Note: Importing and justifying S5

August 21, 2024

Errata:

• As per the description, statement of importing (on pg 96 of the paper back) should have a \Diamond rather than a box. So it should read $(\Theta \land \Diamond_{\mathcal{L}} \Phi) \rightarrow \Diamond_{\mathcal{L}} (\Theta \land \Phi)$

Here are some answers to questions (thanks to Chris Scambler)

More explanation of how to get S5:

 $T: \Box A \to A.$

Assume $\Box K$. That's $\neg \Diamond \neg A$. Suppose for contradiction $\neg A$. Then $\Diamond \neg A$ by $\Diamond I$. Contradiction.

 $\mathrm{K}: \Box(A \to B) \to (\Box A \to \Box B)$

Assume $\Box(A \to B)$ and $\Box A$. Suppose, for contradiction, that $\Diamond \neg B$. Then $\Diamond[\Box(A \to B) \land \neg B]$ by Importing (since $\Box(A \to B)$ is content restricted to the empty set), $\Diamond(A \to B) \land \neg B$ by logical closure (since $\Box(A \to B) \vdash A \to B$ by $\Box \to B$ [or T above]. So $\Diamond \neg A$ by logical closure (since $(A \to B) \land \neg B \vdash \neg A$). But this contradicts $\Box A$, i.e., $\neg \Diamond \neg A$. So we have $\neg \Diamond \neg B$ aka $\Box B$.

5: $\Diamond A \to \Box \Diamond A$.

Assume $\Diamond A$. Suppose for contradiction that $\Diamond \neg \Diamond A$. Then, since $\neg \Diamond A$ is content restricted to the empty set, we can apply \Diamond elimination to get $\neg \Diamond A$. But this contradicts our assumption that $\Diamond A$. So $\neg \Diamond \neg \Diamond A$ aka $\Box A$.