function from the Fs to the Fs must remain true (because they are content

restricted to F,R and ≤). So we can use the fact that the F,≤ satisfy the

Least Element condition, i.e. �F,≤(if G applies to any object satisfying F , it

applies to an ≤-least such object) to deduce the needed claim. So we have: if

R maps any object satisfying F below itself, then then G applies to exactly

these objects, and there is a ≤-least object satisfying G.

Once we have this fact, we can derive the truth of the desired claim

that (∀x)(∀y)[F (x)∧F (y)∧R(x, y)→ ¬y < x] holds true within this special

context by exactly the same first order reasoning which Jech uses. Suppose

for contradiction that there were some such x that got mapped below itself

(in the sense above). Then we’d have a y such that R(x, y) ∧ y < x. By the

fact that R is a one-to-one increasing function, y < x and R maps x to y, we

know that R must map y to something strictly less than y1. But then G

must also apply to y, which contradicts the claim that x is the ≤-least object
satisfying G.

Thus we know that (∀x)(∀y)[F (x)∧F (y)∧R(x, y)→ ¬y < x] holds true
1It must map y to something ≤ y because it is increasing and something �= y because it

is one-to-one and R(x, y) and ¬x = y.
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within the special modal scenario being considered above. However, we can

note the above claim is content-restricted to F,R,≤. Thus we can infer from

the mere fact that it could be true (while holding fixed the behavior of F,R

and ≤) to the conclusion that it is actually true.

Now the desired conclusion, and the overall conditional to be proved

follows immediately.

1 < well-orders the Fs ∧ F ≤�R,inc F ≤ [1]

2 �F,≤,R∀z[G(z)↔ ∃F yR(z, y) ∧ y < z] SC

3 � ∀z[G(z)↔ ∃F yR(z, y) ∧ y < z] {F,≤,R} In� I

4 < well-orders the Fs ∧ F <�R,inc F ≤) 2 import [1]

5 �F,≤(∃FxG(x)→ ∃Fx[G(x) ∧ (∀F zG(z)→ x ≤ z)]) 4 FOL [1]

6 ∃x(F (x) ∧G(x))→ (∃Fx[G(x) ∧ (∀F zG(z)→ x ≤ z)] 5 � E [1]

7 ¬[∃Fx∃F y(R(x, y) ∧ y < x)] 3,4,6 FOL [1,4]

8 �F,≤,R¬[∃Fx∃F yR(x, y) ∧ y < x] 2-7 In�E [1]

9 ¬[∃Fx∃F yR(x, y) ∧ y < x] 8 �E [1]

10 ∀Fx∀F y(R(x, y)→ ¬y < x) 9 FOL [1]

11 ∀Fx∃F yR(x, y) ∧ (y = x ∨ y > x) 1, 10 FOL [1]
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6.2 Lemma B

“No well-ordered set is isomorphic to an initial segment of itself”

Definition I will say that the R
1

, . . .Rm are isomorphic to the �R′
1

, . . .R′m�
under some relation Z (henceforth written �R

1

, . . .Rm� ≅Z �R′
1

, . . .R′m�)
i↵:

• Z behaves like a bijection between the domain of objects in Ext(R
1

, . . .Rm)
and the domain of objects in Ext(R′

1

, . . .R′n). More formally:

– (∀x)(x ∈ Ext(R
1

, . . .Rm)→ (∃!ys.t.Z(x, y))∧y ∈ Ext(R′
1

, . . .R′m)])
i.e., Z is functional over Ext(R

1

, . . .Rm) with a range within

Ext(R′
1

, . . .R′m) and
– (∀y)(y ∈ Ext(R′

1

, . . .R′m)→ (∃!xs.t.Z(x, y)∧y ∈ Ext(R
1

, . . .Rm)]),
i.e., Z maps one-to-one and onto all of Ext(R′

1

, . . .R′m)
• Z applies in a way that respects each Ri, i.e., (∀�x)(∀�y)[Z(x1, y1) ∧
...∧Z(xn, yn)→ (Ri( �xi))↔ R′i(�yi))], where if Ri is an n-place relation

then �xi = x1, ...xn and �yi = y1, ...yn
We can then state a modal version of this claim as follows.

Claim to Prove: If the objects satisfying F are well-ordered by

≤ then ¬�F,≤(∃x)[F (x)∧�F ;>� ≅R �G;>�∧∀z(G(z)↔ [F (z)∧z <
x])]



6.2. LEMMA B 55

Proof. Assume that the objects satisfying F are well-ordered by ≤. Suppose
for contradiction that �F,<[(∃x)(F (x) ∧ (∀z)(G(z)↔ F (z) ∧ z < x) ∧ �F,>
� ≅R �G,>�)]. Consider any such scenario. The fact that the objects satisfying

F are well-ordered by < must remain true in this scenario (because it is

content-restricted to F,G,R and >). By first order logic and unpacking

definitions we can deduce that R therefore behaves like an increasing function

from F,≤ to F,≤ (the key fact is that R must respect ≤).

Now, to get contradiction, we can copy over Lemma A (we have just

seen that it can be proved from empty premises, so can we re-prove it as

needed, within any � or � context) and derive that R does not map any

object satisfying F strictly below itself. On the other hand, we know there

is an object x satisfying F which is > all objects satisfying G and that

�F,>� ≅R �G,>�. It follows from this by simple first order logic that R maps

the any such x to a some object y < x. Thus contradiction/the false (�)
would have to obtain in the (supposedly) logically possible scenario under

consideration.

Finally, we can export this � to our original situation (remembering that

the contradiction symbol � is content-restricted to every list of relations) and

thereby complete our proof. Informally, this corresponds to reasoning that

if it were �F,<[(∃x)(F (x) ∧ (∀z)(G(z)↔ F (z) ∧ z < x) ∧ �F,>� ≅R �G,>�)]
then it would also be �F,<�, which is false, so the original �F,< claim cannot

be true.
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1 F is well-ordered by < [1]

2 �F,<[(∃x)(F (x) ∧ (∀z)(G(z)↔ F (z) ∧ z < x) ∧ �F ;>� ≅R �G;>�)] [2]

3 � (∃x)(F (x) ∧ (∀z)(G(z)↔ F (z) ∧ z < x) ∧ �F ;>� ≅R �G;>�){F,<} In�I [2]
4 F is well-ordered by < 1 import [1]

5 R behaves like an increasing function on F 4 FOL [2]

6 Well-Ord.: F < ∧R Inc. Func.:F → [∀Fx∀F yR(x, y)→ ¬y < x] lemma A

7 ∀Fx∀F y(R(x, y)→ ¬y < x) 6,7,8 FOL [1,2]

8 (∃y)(R(x, y) ∧G(y)) 5 FOL [5]

9 (∃x)(∃y)(F (x) ∧ F (y) ∧R(x, y) ∧ y < x) 5,10 FOL [2,5]

10 � 9,11 FOL[1,2]

11 �F,<(�) 2,3-10 In�E [1,2]

12 � 11 �E [1,2]

13 ¬�F,< [(∃x)(F (x) ∧ (∀z)(G(z)↔ F (z) ∧ z < x) ∧ �F,>� ≅R �G,>�)] ¬I [1,2]

So � F is well-ordered by <→ ¬ �F,< [∃xF (x) ∧ �F,<�F ;>� ≅R �G;>� ∧
∀z(G(z)↔ [F (z) ∧ z < x])]
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